summaryrefslogtreecommitdiff
path: root/src/math/math_ComputeKronrodPointsAndWeights.cxx
blob: 65c1a34d0a7e9c0dba2c9c528b85354858098b13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// File:	math_ComputeKronrodPointsAndWeights.cxx
// Created:	Wed Dec 21 18:11:52 2005
// Author:	Julia GERASIMOVA
//		<jgv@clubox>


#include <math_ComputeKronrodPointsAndWeights.ixx>
#include <math_EigenValuesSearcher.hxx>
#include <math_Array1OfValueAndWeight.hxx>
#include <math_CompareOfValueAndWeight.hxx>
#include <math_QuickSortOfValueAndWeight.hxx>
#include <Standard_ErrorHandler.hxx>

math_ComputeKronrodPointsAndWeights::math_ComputeKronrodPointsAndWeights(const Standard_Integer Number)
{
  myIsDone = Standard_False;

  try {
    Standard_Integer i, j;
    Standard_Integer a2NP1 = 2*Number + 1;
  
    myPoints  = new TColStd_HArray1OfReal(1, a2NP1);
    myWeights = new TColStd_HArray1OfReal(1, a2NP1);

    TColStd_Array1OfReal aDiag(1, a2NP1);
    TColStd_Array1OfReal aSubDiag(1, a2NP1);
  
    // Initialize symmetric tridiagonal matrix.
    Standard_Integer n         = Number;
    Standard_Integer aKronrodN = 2*Number + 1;
    Standard_Integer a3KN2p1   = Min(3*(Number + 1)/2 + 1, aKronrodN);
    for (i = 1; i <= a3KN2p1; i++) {
      aDiag(i) = 0.;
      
      if (i == 1)
	aSubDiag(i) = 0.;
      else {
	Standard_Integer sqrIm1 = (i-1)*(i-1);
	aSubDiag(i) = sqrIm1/(4.*sqrIm1 - 1);
      }
    }

    for (i = a3KN2p1 + 1; i <= aKronrodN; i++) {
      aDiag(i)    = 0.;
      aSubDiag(i) = 0.;
    }
  
    // Initialization of temporary data structures.
    Standard_Integer  aNd2 =     Number/2;
    Standard_Real    *s    = new Standard_Real[aNd2 + 2];
    Standard_Real    *t    = new Standard_Real[aNd2 + 2];
    Standard_Real    *ss   =     s++;
    Standard_Real    *tt   =     t++;
  
    for (i = -1; i <= aNd2; i++) {
      s[i] = 0.;
      t[i] = 0.;
    }
  
    // Generation of Jacobi-Kronrod matrix.
    Standard_Real    *aa = new Standard_Real [a2NP1+1];
    Standard_Real    *bb = new Standard_Real [a2NP1+1];
    for (i = 1; i <= a2NP1; i++) {
      aa[i] = aDiag(i);
      bb[i] = aSubDiag(i);
    }
    Standard_Real    *ptrtmp;
    Standard_Real     u;
    Standard_Integer  m;
    Standard_Integer  k;
    Standard_Integer  l;

    Standard_Real *a = aa+1;
    Standard_Real *b = bb+1;

    // Eastward phase.
    t[0] = b[Number + 1];

    for (m = 0; m <= n - 2; m++) {
      u = 0;

      for (k = (m + 1)/2; k >= 0; k--) {
	l     = m - k;
	u    += (a[k + n + 1] - a[l])*t[k] + b[k + n + 1]*s[k - 1] - b[l]*s[k];
	s[k]  = u;
      }

      ptrtmp = t;
      t      = s;
      s      = ptrtmp;
    }

    for (j = aNd2; j >= 0; j--)
      s[j] = s[j - 1];

    // Southward phase.
    for (m = n - 1; m <= 2*n - 3; m++) {
      u = 0;

      for (k = m + 1 - n; k <= (m - 1)/2; k++) {
	l     =  m - k;
	j     =  n - 1 - l;
	u    += -(a[k + n + 1] - a[l])*t[j] - b[k + n + 1]*s[j] + b[l]*s[j + 1];
	s[j]  =  u;
      }

      if (m % 2 == 0) {
	k = m/2;
	a[k + n + 1] = a[k] + (s[j] - b[k + n + 1]*s[j + 1])/ t[j + 1];
      } else {
	k = (m + 1)/2;
	b[k + n + 1] = s[j]/s[j + 1];
      }

      ptrtmp = t;
      t      = s;
      s      = ptrtmp;
    }

    // Termination phase.
    a[2*Number] = a[n - 1] - b[2*Number]*s[0]/t[0];

    delete [] ss;
    delete [] tt;
    for (i = 1; i <= a2NP1; i++) {
      aDiag(i)    = aa[i];
      aSubDiag(i) = bb[i];
    }
    delete [] aa;
    delete [] bb;
  
    for (i = 1; i <= a2NP1; i++)
      aSubDiag(i)  = Sqrt(aSubDiag(i));
  
    // Compute eigen values.
    math_EigenValuesSearcher EVsearch(aDiag, aSubDiag); 
  
    if (EVsearch.IsDone()) {
      math_Array1OfValueAndWeight VWarray(1, a2NP1);
      for (i = 1; i <= a2NP1; i++) {
	math_Vector anEigenVector = EVsearch.EigenVector(i);
	Standard_Real aWeight = anEigenVector(1);
	aWeight = 2. * aWeight * aWeight;
	math_ValueAndWeight EVW( EVsearch.EigenValue(i), aWeight );
	VWarray(i) = EVW;
      }

      math_CompareOfValueAndWeight theComparator;
      math_QuickSortOfValueAndWeight::Sort(VWarray, theComparator);
      
      for (i = 1; i <= a2NP1; i++) {
	myPoints->ChangeValue(i)  = VWarray(i).Value();
	myWeights->ChangeValue(i) = VWarray(i).Weight();
      }      
      myIsDone = Standard_True;
    }
  } catch (Standard_Failure) {
  }
}

Standard_Boolean math_ComputeKronrodPointsAndWeights::IsDone() const
{
  return myIsDone;
}

math_Vector math_ComputeKronrodPointsAndWeights::Points() const
{
  Standard_Integer Number = myPoints->Length();
  math_Vector thePoints(1, Number);
  for (Standard_Integer i = 1; i <= Number; i++)
    thePoints(i) = myPoints->Value(i);

  return thePoints;
}

math_Vector math_ComputeKronrodPointsAndWeights::Weights() const
{
  Standard_Integer Number = myWeights->Length();
  math_Vector theWeights(1, Number);
  for (Standard_Integer i = 1; i <= Number; i++)
    theWeights(i) = myWeights->Value(i);

  return theWeights;
}