// File: math_ComputeKronrodPointsAndWeights.cxx // Created: Wed Dec 21 18:11:52 2005 // Author: Julia GERASIMOVA // #include #include #include #include #include #include math_ComputeKronrodPointsAndWeights::math_ComputeKronrodPointsAndWeights(const Standard_Integer Number) { myIsDone = Standard_False; try { Standard_Integer i, j; Standard_Integer a2NP1 = 2*Number + 1; myPoints = new TColStd_HArray1OfReal(1, a2NP1); myWeights = new TColStd_HArray1OfReal(1, a2NP1); TColStd_Array1OfReal aDiag(1, a2NP1); TColStd_Array1OfReal aSubDiag(1, a2NP1); // Initialize symmetric tridiagonal matrix. Standard_Integer n = Number; Standard_Integer aKronrodN = 2*Number + 1; Standard_Integer a3KN2p1 = Min(3*(Number + 1)/2 + 1, aKronrodN); for (i = 1; i <= a3KN2p1; i++) { aDiag(i) = 0.; if (i == 1) aSubDiag(i) = 0.; else { Standard_Integer sqrIm1 = (i-1)*(i-1); aSubDiag(i) = sqrIm1/(4.*sqrIm1 - 1); } } for (i = a3KN2p1 + 1; i <= aKronrodN; i++) { aDiag(i) = 0.; aSubDiag(i) = 0.; } // Initialization of temporary data structures. Standard_Integer aNd2 = Number/2; Standard_Real *s = new Standard_Real[aNd2 + 2]; Standard_Real *t = new Standard_Real[aNd2 + 2]; Standard_Real *ss = s++; Standard_Real *tt = t++; for (i = -1; i <= aNd2; i++) { s[i] = 0.; t[i] = 0.; } // Generation of Jacobi-Kronrod matrix. Standard_Real *aa = new Standard_Real [a2NP1+1]; Standard_Real *bb = new Standard_Real [a2NP1+1]; for (i = 1; i <= a2NP1; i++) { aa[i] = aDiag(i); bb[i] = aSubDiag(i); } Standard_Real *ptrtmp; Standard_Real u; Standard_Integer m; Standard_Integer k; Standard_Integer l; Standard_Real *a = aa+1; Standard_Real *b = bb+1; // Eastward phase. t[0] = b[Number + 1]; for (m = 0; m <= n - 2; m++) { u = 0; for (k = (m + 1)/2; k >= 0; k--) { l = m - k; u += (a[k + n + 1] - a[l])*t[k] + b[k + n + 1]*s[k - 1] - b[l]*s[k]; s[k] = u; } ptrtmp = t; t = s; s = ptrtmp; } for (j = aNd2; j >= 0; j--) s[j] = s[j - 1]; // Southward phase. for (m = n - 1; m <= 2*n - 3; m++) { u = 0; for (k = m + 1 - n; k <= (m - 1)/2; k++) { l = m - k; j = n - 1 - l; u += -(a[k + n + 1] - a[l])*t[j] - b[k + n + 1]*s[j] + b[l]*s[j + 1]; s[j] = u; } if (m % 2 == 0) { k = m/2; a[k + n + 1] = a[k] + (s[j] - b[k + n + 1]*s[j + 1])/ t[j + 1]; } else { k = (m + 1)/2; b[k + n + 1] = s[j]/s[j + 1]; } ptrtmp = t; t = s; s = ptrtmp; } // Termination phase. a[2*Number] = a[n - 1] - b[2*Number]*s[0]/t[0]; delete [] ss; delete [] tt; for (i = 1; i <= a2NP1; i++) { aDiag(i) = aa[i]; aSubDiag(i) = bb[i]; } delete [] aa; delete [] bb; for (i = 1; i <= a2NP1; i++) aSubDiag(i) = Sqrt(aSubDiag(i)); // Compute eigen values. math_EigenValuesSearcher EVsearch(aDiag, aSubDiag); if (EVsearch.IsDone()) { math_Array1OfValueAndWeight VWarray(1, a2NP1); for (i = 1; i <= a2NP1; i++) { math_Vector anEigenVector = EVsearch.EigenVector(i); Standard_Real aWeight = anEigenVector(1); aWeight = 2. * aWeight * aWeight; math_ValueAndWeight EVW( EVsearch.EigenValue(i), aWeight ); VWarray(i) = EVW; } math_CompareOfValueAndWeight theComparator; math_QuickSortOfValueAndWeight::Sort(VWarray, theComparator); for (i = 1; i <= a2NP1; i++) { myPoints->ChangeValue(i) = VWarray(i).Value(); myWeights->ChangeValue(i) = VWarray(i).Weight(); } myIsDone = Standard_True; } } catch (Standard_Failure) { } } Standard_Boolean math_ComputeKronrodPointsAndWeights::IsDone() const { return myIsDone; } math_Vector math_ComputeKronrodPointsAndWeights::Points() const { Standard_Integer Number = myPoints->Length(); math_Vector thePoints(1, Number); for (Standard_Integer i = 1; i <= Number; i++) thePoints(i) = myPoints->Value(i); return thePoints; } math_Vector math_ComputeKronrodPointsAndWeights::Weights() const { Standard_Integer Number = myWeights->Length(); math_Vector theWeights(1, Number); for (Standard_Integer i = 1; i <= Number; i++) theWeights(i) = myWeights->Value(i); return theWeights; }