summaryrefslogtreecommitdiff
path: root/trunk/users/metalab/GCode_Interpreter_SD/process_string.pde
blob: b2efd62d5033919a19fcf44e700da40b362b55cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/* -*- mode: c++; c-basic-offset: 8; indent-tabs-mode: t -*- */

// Our point structures to make things nice.
struct LongPoint
{
  long p[3];
};

struct FloatPoint
{
  float p[3];
};

// G-code line parse results
struct GcodeParser
{
  unsigned int seen;
  int G;
  int M;
  float P;
  float X;
  float Y;
  float Z;
  float I;
  float J;
  float F;
  float S;
  float R;
  float Q;
};

FloatPoint current_units;
FloatPoint target_units;
FloatPoint delta_units;

LongPoint current_steps;
LongPoint target_steps;
LongPoint delta_steps;

bool abs_mode = false; //0 = incremental; 1 = absolute

//default to mm for units
float units[3] = {X_STEPS_PER_MM, Y_STEPS_PER_MM, Z_STEPS_PER_MM};
#if ENABLE_ARCS == 1
float curve_section = CURVE_SECTION_MM;
#endif

//our direction vars
bool direction[3] = {true, true, true};

int scan_int(char *str, int *valp);
int scan_float(char *str, float *valp);

//our feedrate variables.
float feedrate = 0.0;
long feedrate_micros = 0;

/* keep track of the last G code - this is the command mode to use
 * if there is no command in the current string 
 */
int last_gcode_g = -1;

/* bit-flags for commands and parameters */
#define GCODE_G	(1<<0)
#define GCODE_M	(1<<1)
#define GCODE_P	(1<<2)
#define GCODE_X	(1<<3)
#define GCODE_Y	(1<<4)
#define GCODE_Z	(1<<5)
#define GCODE_I	(1<<6)
#define GCODE_J	(1<<7)
#define GCODE_K	(1<<8)
#define GCODE_F	(1<<9)
#define GCODE_S	(1<<10)
#define GCODE_Q	(1<<11)
#define GCODE_R	(1<<12)

#define TYPE_INT 1
#define TYPE_FLOAT 2

/* macros to save typing and bugs in the parser function */
#define PARSE_INT(ch, instr, str, str_size, len, val, seen, flag)       \
  case ch:                                                              \
  len = scan_int(str, &val, &seen, flag);                               \
  break;

#define PARSE_FLOAT(ch, instr, str, str_size, len, val, seen, flag)     \
  case ch:                                                              \
  len = scan_float(str, &val, &seen, flag);                             \
  break;

int parse_string(struct GcodeParser * gc, char instruction[], int size)
{
  int ind;
  int len;	/* length of parameter argument */

  gc->seen = 0;

  len=0;
  /* scan the string for commands and parameters, recording the arguments for each,
   * and setting the seen flag for each that is seen
   */
  for (ind=0; ind<size; ind += (1+len)) {
    len = 0;
    switch (instruction[ind]) {
      PARSE_INT('G', instruction, &instruction[ind+1], size-ind, len, gc->G, gc->seen, GCODE_G);
      PARSE_INT('M', instruction, &instruction[ind+1], size-ind, len, gc->M, gc->seen, GCODE_M);
      PARSE_FLOAT('S', instruction, &instruction[ind+1], size-ind, len, gc->S, gc->seen, GCODE_S);
      PARSE_FLOAT('P', instruction, &instruction[ind+1], size-ind, len, gc->P, gc->seen, GCODE_P);
      PARSE_FLOAT('X', instruction, &instruction[ind+1], size-ind, len, gc->X, gc->seen, GCODE_X);
      PARSE_FLOAT('Y', instruction, &instruction[ind+1], size-ind, len, gc->Y, gc->seen, GCODE_Y);
      PARSE_FLOAT('Z', instruction, &instruction[ind+1], size-ind, len, gc->Z, gc->seen, GCODE_Z);
      PARSE_FLOAT('I', instruction, &instruction[ind+1], size-ind, len, gc->I, gc->seen, GCODE_I);
      PARSE_FLOAT('J', instruction, &instruction[ind+1], size-ind, len, gc->J, gc->seen, GCODE_J);
      PARSE_FLOAT('F', instruction, &instruction[ind+1], size-ind, len, gc->F, gc->seen, GCODE_F);
      PARSE_FLOAT('R', instruction, &instruction[ind+1], size-ind, len, gc->R, gc->seen, GCODE_R);
      PARSE_FLOAT('Q', instruction, &instruction[ind+1], size-ind, len, gc->Q, gc->seen, GCODE_Q);
      break;
    }
  }
}


//Read the string and execute instructions
void process_string(char instruction[], int size)
{

  GcodeParser gc;	/* string parse result */

  //the character / means delete block... used for comments and stuff.
  if (instruction[0] == '/') {
    Serial.print("ok:");
    Serial.println(128-Serial.available(), DEC);
    return;
  }

  //init baby!
  FloatPoint fp;
  fp.p[X_AXIS] = 0.0;
  fp.p[Y_AXIS] = 0.0;
  fp.p[Z_AXIS] = 0.0;

  //get all our parameters!
  parse_string(&gc, instruction, size);

  // 	/* if no command was seen, but parameters were, then use the last G code as 
  // 	 * the current command
  // 	 */
  // 	if ((!(gc.seen & (GCODE_G | GCODE_M))) && 
  // 	    ((gc.seen != 0) &&
  // 		(last_gcode_g >= 0))
  // 	)
  // 	{
  // 		/* yes - so use the previous command with the new parameters */
  // 		gc.G = last_gcode_g;
  // 		gc.seen |= GCODE_G;
  // 	}

  //did we get a gcode?
  if (gc.seen & GCODE_G) {
    last_gcode_g = gc.G;	/* remember this for future instructions */
    fp = current_units;
    if (abs_mode) {
      if (gc.seen & GCODE_X)
        fp.p[X_AXIS] = gc.X;
      if (gc.seen & GCODE_Y)
        fp.p[Y_AXIS] = gc.Y;
      if (gc.seen & GCODE_Z)
        fp.p[Z_AXIS] = gc.Z;
    }
    else {
      if (gc.seen & GCODE_X)
        fp.p[X_AXIS] += gc.X;
      if (gc.seen & GCODE_Y)
        fp.p[Y_AXIS] += gc.Y;
      if (gc.seen & GCODE_Z)
        fp.p[Z_AXIS] += gc.Z;
    }

    // Get feedrate if supplied
    if ( gc.seen & GCODE_F )
      feedrate = gc.F;

    //do something!
    switch (gc.G) {
      //Rapid Positioning
      //Linear Interpolation
      //these are basically the same thing.
    case 0:
    case 1:
      //set our target.
      set_target(fp.p[X_AXIS], fp.p[Y_AXIS], fp.p[Z_AXIS]);

      // Use currently set feedrate if doing a G1
      if (gc.G == 1)
        feedrate_micros = calculate_feedrate_delay(feedrate);
      // Use our max for G0
      else
        feedrate_micros = getMaxSpeed();

//       Serial.println(feedrate, DEC);
//       Serial.println(feedrate_micros, DEC);

      //finally move.
      dda_move(feedrate_micros);
      break;
#if ENABLE_ARCS == 1
      //Clockwise arc
    case 2:
      //Counterclockwise arc
    case 3: {
      FloatPoint cent;

      // Centre coordinates are always relative
      if (gc.seen & GCODE_I) cent.p[X_AXIS] = current_units.p[X_AXIS] + gc.I;
      else cent.p[X_AXIS] = current_units.p[X_AXIS];
      if (gc.seen & GCODE_J) cent.p[Y_AXIS] = current_units.p[Y_AXIS] + gc.J;
      else cent.p[Y_AXIS] = current_units.p[Y_AXIS];

      float angleA, angleB, angle, radius, length, aX, aY, bX, bY;

      aX = (current_units.p[X_AXIS] - cent.p[X_AXIS]);
      aY = (current_units.p[Y_AXIS] - cent.p[Y_AXIS]);
      bX = (fp.p[X_AXIS] - cent.p[X_AXIS]);
      bY = (fp.p[Y_AXIS] - cent.p[Y_AXIS]);

      // Clockwise
      if (gc.G == 2) {
        angleA = atan2(bY, bX);
        angleB = atan2(aY, aX);
      }
      // Counterclockwise
      else {
        angleA = atan2(aY, aX);
        angleB = atan2(bY, bX);
      }

      // Make sure angleB is always greater than angleA
      // and if not add 2PI so that it is (this also takes
      // care of the special case of angleA == angleB,
      // ie we want a complete circle)
      if (angleB <= angleA)
        angleB += 2 * M_PI;
      angle = angleB - angleA;

      radius = sqrt(aX * aX + aY * aY);
      length = radius * angle;
      int steps, s, step;

      // Maximum of either 2.4 times the angle in radians or the length of the curve divided by the constant specified in _init.pde
      steps = (int) ceil(max(angle * 2.4, length / curve_section));

      FloatPoint newPoint;
      float arc_start_z = current_units.p[Z_AXIS];
      for (s = 1; s <= steps; s++) {
        step = (gc.G == 3) ? s : steps - s; // Work backwards for CW
        newPoint.p[X_AXIS] = cent.p[X_AXIS] + radius * cos(angleA + angle
                                                           * ((float) step / steps));
        newPoint.p[Y_AXIS] = cent.p[Y_AXIS] + radius * sin(angleA + angle
                                                           * ((float) step / steps));
        set_target(newPoint.p[X_AXIS], newPoint.p[Y_AXIS], arc_start_z + (fp.p[Z_AXIS]
                                                                          - arc_start_z) * s / steps);

        // Need to calculate rate for each section of curve
        if (feedrate > 0)
          feedrate_micros = calculate_feedrate_delay(feedrate);
        else
          feedrate_micros = getMaxSpeed();

        // Make step
        dda_move(feedrate_micros);
      }
    }
      break;
#endif // ENABLE_ARCS
			
    case 4: //Dwell
      delay((int)(gc.P * 1000));
      break;

      //Inches for Units
    case 20:
      units[X_AXIS] = X_STEPS_PER_INCH;
      units[Y_AXIS] = Y_STEPS_PER_INCH;
      units[Z_AXIS] = Z_STEPS_PER_INCH;
#if ENABLE_ARCS == 1
      curve_section = CURVE_SECTION_INCHES;
#endif

      calculate_deltas();
      break;

      //mm for Units
    case 21:
      units[X_AXIS] = X_STEPS_PER_MM;
      units[Y_AXIS] = Y_STEPS_PER_MM;
      units[Z_AXIS] = Z_STEPS_PER_MM;
#if ENABLE_ARCS == 1
      curve_section = CURVE_SECTION_MM;
#endif
      calculate_deltas();
      break;

      //go home.
    case 28:
      set_target(0.0, 0.0, 0.0);
      dda_move(getMaxSpeed());
      break;

      // Home to physical switches
    case 30:
      if (gc.seen & GCODE_Z) {
        home_axis(Z_AXIS);
        current_units.p[Z_AXIS] = 0.0;
      }
      if (gc.seen & GCODE_Y) {
        home_axis(Y_AXIS);
        current_units.p[Y_AXIS] = 0.0;
      }
      if (gc.seen & GCODE_X) {
        home_axis(X_AXIS);
        current_units.p[X_AXIS] = 0.0;
      }

      // Move to given offset (fp is overwritten by home_axis)
      if (gc.seen & GCODE_X) fp.p[X_AXIS] = gc.X;
      else fp.p[X_AXIS] = current_units.p[X_AXIS];
      if (gc.seen & GCODE_Y) fp.p[Y_AXIS] = gc.Y;
      else fp.p[Y_AXIS] = current_units.p[Y_AXIS];
      if (gc.seen & GCODE_Z) fp.p[Z_AXIS] = gc.Z;
      else fp.p[Z_AXIS] = current_units.p[Z_AXIS];

      set_target(fp.p[X_AXIS], fp.p[Y_AXIS], fp.p[Z_AXIS]);
      feedrate_micros = calculate_feedrate_delay(feedrate);
      dda_move(feedrate_micros);

      break;

      // Drilling canned cycles
    case 81: // Without dwell
    case 82: // With dwell
    case 83: { // Peck drilling
      float retract = gc.R;
				
      if (!abs_mode)
        retract += current_units.p[Z_AXIS];

      // Retract to R position if Z is currently below this
      if (current_units.p[Z_AXIS] < retract) {
        set_target(current_units.p[X_AXIS], current_units.p[Y_AXIS], retract);
        dda_move(getMaxSpeed());
      }

      // Move to start XY
      set_target(fp.p[X_AXIS], fp.p[Y_AXIS], current_units.p[Z_AXIS]);
      dda_move(getMaxSpeed());

      // Do the actual drilling
      float target_z = retract;
      float delta_z;

      // For G83 move in increments specified by Q code, otherwise do in one pass
      if (gc.G == 83)
        delta_z = gc.Q;
      else
        delta_z = retract - fp.p[Z_AXIS];

      do {
        // Move rapidly to bottom of hole drilled so far (target Z if starting hole)
        set_target(fp.p[X_AXIS], fp.p[Y_AXIS], target_z);
        dda_move(getMaxSpeed());

        // Move with controlled feed rate by delta z (or to bottom of hole if less)
        target_z -= delta_z;
        if (target_z < fp.p[Z_AXIS])
          target_z = fp.p[Z_AXIS];
        set_target(fp.p[X_AXIS], fp.p[Y_AXIS], target_z);
        if (feedrate > 0)
          feedrate_micros = calculate_feedrate_delay(feedrate);
        else
          feedrate_micros = getMaxSpeed();
        dda_move(feedrate_micros);

        // Dwell if doing a G82
        if (gc.G == 82)
          delay((int)(gc.P * 1000));

        // Retract
        set_target(fp.p[X_AXIS], fp.p[Y_AXIS], retract);
        dda_move(getMaxSpeed());
      } while (target_z > fp.p[Z_AXIS]);
    }
      break;

			
    case 90: //Absolute Positioning
      abs_mode = true;
      break;

			
    case 91: //Incremental Positioning
      abs_mode = false;
      break;

			
    case 92: //Set as home
      set_position(0.0, 0.0, 0.0);
      break;

      /*
      //Inverse Time Feed Mode
      case 93:

      break;  //TODO: add this

      //Feed per Minute Mode
      case 94:

      break;  //TODO: add this
      */

    default:
      Serial.print("Unsupported G-Code: G");
      Serial.println(gc.G, DEC);
    }
    Serial.print("ok:");
    Serial.println(128-Serial.available(), DEC);
    return;
  }

  //find us an m code.
  if (gc.seen & GCODE_M) {
    switch (gc.M) {
      //TODO: this is a bug because search_string returns 0.  gotta fix that.
    case 0:
      true;
      break;
      /*
        case 0:
        //todo: stop program
        break;

        case 1:
        //todo: optional stop
        break;

        case 2:
        //todo: program end
        break;
      */
      //turn extruder on, forward
    case 101:
      extruder_set_direction(true);
      extruder_set_speed(extruder_speed);
      break;

      //turn extruder on, reverse
    case 102:
      extruder_set_direction(false);
      extruder_set_speed(extruder_speed);
      break;

      //turn extruder off
    case 103:
      extruder_set_speed(0);
      break;

      //custom code for temperature control
    case 104:
      if (gc.seen & GCODE_S)
        {
          extruder_set_temperature((int)gc.S);

          //warmup if we're too cold.
          while (extruder_get_temperature() < extruder_target_celsius)
            {
              extruder_manage_temperature();
              Serial.print("T:");
              Serial.println(extruder_get_temperature());
              delay(1000);
            }
        }
      break;

      //custom code for temperature reading
    case 105:
      Serial.print("T:");
      Serial.println(extruder_get_temperature());
      break;

      //turn fan on
    case 106:
      extruder_set_cooler(255);
      break;

      //turn fan off
    case 107:
      extruder_set_cooler(0);
      break;

      //set max extruder speed, 0-255 PWM
    case 108:
      if (gc.seen & GCODE_S)
        extruder_speed = (int)gc.S;
      break;

      //custom code for debugging
    case 120:
      Serial.print("Status: (");
      Serial.print(current_units.p[X_AXIS]*100, DEC);
      Serial.print(", ");
      Serial.print(current_units.p[Y_AXIS]*100, DEC);
      Serial.print(", ");
      Serial.print(current_units.p[Z_AXIS]*100, DEC);
      Serial.print(")");

      Serial.print(" [");
      Serial.print(read_switch(X_MIN_PIN)?'1':'0');
      Serial.print(read_switch(Y_MIN_PIN)?'1':'0');
      Serial.print(read_switch(Z_MAX_PIN)?'1':'0');
      Serial.print("]");

      Serial.println();

      break;

    default:
      Serial.print("Unsupported M-Code: M");
      Serial.println(gc.M, DEC);
    }
    Serial.print("ok:");
    Serial.println(128-Serial.available(), DEC);
    return;
  }

  // Something wrong happened
  Serial.print("error: ");
  instruction[size] = '\0';
  Serial.println(instruction);
}

int scan_float(char *str, float *valp, unsigned int *seen, unsigned int flag)
{
  float res;
  int len;
  char *end;

  res = (float)strtod(str, &end);
  len = end - str;

  if (len > 0) {
    *valp = res;
    *seen |= flag;
  }
  else {
    *valp = 0;
  }

  return len;	/* length of number */
}

int scan_int(char *str, int *valp, unsigned int *seen, unsigned int flag)
{
  int res;
  int len;
  char *end;

  res = (int)strtol(str, &end, 10);
  len = end - str;

  if (len > 0) {
    *valp = res;
    *seen |= flag;
  }
  else {
    *valp = 0;
  }

  return len;	/* length of number */
}