summaryrefslogtreecommitdiff
path: root/35/ddc5a15dcbd55f82edb50c003997828f8bf96b
blob: 3f14950b648f70d3e580c0a5d526a1cb2fb340fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
Return-Path: <ZmnSCPxj@protonmail.com>
Received: from smtp3.osuosl.org (smtp3.osuosl.org [140.211.166.136])
 by lists.linuxfoundation.org (Postfix) with ESMTP id 47B29C000B
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 18 Feb 2022 02:45:36 +0000 (UTC)
Received: from localhost (localhost [127.0.0.1])
 by smtp3.osuosl.org (Postfix) with ESMTP id 28BCC60A70
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 18 Feb 2022 02:45:36 +0000 (UTC)
X-Virus-Scanned: amavisd-new at osuosl.org
X-Spam-Flag: NO
X-Spam-Score: -1.601
X-Spam-Level: 
X-Spam-Status: No, score=-1.601 tagged_above=-999 required=5
 tests=[BAYES_00=-1.9, DKIM_SIGNED=0.1, DKIM_VALID=-0.1,
 DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, FREEMAIL_FROM=0.001,
 FROM_LOCAL_NOVOWEL=0.5, SPF_HELO_PASS=-0.001, SPF_PASS=-0.001]
 autolearn=ham autolearn_force=no
Authentication-Results: smtp3.osuosl.org (amavisd-new);
 dkim=pass (2048-bit key) header.d=protonmail.com
Received: from smtp3.osuosl.org ([127.0.0.1])
 by localhost (smtp3.osuosl.org [127.0.0.1]) (amavisd-new, port 10024)
 with ESMTP id PJqgP7izFdsB
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 18 Feb 2022 02:45:34 +0000 (UTC)
X-Greylist: domain auto-whitelisted by SQLgrey-1.8.0
Received: from mail-40135.protonmail.ch (mail-40135.protonmail.ch
 [185.70.40.135])
 by smtp3.osuosl.org (Postfix) with ESMTPS id 8F963607A4
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 18 Feb 2022 02:45:34 +0000 (UTC)
Date: Fri, 18 Feb 2022 02:45:23 +0000
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=protonmail.com;
 s=protonmail3; t=1645152330;
 bh=/HqxW3AbO7u2lZrZkUn5O7nkazua1RuGFN3C0mLou5Q=;
 h=Date:To:From:Reply-To:Subject:Message-ID:From:To:Cc:Date:Subject:
 Reply-To:Feedback-ID:Message-ID;
 b=E4OzuNjY+2UnfI+hpKk9wAOZZbPiDc8IG5aUlOAuwAzMFcESldJppzj/870VGdkjd
 BMkXwc1R2ePOTV9J88e/gEP/Av7bXjCFu6/hgTxDsHFqpeamaWrg7IrtK2P2HWR9Ub
 u70y5JiWgUG8YdIZxnDwoS2jgnBcERN76fFpfB1W5gjK1eQx+56qIwMqpA7mLQXypY
 1qkloJw7oGk6Cg7+0J5XnCcAHjglBuu3BXsBgO8grHSIBAkuRpJzmShybD7X4iwYp9
 o42PuflRBCdUC8OCz3glt+9pOVFI9K7f59caQhZ9BvWa3mYGrJVEF/s76z2Org3ds+
 boECR2NjssY4g==
To: Anthony Towns <aj@erisian.com.au>,
 bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org>
From: ZmnSCPxj <ZmnSCPxj@protonmail.com>
Reply-To: ZmnSCPxj <ZmnSCPxj@protonmail.com>
Message-ID: <6nZ-SkxvJLrOCOIdUtLOsdnl94DoX_NHY0uwZ7sw78t24FQ33QJlJU95W7Sk1ja5EFic5a3yql14MLmSAYFZvLGBS4lDUJfr8ut9hdB7GD4=@protonmail.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: quoted-printable
Subject: [bitcoin-dev] `OP_EVICT`: An Alternative to `OP_TAPLEAFUPDATEVERIFY`
X-BeenThere: bitcoin-dev@lists.linuxfoundation.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: Bitcoin Protocol Discussion <bitcoin-dev.lists.linuxfoundation.org>
List-Unsubscribe: <https://lists.linuxfoundation.org/mailman/options/bitcoin-dev>, 
 <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=unsubscribe>
List-Archive: <http://lists.linuxfoundation.org/pipermail/bitcoin-dev/>
List-Post: <mailto:bitcoin-dev@lists.linuxfoundation.org>
List-Help: <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=help>
List-Subscribe: <https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev>, 
 <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=subscribe>
X-List-Received-Date: Fri, 18 Feb 2022 02:45:36 -0000

`OP_EVICT`: An Alternative to `OP_TAPLEAFUPDATEVERIFY`
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D

In late 2021, `aj` proposed `OP_TAPLEAFUPDATEVERIFY` in order to
implement CoinPools and similar constructions.

`Jeremy` observed that due to the use of Merkle tree paths, an
`OP_TLUV` would require O(log N) hash revelations in order to
reach a particular tapleaf, which, in the case of a CoinPool,
would then delete itself after spending only a particular amount
of funds.
He then observed that `OP_CTV` trees also require a similar
revelation of O(log N) transactions, but with the advantage that
once revealed, the transactions can then be reused, thus overall
the expectation is that the number of total bytes onchain is
lesser compared to `OP_TLUV`.

After some thinking, I realized that it was the use of the
Merkle tree to represent the promised-but-offchain outputs of
the CoinPool that lead to the O(log N) space usage.
I then started thinking of alternative representations of
sets of promised outputs, which would not require O(log N)
revelations by avoiding the tree structure.

Promised Outputs
----------------

Fundamentally, we can consider that a solution for scaling
Bitcoin would be to *promise* that some output *can* appear
onchain at some point in the future, without requiring that the
output be shown onchain *right now*.
Then, we can perform transactional cut-through on spends of the
promised outputs, without requiring onchain activity ("offchain").
Only if something Really Bad (TM) happens do we need to actually
drop the latest set of promised outputs onchain, where it has to
be verified globally by all fullnodes (and would thus incur scaling
and privacy costs).

As an example of the above paradigm, consider the Lightning
Network.
Outputs representing the money of each party in a channel are
promised, and *can* appear onchain (via the unilateral close
mechanism).
In the meantime, there is a mechanism for performing cut-through,
allowing transfers between channel participants; any number of
transactions can be performed that are only "solidified" later,
without expensive onchain activity.

Thus:

* A CoinPool is really a way to commit to promised outputs.
  To change the distribution of those promised outputs, the
  CoinPool operators need to post an onchain transaction, but
  that is only a 1-input-1-output transaction, and with Schnorr
  signatures the single input requires only a single signature.
  But in case something Really Bad (TM) happens, any participant
  can unilaterally close the CoinPool, instantiating the promised
  outputs.
* A statechain is really just a CoinPool hosted inside a
  Decker-Wattenhofer or Decker-Russell-Osuntokun construction.
  This allows changing the distribution of those promised outputs
  without using an onchain transaction --- instead, a new state
  in the Decker-Wattenhofer/Decker-Russell-Osuntokun construction
  is created containing the new state, which invalidates all older
  states.
  Again, any participant can unilaterally shut it down, exposing
  the state of the inner CoinPool.
* A channel factory is really just a statechain where the
  promised outputs are not simple 1-of-1 single-owner outputs,
  but are rather 2-of-2 channels.
  This allows graceful degradation, where even if the statechain
  ("factory") layer has missing participants, individual 2-of-2
  channels can still continue operating as long as they do not
  involve missing participants, without requiring all participants
  to be online for large numbers of transactions.

We can then consider that the base CoinPool usage should be enough,
as other mechanisms (`OP_CTV`+`OP_CSFS`, `SIGHASH_NOINPUT`) can be
used to implement statechains and channels and channel factories.

I therefore conclude that what we really need is "just" a way to
commit ourselves to exposing a set of promised outputs, with the
proviso that if we all agree, we can change that set (without
requiring that the current or next set be exposed, for both
scaling and privacy).

(To Bitcoin Cashers: this is not an IOU, this is *committed* and
can be enforced onchain, that is enough to threaten your offchain
counterparties into behaving correctly.
They cannot gain anything by denying the outputs they promised,
you can always drop it onchain and have it enforced, thus it is
not just merely an IOU, as IOUs are not necessarily enforceable,
but this mechanism *would* be.
Blockchain as judge+jury+executioner, not noisy marketplace.)

Importantly: both `OP_CTV` and `OP_TLUV` force the user to
decide on a particular, but ultimately arbitrary, ordering for
promised outputs.
In principle, a set of promised outputs, if the owners of those
outputs are peers, does not have *any* inherent order.
Thus, I started to think about a commitment scheme that does not
impose any ordering during commitment.

Digression: N-of-N With Eviction
--------------------------------

An issue with using an N-of-N construction is that if any single
participant is offline, the construction cannot advance its state.

This has lead to some peopple proposing to instead use K-of-N
once N reaches much larger than 2 participants for CoinPools/statechains/
channel factories.

However, even so, K-of-N still requires that K participants remain
online, and the level K is a security parameter.
If less than K participants are online, then the construction
*still* cannot advance its state.

Worse, because K < N, a single participant can have its funds
outright stolen by a quorum of K participants.
There is no way to prove that the other participants in the same
construction are not really sockpuppets of the same real-world
entity, thus it is entirely possible that the K quorum is actually
just a single participant that is now capable of stealing the
funds of all the other participants.
The only way to avoid this is to use N-oF-N: N-of-N requires
*your* keys, thus the coins are *your* coins.
In short: K-of-N, as it allows the state to be updated without your
keys (on the excuse that "if you are offline, we need to be able to
update state"), is *not your keys not your coins*.

K-of-N should really only be used if all N are your sockpuppets,
and you want to HODL your funds.
This is the difference between consensus "everyone must agree" and
voting "enough sockpuppets can be used to overpower you".

With `OP_TLUV`, however, it is possible to create an "N-of-N With
Eviction" construction.
When a participant in the N-of-N is offline, but the remaining
participants want to advance the state of the construction, they
instead evict the offline participant, creating a smaller N-of-N
where *all* participants are online, and continue operating.

This avoids the *not your keys not your coins* problem of K-of-N
constructions, while simultaneously providing a way to advance
the state without the full participant set being online.

The only real problem with `OP_TLUV` is that it takes O(log N)
hash revelations to evict one participant, and each evicted
participant requires one separate transaction.

K-of-N has the "advantage" that even if you are offline, the state
can be advanced without evicting you.
However, as noted, as the coins can be spent without your keys,
the coins are not your coins, thus this advantage may be considered
dubious --- whether you are online or offline, a quorum of K can
outright steal your coins.
Eviction here requires that your coins be returned to your control.

Committing To An Unordered Set
------------------------------

In an N-of-N CoinPool/statechain/channel factory, the ownership
of a single onchain UTXO is shared among N participants.
That is, there are a number of promised outputs, not exposed
onchain, which the N participants agree on as the "real" current
state of the construction,
However, the N participants can also agree to change the current
state of the construction, if all of them sign off on the change.

Each of the promised outputs has a value, and the sum of all
promised values is the value of the onchain UTXO.
Interestingly, each of the promised outputs also has an SECP256K1
point that can be used as a public key, and the sum of all
promised points is the point of the onchain UTXO.

Thus, the onchain UTXO can serve as a commitment to the sum of
the promised outputs.
The problem is committing to each of the individual promised
outputs.

We can observe that a digital signature not only proves knowledge
of a private key, it also commits to a particular message.
Thus, we can make each participant sign their own expected
promised output, and share the signature for their promised
output.

When a participant is to be evicted, the other participants
take the signature for the promised output of the to-be-evicted
participant, and show it onchain, to attest to the output.
Then, the onchain mechanism should then allow the rest of the
funds to be controlled by the N-of-N set minus the evicted
participant.

`OP_EVICT`
----------

With all that, let me now propose the `OP_EVICT` opcode.

`OP_EVICT` accepts a variable number of arguments.

* The stack top is either the constant `1`, or an SECP256K1
  point.
  * If it is `1` that simply means "use the Taproot internal
    pubkey", as is usual for `OP_CHECKSIG`.
* The next stack item is a number, equal to the number of
  outputs that were promised, and which will now be evicted.
* The next stack items will alternate:
  * A number indicating an output index.
  * A signature for that output.
  * Output indices must not be duplicated, and indicated
    outputs must be SegWit v1 ("Taproot") outputs.
    The public key of the output will be taken as the public
    key for the corresponding signature, and the signature
    only covers the output itself (i.e. value and
    `scriptPubKey`).
    This means the signature has no `SIGHASH`.
  * As the signature covers the public key, this prevents
    malleation of a signature using one public key to a
    signature for another public key.
* After that is another signature.
  * This signature is checked using `OP_CHECKSIG` semantics
    (including `SIGHASH` support).
  * The public key is the input point (i.e. stack top)
    **MINUS** all the public keys of the indicated outputs.

As a concrete example, suppose A, B, C, and D want to make a
CoinPool (or offchain variant of such) with the following
initial state:

* A :=3D 10
* B :=3D 6
* C :=3D 4
* D :=3D 22

Let us assume that A, B, C, and D have generated public
keys in such a way to avoid key cancellation (e.g.
precommitment, or the MuSig scheme).

The participants then generate promised outputs for the
above, and each of them shares signatures for the promised
outputs:

* sign(a, "A :=3D 10")
* sign(b, "B :=3D 6")
* sign(c, "C :=3D 4")
* sign(d, "D :=3D 22")

Once that is done, they generate:

* Q =3D A + B + C + D
* P =3D h(Q|`<1> OP_EVICT`) * Q

Then they spend their funds, creating a Taproot output:

* P :=3D 42

If all participants are online, they can move funds between
each other (or to other addresses) by cooperatively signing
using the point P, and the magic of Taproot means that use
of `OP_EVICT` is not visible.

Suppose however that B is offline.
Then A, C, and D then decide to evict B.
To do so, they create a transaction that has an output
with "B :=3D 6", and they reveal the `OP_EVICT` Tapscript
as well as sign(b, "B :=3D 6").
This lets them change state and spend their funds without
B being online.
And B remains secure, as they cannot evict B except using
the pre-signed output, which B certifies as their expected
promised output.

Note that the opcode as described above allows for multiple
evictions in the same transaction.
If B and C are offline, then the remaining participants
simply need to expose multiple outputs in the same
transaction.

Security
--------

I am not a cryptographer.
Thus, the security of this scheme is a conjecture.

As long as key cancellation is protected against, it should
be secure.
The combined fund cannot be spent except if all participants
agree.
A smaller online participant set can be created only if a
participant is evicted, and eviction will force the owned
funds of the evicted participant to be instantiated.
The other participants cannot synthesize an alternate
signature signing a different value without knowledge of the
privkey of the evicted participant.

To prevent signature replay, each update of an updateable
scheme like CoinPool et al should use a different pubkey
for each participant for each state.
As the signature covers the pubkey, it should be safe to
use a non-hardened derivation scheme so that only a single
root privkey is needed.

Additional Discussion
---------------------

### Eviction Scheme

We can consider that the eviction scheme proposed here is the
following contract:

* Either all of us agree on some transfer, OR,
* Give me my funds and the rest of you can all go play with
  your funds however you want.

The signature that commits to a promised output is then the
agreement that the particular participant believes they are
entitled to a particular amount.

We can consider that a participant can re-sign their output
with a different amount, but that is why `OP_EVICT` requires
the *other* participants to cooperatively sign as well.
If the other participants cooperatively sign, they effectively
agree to the participant re-signing for a different amount,
and thus actually covered by "all of us agree".

### Pure SCRIPT Contracts

A "pure SCRIPT contract" is a Taproot contract where the
keyspend path is not desired, and the contract is composed of
Tapscript branches.

In such a case, the expected technique would be for the
contract participants to agree on a NUMS point where none
of the participants can know the scalar (private key) behind
the point, and to use that as the internal Taproot pubkey
`Q`.
For complete protocols, the NUMS point can be a protocol-defined
constant.

As the `OP_EVICT` opcode requires that each promised output
be signed, on the face of it, this technique cannot be used
for `OP_EVICT`-promised outputs, as it is impossible to sign
using the NUMS point.

However, we should note that the requirement of a "pure SCRIPT"
contract is that none of the participants can unilaterally
sign an alternate spend.
Using an N-of-N of the participants as the Taproot internal
pubkey is sufficient to ensure this.

As a concrete example: suppose we want an HTLC, which has a
hashlock branch requiring participant A, and a timelock branch
requiring participant B.
Such a simple scheme would not require that both A and B be
able to cooperatively spend the output, thus we might have
preferred the technique of using a NUMS point as Taproot
internal pubkey.
But using a NUMS point would not allow any signature, even the
`OP_EVICT`-required signatures-of-promised-outputs.

Instead of using a NUMS point for the Taproot internal pubkey,
we can use the sum of `A[tmp] + B[tmp]` (suitably protected
against key cancellation).
Then both A and B can cooperatively sign the promised output,
and keep the promised output in an `OP_EVICT`-enforced UTXO.
After creating the signature for the promised output, A and B
can ensure that the keypath branch cannot be used by securely
deleting the private keys for `A[tmp]` and `B[tmp]`
respectively.

### Signature Half-Aggregation

It is possible to batch-validate, and as `OP_EVICT` must
validate at least two signatures (an eviction and the
signature of the remaining) it makes sense to use batch
validation for `OP_EVICT`.

Of note is that Schnorr signatures allow for third-party
half-aggregation, where the `s` components of multiple
signatures are summed together, but the `R` components
are not.

(Warning: I am not aware of any security proofs that
half-aggregation is actually **safe**!
In particular, BIP-340 does not define half-aggregation,
and its batch validation algorithm is not, to my naivete,
extensible to half-aggregation.)

Basically, if we are batch validating two signatures
`(R[0], s[0])`, `(R[1], s[1])` of two messages `m[0]`
and `m[1]` signed by two keys `A[0]` and `A[1]`, we
would do:

* For `i =3D 0, 1`: `e[i] =3D h(R[i]|m[i])`
* Check: `(s[0] + s[1]) * G` is equal to `R[0] + e[0] * A[0] + R[1] + e[1] =
* A[1]`.

As we can see, the `s` can be summed before being
posted on the blockchain, as validators do not need
individual `s[i]`.
However, `R` cannot be summed as each one needs to be
hashed.

This half-aggregation is third-party, i.e. someone
without any knowledge of any private keys can simply
sum the `s` components of multiple signatures.

As `OP_EVICT` always validates at least two signatures,
using half-aggregation can remove at least 32 weight
units, and each additional promised output being evicted
is another signature whose `s` can be added to the sum.
Of course, **that depends on half-aggregation being
secure**.

### Relationship to Other Opcodes

`OP_CTV` does other things than this opcode, and cannot
be used as a direct alternative.
In particular while `OP_CTV` *can* commit to a set of
promised outputs, if a promised output needs to be
published, the remaining funds are now distributed over a
set of UTXOs.
Thus, "reviving" the CoinPool (or offchain variant thereof)
requires consuming multiple UTXOs, and the consumption of
multiple UTXOs is risky unless specifically designd for it.
(In particular, if the UTXOs have different signer sets,
one signer set can initially cooperate to revive the
CoinPool, then spend their UTXO to a different transaction,
which if confirmed will invalidate the revival transaction.)

This opcode seems largely in direct competitiong with
`OP_TLUV`, with largely the same design goal.
Its advantage is reduced number of eviction transactions,
as multiple evictions, plus the revival of the CoinPool,
can be put in a single transaction.
It has the disadvantage relative to `OP_TLUV` of requiring
point operations.
I have not explored completely, but my instinct suggests
that `OP_TLUV` use may require at least one signature
validation anyway.

It may be possible to implement `OP_EVICT` in terms of
`OP_TX`/`OP_TXHASH`, `OP_CSFS`, and a point-subtraction
operation.
However, `OP_EVICT` allows for the trivial implementation
of batch validation (and, if half-aggregation is safe, to
use half-aggregation instead), whereas we expect multiple
`OP_CSFS` to be needed to implement this, without any
possibility of batch validation.
It may be possible to design an `OP_CSFS` variant that
allows batch validation, such as by extending the virtual
machine with an accumulator for pending signature
validations.