1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
|
Return-Path: <loneroassociation@gmail.com>
Received: from smtp1.osuosl.org (smtp1.osuosl.org [IPv6:2605:bc80:3010::138])
by lists.linuxfoundation.org (Postfix) with ESMTP id DC7F1C000A
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 17 Mar 2021 05:59:46 +0000 (UTC)
Received: from localhost (localhost [127.0.0.1])
by smtp1.osuosl.org (Postfix) with ESMTP id A3E7E83396
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 17 Mar 2021 05:59:46 +0000 (UTC)
X-Virus-Scanned: amavisd-new at osuosl.org
X-Spam-Flag: NO
X-Spam-Score: -2.096
X-Spam-Level:
X-Spam-Status: No, score=-2.096 tagged_above=-999 required=5
tests=[BAYES_00=-1.9, DC_PNG_UNO_LARGO=0.001, DKIM_SIGNED=0.1,
DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1,
FREEMAIL_FROM=0.001, HTML_MESSAGE=0.001, LOTS_OF_MONEY=0.001,
RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001]
autolearn=ham autolearn_force=no
Authentication-Results: smtp1.osuosl.org (amavisd-new);
dkim=pass (2048-bit key) header.d=gmail.com
Received: from smtp1.osuosl.org ([127.0.0.1])
by localhost (smtp1.osuosl.org [127.0.0.1]) (amavisd-new, port 10024)
with ESMTP id rNqrmo0d9JxU
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 17 Mar 2021 05:59:45 +0000 (UTC)
X-Greylist: whitelisted by SQLgrey-1.8.0
Received: from mail-yb1-xb2f.google.com (mail-yb1-xb2f.google.com
[IPv6:2607:f8b0:4864:20::b2f])
by smtp1.osuosl.org (Postfix) with ESMTPS id ADA6C8336D
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 17 Mar 2021 05:59:44 +0000 (UTC)
Received: by mail-yb1-xb2f.google.com with SMTP id u3so39354040ybk.6
for <bitcoin-dev@lists.linuxfoundation.org>;
Tue, 16 Mar 2021 22:59:44 -0700 (PDT)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025;
h=mime-version:references:in-reply-to:from:date:message-id:subject:to
:cc; bh=b+FMSDoOyJls7KWOqL4LwwM1K3qXS87q/tTHrdnUUcg=;
b=RWZoF623UwnoSgdb0m6yF2OFpcpjReneu6A163u825+pNxm/T78wwlCdgu4LzSwPLl
KuaYy0BmOjpnk1DXyfw3R94bpR5aCzrl3ayZKCOZd/4gYKne5d2jxxmnj9hXSYMcJiJ/
OJAQGSssyNZOWkfmA+HHn886IXmV0n1bo3oFpdv4hUCULx4N10wyWEcijitl4i9VeNCo
Hs49hxk82vhsujPeZZOA/Ptf4czSLXVSjwbGxIP5og+TcV0oa1keE9P2ITJhHWdOoyc/
tPXwzA2YN+QTuXVP5zvmJQiUQiw8dt+/njx/UAJVttfCk/QISK3XloQH1MebxA3823Gc
GNdw==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
d=1e100.net; s=20161025;
h=x-gm-message-state:mime-version:references:in-reply-to:from:date
:message-id:subject:to:cc;
bh=b+FMSDoOyJls7KWOqL4LwwM1K3qXS87q/tTHrdnUUcg=;
b=rafa9aaBszG4jyMewt2C2zsQcTl7B30PlrcO28EXoqZQpAcvuP6mt1mXyzVf6/X7N9
TOPmdSnlHj/ZV/T3oTsayx24maBqvP2h5SVzr7SNKHpqfaZIa3OluLE2TuSl/okRVKro
DzeQlmhezk/ldgACxGmkr9ovPNATwvR6xuVTu7vgi6IksD2H9x39HK5zWGy2y6qQPBZQ
fPByYB6ylNf3ZAJKSEL5ti+NJRbtc0gae16xgkqGrx5eN+B+fCPPHMsmncQqmJVELPsT
XyBP5ALDnXZgviflmnEMUAZnHZDNWhkMb9INMv+aLTeLzP/MqCVNAjVAoTeQxy78S1iS
5Mcw==
X-Gm-Message-State: AOAM530j4iVgzZAlb/rkWKS13ttSbHcgGk4+ij04D/Kj7i3miY3gMmCx
LxYfeydHeA0AbDap2Cr6Nzv8N0T3xz74UbVX/mWrIzLxa1I=
X-Google-Smtp-Source: ABdhPJyayrEk5V5FfqGE13Xk5ZeXD3VwFvnfj+8TfXiDNszG2WVZ+tCZxRgXVz5wixfDtSzOMrGsb5xGVXHVCw2IunA=
X-Received: by 2002:a25:d843:: with SMTP id p64mr2457172ybg.339.1615960783158;
Tue, 16 Mar 2021 22:59:43 -0700 (PDT)
MIME-Version: 1.0
References: <CA+YkXXxUdZFYTa1c-F=-FzoQQVtV3GUmE2Okec-zRAD3xS1qAQ@mail.gmail.com>
<CALeFGL31M5DAULLRtCwjPYHaPVqsVqREUg6WQ2-cuj23SNk=BA@mail.gmail.com>
<CA+YkXXwBMG6YUAhf-2U5EV5Ep5RgG2foc9chramNFN5=AQ=-EA@mail.gmail.com>
<CALeFGL3E-rWW9aJkwre_3UF44vbNxPH2436DvaQdHoqEQ5b+eg@mail.gmail.com>
<CA+YkXXyBmOootb=Kt6CH3yquYVnAZd=fJQqiF_A3p_pkB8QC3g@mail.gmail.com>
<CALC81CMDQf4PqxRisQw58OL7QSFeMcQTvLMvmtOGJ_ya4-dhLg@mail.gmail.com>
<CA+YkXXyP=BQ_a42J=RE7HJFcJ73atyrt4KWKUG8LbsbW=u4b5w@mail.gmail.com>
<CA+YkXXw1AiMqCoPk_pUOdDMfkGF_T+aURGAjGK=MTa7jtAQchg@mail.gmail.com>
<CA+YkXXy1Y407UDdEjRVjzBFOCmaUKDoZkvqtXkxkmXmMdNrwBQ@mail.gmail.com>
<rJRQhaMpP-Rq5oJ8nscd81M3tq8PiaSGfvlF6xr0qIjJgcoN_p3azQ9-a-RAvIxDmRa1cfoBkJZnLXILDzhYKh3SDk9TE08wbX60d6EAjQw=@protonmail.com>
In-Reply-To: <rJRQhaMpP-Rq5oJ8nscd81M3tq8PiaSGfvlF6xr0qIjJgcoN_p3azQ9-a-RAvIxDmRa1cfoBkJZnLXILDzhYKh3SDk9TE08wbX60d6EAjQw=@protonmail.com>
From: Lonero Foundation <loneroassociation@gmail.com>
Date: Wed, 17 Mar 2021 01:59:31 -0400
Message-ID: <CA+YkXXzv2Q02uwAvdwOPjk=Lkj5jyYb6AtC5B25oGfVej0y6TA@mail.gmail.com>
To: ZmnSCPxj <ZmnSCPxj@protonmail.com>
Content-Type: multipart/mixed; boundary="00000000000073a14405bdb5305e"
X-Mailman-Approved-At: Wed, 17 Mar 2021 19:10:49 +0000
Cc: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
Subject: Re: [bitcoin-dev] BIP Proposal: Consensus (hard fork) PoST
Datastore for Energy Efficient Mining
X-BeenThere: bitcoin-dev@lists.linuxfoundation.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: Bitcoin Protocol Discussion <bitcoin-dev.lists.linuxfoundation.org>
List-Unsubscribe: <https://lists.linuxfoundation.org/mailman/options/bitcoin-dev>,
<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=unsubscribe>
List-Archive: <http://lists.linuxfoundation.org/pipermail/bitcoin-dev/>
List-Post: <mailto:bitcoin-dev@lists.linuxfoundation.org>
List-Help: <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=help>
List-Subscribe: <https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev>,
<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=subscribe>
X-List-Received-Date: Wed, 17 Mar 2021 05:59:47 -0000
--00000000000073a14405bdb5305e
Content-Type: multipart/alternative; boundary="00000000000073a14105bdb5305c"
--00000000000073a14105bdb5305c
Content-Type: text/plain; charset="UTF-8"
I wouldn't fully discount general purpose hardware or hardware outside of
the realm of ASICS. BOINC (https://cds.cern.ch/record/800111/files/p1099.pdf)
implements a decent distributed computing protocol (granted it isn't a
cryptocurrency), but it far computes data at a much cheaper cost compared
to the competition w/ decent levels of fault tolerance. I myself am running
an extremely large scale open distributed computing pipeline, and can tell
you for certain that what is out there is insane. In regards to the
argument of generic HDDs and CPUs, the algorithmic implementation I am
providing would likely make them more adaptable. More than likely,
evidently there would be specialized HDDs similar to BurstCoin Miners, and
128-core CPUs, and all that. This could be inevitable, but the main point
is providing access to other forms of computation along w/ ASICs. At the
very least, the generic guys can experience it, and other infrastructures
can have some form of compatibility. In regards to ASICBOOST, I am already
well aware of it, as well as mining firmwares, autotuning, multi-threaded
processing setups, overclocking, and even different research firms
involved. I think it is feasible to provide multiple forms of computation
without disenfranchising one over the other. I'm also well aware of the
history of BTC and how you can mine BTC just by downloading the whitepaper,
to USB block erupters, to generic CPUs, to few ASICS, to entire mining
farms. I also have seen experimental projects such as Cuckoo
<https://github.com/tromp/cuckoo>, so I know the arguments regarding
computation vs. memory boundness and whether or not they can be one of the
same. The answer is yes, but it needs to be designed correctly. I think in
regards to the level of improvement, this is just one of the improvements
in my BIPs in regards to making PoW more adaptable. I also have
cryptography improvements I'm looking into as well. Nonetheless, I believe
the implementation I want to do would at the very least be quite
interesting.
Best regards, Andrew
On Wed, Mar 17, 2021 at 1:05 AM ZmnSCPxj <ZmnSCPxj@protonmail.com> wrote:
> Good morning Andrew,
>
> Looking over the text...
>
> > # I am looking towards integrating memory hard compatibility w/ the
> mining algorithm. Memory hard computation allows for time and space
> complexity for data storage functionality, and there is a way this can
> likely be implemented without disenfranchising current miners or their
> hardware if done right.
>
> I believe this represents a tradeoff between time and space --- either you
> use one spatial unit and take a lot of time, or you use multiple spatial
> units and take smaller units of time.
>
> But such time/space tradeoffs are already possible with the existing
> mechanism --- if you cannot run your existing SHA256d miner faster (time),
> you just buy more miners (space).
>
> Thus, I think the requirement for memory hardness is a red herring in the
> design of proof-of-work algorithms.
> Memory hardness *prevents* this tradeoff (you cannot create a smaller
> miner that takes longer to mine, as you have a memory requirement that
> prevents trading off space).
>
> It is also helpful to remember that spinning rust consumes electricity as
> well, and that any operation that requires changes in data being stored
> requires a lot of energy.
> Indeed, in purely computational algorithms (e.g. CPU processing pipelines)
> a significant amount of energy is spent on *changing* voltage levels, with
> very little energy (negligible compared to the energy spent in changing
> voltage levels in modern CMOS hardware) in *maintaining* the voltage levels.
>
> > I don't see a reason why somebody with $2m of regular hardware can't
> mine the same amount of BTC as somebody with $2m worth of ASICs.
>
> I assume here that "regular hardware" means "general-purpose computing
> device".
>
> The Futamura projections are a good reason I see:
> http://blog.sigfpe.com/2009/05/three-projections-of-doctor-futamura.html
>
> Basically, any interpreter + fixed program can be converted, via Futamura
> projection, to an optimized program that cannot interpret any other program
> but runs faster and takes less resources.
>
> In short, any hardware interpreter (i.e. general-purpose computing device)
> + a fixed proof-of-whatever program, can be converted to an optimized
> hardware that can only perform that proof-of-whatever program, but
> consuming less energy and space and will (eventually) be cheaper per unit
> as well, so that $2M of such a specific hardware will outperform $2M of
> general-purpose computing hardwre.
>
> Thus, all application-specificity (i.e. any fixed program) will always
> take less resources to run than a generic hardware interpreter that can run
> any program.
>
> Thus, if you ever nail down the specifics of your algorithm, and if a
> thousand-Bitcoin industry ever grows around that program, you will find
> that ASICs ***will*** arise that run that algorithm faster and less
> energy-consuming than general-purpose hardware that has to interpret a
> binary.
> **For one, memory/disk bus operations are limited only to actual data,
> without requiring additional bus operations to fetch code.**
> Data can be connected directly from the output of one computational
> sub-unit to the input of another, without requiring (as in the
> general-purpose hardware case) that the intermediate outputs be placed in
> general-purpose storage register (which, as noted, takes energy to *change*
> its contents, and as general-purpose storage will also be used to hold
> *other* intermediate outputs).
> Specialized HDDs can arise as well which are optimized for whatever access
> pattern your scheme requires, and that would also outperform
> general-purpose HDDs as well.
>
> Further optimizations may also exist in an ASIC context that are not
> readily visible but which are likely to be hidden somewhere --- the more
> complicated your program design, the more likely it is that you will not
> readily see such hidden optimizations that can be achieved by ASICs (xref
> ASICBOOST).
>
> In short, even with memory-hardness, an ASIC will arise which might need
> to be connected to an array of (possibly specialized) HDDs but which will
> still outperform your general-purpose hardware connected to an array of
> general-purpose storage.
>
> Indeed, various storage solutions already have different specializations:
> SMR HDDs replace tape drives, PMR HDDs serve as caches of SMR HDDs, SSDs
> serve as caches of PMR HDDs.
> An optimized technology stack like that can outperform a generic HDD.
>
> You cannot fight the inevitability of ASICs and other specialized
> hardware, just as you cannot fight specialization.
>
> You puny humans must specialize in order to achieve the heights of your
> civilization --- I can bet you 547 satoshis that you yourself cannot farm
> your own food, you specialize in software engineering of some kind and just
> pay a farmer to harvest your food for you.
> Indeed, you probably do not pay a farmer directly, but pay an intermediary
> that specializes in packing food for transport from the farm to your
> domicile. which itself probably delegates the actual transporting to
> another specialist.
> Similarly, ASICs will arise and focus on particularly high-value fixed
> computations, inevitably.
>
>
>
> Regards,
> ZmnSCPxj
>
>
--00000000000073a14105bdb5305c
Content-Type: text/html; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
<div dir=3D"ltr"><div>I wouldn't fully discount general purpose hardwar=
e or hardware outside of the realm of ASICS. BOINC (<a href=3D"https://cds.=
cern.ch/record/800111/files/p1099.pdf" target=3D"_blank">https://cds.cern.c=
h/record/800111/files/p1099.pdf</a>) implements a decent distributed comput=
ing protocol (granted it isn't a cryptocurrency), but it far computes d=
ata at a much cheaper cost compared to the competition w/ decent levels of =
fault tolerance. I myself am running an extremely large scale open distribu=
ted computing pipeline, and can tell you for certain that what is out there=
is insane. In regards to the argument of generic HDDs and CPUs, the algori=
thmic implementation I am providing would likely make them more adaptable. =
More than likely, evidently there would be specialized HDDs similar to Burs=
tCoin Miners, and 128-core CPUs, and all that. This could be inevitable, bu=
t the main point is providing access to other forms of computation along w/=
ASICs. At the very least, the generic guys can experience it, and other in=
frastructures can have some form of compatibility. In regards to ASICBOOST,=
I am already well aware of it, as well as mining firmwares, autotuning, mu=
lti-threaded processing setups, overclocking, and even different research f=
irms involved. I think it is feasible to provide multiple forms of computat=
ion without disenfranchising one over the other. I'm also well aware of=
the history of BTC and how you can mine BTC just by downloading the whitep=
aper, to USB block erupters, to generic CPUs, to few ASICS, to entire minin=
g farms. I also have seen experimental projects such as<a href=3D"https://g=
ithub.com/tromp/cuckoo"> Cuckoo</a>, so I know the arguments regarding comp=
utation vs. memory boundness and whether or not they can be one of the same=
. The answer is yes, but it needs to be designed correctly. I think in rega=
rds to the level of improvement, this is just one of the improvements in my=
BIPs in regards to making PoW more adaptable. I also have cryptography imp=
rovements I'm looking into as well. Nonetheless, I believe the implemen=
tation I want to do would at the very least be quite interesting.</div><div=
><br></div><div>Best regards, Andrew<br></div></div><br><div class=3D"gmail=
_quote"><div dir=3D"ltr" class=3D"gmail_attr">On Wed, Mar 17, 2021 at 1:05 =
AM ZmnSCPxj <<a href=3D"mailto:ZmnSCPxj@protonmail.com">ZmnSCPxj@protonm=
ail.com</a>> wrote:<br></div><blockquote class=3D"gmail_quote" style=3D"=
margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-lef=
t:1ex">Good morning Andrew,<br>
<br>
Looking over the text...<br>
<br>
> # I am looking towards integrating memory hard compatibility w/ the mi=
ning algorithm. Memory hard computation allows for time and space complexit=
y for data storage functionality, and there is a way this can likely be imp=
lemented without disenfranchising current miners or their hardware if done =
right.<br>
<br>
I believe this represents a tradeoff between time and space --- either you =
use one spatial unit and take a lot of time, or you use multiple spatial un=
its and take smaller units of time.<br>
<br>
But such time/space tradeoffs are already possible with the existing mechan=
ism --- if you cannot run your existing SHA256d miner faster (time), you ju=
st buy more miners (space).<br>
<br>
Thus, I think the requirement for memory hardness is a red herring in the d=
esign of proof-of-work algorithms.<br>
Memory hardness *prevents* this tradeoff (you cannot create a smaller miner=
that takes longer to mine, as you have a memory requirement that prevents =
trading off space).<br>
<br>
It is also helpful to remember that spinning rust consumes electricity as w=
ell, and that any operation that requires changes in data being stored requ=
ires a lot of energy.<br>
Indeed, in purely computational algorithms (e.g. CPU processing pipelines) =
a significant amount of energy is spent on *changing* voltage levels, with =
very little energy (negligible compared to the energy spent in changing vol=
tage levels in modern CMOS hardware) in *maintaining* the voltage levels.<b=
r>
<br>
> I don't see a reason why somebody with $2m of regular hardware can=
't mine the same amount of BTC as somebody with $2m worth of ASICs.<br>
<br>
I assume here that "regular hardware" means "general-purpose=
computing device".<br>
<br>
The Futamura projections are a good reason I see: <a href=3D"http://blog.si=
gfpe.com/2009/05/three-projections-of-doctor-futamura.html" rel=3D"noreferr=
er" target=3D"_blank">http://blog.sigfpe.com/2009/05/three-projections-of-d=
octor-futamura.html</a><br>
<br>
Basically, any interpreter + fixed program can be converted, via Futamura p=
rojection, to an optimized program that cannot interpret any other program =
but runs faster and takes less resources.<br>
<br>
In short, any hardware interpreter (i.e. general-purpose computing device) =
+ a fixed proof-of-whatever program, can be converted to an optimized hardw=
are that can only perform that proof-of-whatever program, but consuming les=
s energy and space and will (eventually) be cheaper per unit as well, so th=
at $2M of such a specific hardware will outperform $2M of general-purpose c=
omputing hardwre.<br>
<br>
Thus, all application-specificity (i.e. any fixed program) will always take=
less resources to run than a generic hardware interpreter that can run any=
program.<br>
<br>
Thus, if you ever nail down the specifics of your algorithm, and if a thous=
and-Bitcoin industry ever grows around that program, you will find that ASI=
Cs ***will*** arise that run that algorithm faster and less energy-consumin=
g than general-purpose hardware that has to interpret a binary.<br>
**For one, memory/disk bus operations are limited only to actual data, with=
out requiring additional bus operations to fetch code.**<br>
Data can be connected directly from the output of one computational sub-uni=
t to the input of another, without requiring (as in the general-purpose har=
dware case) that the intermediate outputs be placed in general-purpose stor=
age register (which, as noted, takes energy to *change* its contents, and a=
s general-purpose storage will also be used to hold *other* intermediate ou=
tputs).<br>
Specialized HDDs can arise as well which are optimized for whatever access =
pattern your scheme requires, and that would also outperform general-purpos=
e HDDs as well.<br>
<br>
Further optimizations may also exist in an ASIC context that are not readil=
y visible but which are likely to be hidden somewhere --- the more complica=
ted your program design, the more likely it is that you will not readily se=
e such hidden optimizations that can be achieved by ASICs (xref ASICBOOST).=
<br>
<br>
In short, even with memory-hardness, an ASIC will arise which might need to=
be connected to an array of (possibly specialized) HDDs but which will sti=
ll outperform your general-purpose hardware connected to an array of genera=
l-purpose storage.<br>
<br>
Indeed, various storage solutions already have different specializations: S=
MR HDDs replace tape drives, PMR HDDs serve as caches of SMR HDDs, SSDs ser=
ve as caches of PMR HDDs.<br>
An optimized technology stack like that can outperform a generic HDD.<br>
<br>
You cannot fight the inevitability of ASICs and other specialized hardware,=
just as you cannot fight specialization.<br>
<br>
You puny humans must specialize in order to achieve the heights of your civ=
ilization --- I can bet you 547 satoshis that you yourself cannot farm your=
own food, you specialize in software engineering of some kind and just pay=
a farmer to harvest your food for you.<br>
Indeed, you probably do not pay a farmer directly, but pay an intermediary =
that specializes in packing food for transport from the farm to your domici=
le. which itself probably delegates the actual transporting to another spec=
ialist.<br>
Similarly, ASICs will arise and focus on particularly high-value fixed comp=
utations, inevitably.<br>
<br>
<br>
<br>
Regards,<br>
ZmnSCPxj<br>
<br>
</blockquote></div>
--00000000000073a14105bdb5305c--
--00000000000073a14405bdb5305e
Content-Type: image/png;
name="=?UTF-8?Q?Screenshot=5F2021=2D03=2D17_BoincOverview_=E2=80=93_BOINC=2Epng?="
Content-Disposition: attachment;
filename="=?UTF-8?Q?Screenshot=5F2021=2D03=2D17_BoincOverview_=E2=80=93_BOINC=2Epng?="
Content-Transfer-Encoding: base64
Content-ID: <f_kmd06qnj0>
X-Attachment-Id: f_kmd06qnj0
iVBORw0KGgoAAAANSUhEUgAABusAAADiCAYAAABHsPpeAAAgAElEQVR4nOzdeXhMZ/8/8DvrbNn3
jSDEEhH7vjZF7btYai1fbVNVayktSlWrKKoe8pTqgjaPqqqlG1qqVFVtsTWoLQiJWLLI8v79kd/c
ZiZn5kwiGq3367re18XMyZx7zn7OZ+5zBIiIiIiIiIiIiIiIiIioTIiybgARERERERERERERERHR
44rFOiIiIiIiIiIiIiIiIqIyUqxiXUFBAcMwDMMwDMMwDMMwDMMwDMMwDMMwpRSrxbqybhjDMAzD
MAzDMAzDMAzDMAzDMAzD/NsjWKBjGIZhGIZhGIZhGIZhGIZhGIZhmLIJn1lHRERERERERERERERE
VEZEQUFBWbeBiIiIiIiIiIiIiIiI6LHEYh0RERERERERERERERFRGWGxjoiIiIiIiIiIiIiIiKiM
PLLFuvz8/LJuAhEREREREREREREREdFDJdSKYpmZmZgzZw6io6Oh1Wrh7u6ONm3aYPPmzQ+tUatX
r8awYcMe2uc/6tauXQshBKpWrVrWTSEiIiIiIiIiIiIiIqKHyGaxLj09HfXq1YMQQjFLliwp9Qa9
8847EEKgU6dOpf7Z/xQs1hERERERERERERERET0ebBbrBg8eDCEEdDodFi5ciBMnTuCnn35Co0aN
IISAi4sLUlJSSrVB06dPf+yLdbdu3cLx48dx5syZsm4KERERERERERERERERPUQiLy9P8Y2UlBQ4
OTlBCIEPPvjA7L3r16+jfPny6N69Ow4ePChf//bbb9G6dWu4u7vDw8MDnTt3xqFDh+T7eXl5eOON
NxAZGQmtVgt/f3907NhRDmMs1Jlm//79iu07d+4c4uLi4O3tDYPBgPr162PDhg1mw6i1Z+rUqRBC
YPz48RgzZgz8/PxgMBgwcOBAXLp0CcOHD4enpye8vb0xZswY5ObmAgCWLVsGIQQGDBiAWbNmITQ0
FDqdDl27dsXFixfl56empmLo0KEIDg6Gi4sLgoKCMHz4cKSlpQEAFi5cCCEEhg4dil69ekGn06Fb
t26KPev+97//oX79+vK7NGjQAF988YXZ9z116hT69esHf39/aLVaNGjQAOvXr5fvX7hwAUII+Pr6
Yvv27WjQoAE0Gg0qVaqEjz/+WHE6ExERERERERERERER0cNjtVj3+eefQwgBR0dH3LlzR/WD1q5d
CwcHB9kTz9nZGUII6PV6/PrrrwCA2bNnQwiBwMBAdO7cGdWrV4cQAv7+/rh9+zYWLVoEb29v+XcR
ERE4cuRIkXFdv34dYWFhcjjjvx0dHeWz9Oxpj7FY5+LigqpVq2LAgAFwcXGRfxMREYEBAwbIouXy
5csB3C/W6XQ6GAwGdO7cGcHBwRBCoFq1asjKygIAtG7dGkII+Pj4ICYmRrbB+Dw+Y7HO1dUVTk5O
cHNzw7Rp04oU63bt2gUHBwdotVq0b98ezZs3l9/3559/BgCcPHkSnp6eEELAyckJer1eFjzfe+89
APeLdc7OztDpdOjTpw8aN24s/4Y9+YiIiIiIiIiIiIiIiP5eVot18+fPhxACAQEBqh+Sk5MDPz8/
WYjKycnBzZs3ZbGqQYMGAICWLVtCCIEPP/wQAJCdnY1Ro0Zh7ty58naa9twGc+bMmRBCoHLlyrh+
/ToAID4+Hs7Ozhg6dKjd7TEW67y8vJCRkQHg/q0/3dzc5GcPGjQIQggMGjQIwP1inRACu3fvBgBc
vXoVXl5eEEJg1apVuHXrFp5++mk0atQIN27cAAAkJCRACIHq1asDuF+sE0Jg586dyM3NRVpaWpFi
3WuvvWZW5AOAOXPmYNq0abJnY5cuXSCEQN26dXH16lXk5eVhwoQJskCZmpoqi3VCCCxatAgAkJmZ
iYCAAAghsGLFCtV5TURERERERERERERERKXHarHu7bfflr3e1OzcuVP29Lp586Z8fd++fbI4dOXK
FTz77LPy/zExMRg7diy+/fZbmD43z55iXZs2bSCEwLRp0+Rrd+/eRXZ2drHaYyzWtWnTRg5jfK1Z
s2ZFXuvevTuA+8W6KlWqmLVrwIABEEJgxIgR8rWCggIkJSUhISEBbdu2hRAC5cqVA3C/WBcWFmb2
OZbFunXr1sl2lytXDsOGDcOaNWtkj8fc3FzZI3DTpk3yc3JycmRvu3Xr1pkV606dOiWHa9KkCYQQ
mD9/vtVpTkRERERERERERERERKVPGJ/DZumTTz6BEAIODg64fft2kfdXr16Ns2fPArh/y0xfX1+z
YVJTU2Vx6NChQ7h58ybat29f5Ll00dHRSE1NBWBfsS4mJsZmccne9hiLcF27dpXDGMffsWPHIq91
69YNwP1iXb169cw+/4UXXoAQAr179wYArFixAqGhoXKc/v7+EEIgPDwcwP1inbGnn5HSM+vGjRsH
V1dXs+nm6+uLn3/+GdeuXZOvWd42NCoqSvakMy3WXblyRQ7TqlUrCCEwb948q9OciIiIiIiIiIiI
iIiISp/VYt1ff/0ln/m2cuVKs/eOHz8u3/v666/x448/ysKeaU+2vXv3yuLQ1atX5etnz57FsmXL
EBcXB61WCyEEXnvtNQDAjBkz7O5ZN3bsWLP2Ll++HHv27LG7PcZinbEIBygXC60V6/z8/GDaM7F7
9+4QQmDUqFHYv3+/fB7e4sWLcf78eXzzzTcQQqBSpUoA7hfrWrZsafb9lIp1AJCWloZ169bh2Wef
RWBgoPzbvLw8+Ty8r776Sg5v2rPus88+MyvWGYujAIt1REREREREREREREREZcVqsQ4A+vbtK595
tmTJEpw8eRLfffcdqlWrJotV2dnZyM7OlkWhYcOGITs7G2lpabII1KRJE+Tm5uKJJ56Al5cXNmzY
IMfRp08fCCEwceJEAMDs2bMhhEDTpk2Rl5eHnJycIu0yPrMuMDAQf/75J/Lz8zFy5Eh5+0p72gPg
gYt1pgWuQ4cOQaPRQAiBjz/+GB988AGEEKhZs6b8HONzACtWrAjgfrGuVatWZt/Pslg3btw4hISE
4KWXXpLDLF261KxX3lNPPSWfWZeSkoLc3FyMHz9ePn/vxo0bLNYRERERERERERERERE9YmwW627c
uIFatWoVuW2lEALOzs7YunWrHNZYnBJCQKPRwMnJSRaKDh48CACYPHkyhBBwdXVFbGwsGjduDAcH
B2g0GjmM8fabxl5p3377bZF2Xb9+HWFhYbL3nMFgkM+oM7bJnvY8aLFOr9fL21E6OjpCCIEaNWog
Ozsbhw8flq+NGjUKY8aMkb0Ivb29AdhfrNu8ebNsf8OGDfHkk0/Kz1q2bBkA4PDhw2bTwfi+EAIJ
CQkAwGIdERERERERERERERHRI8ZmsQ4Abt++jddeew1Vq1aFRqNBSEgIunbtin379hUZduvWrWjT
pg3c3d3h7u6OLl26mD1DraCgAIsXL0Z0dDQMBgP8/PwQGxuLXbt2mY2ve/fuMBgMCA4Oxvbt2xXb
de7cOfTp0wdeXl5wc3NDo0aNzG4BaU97HrRY16hRI6xatQphYWHQ6XTo1q0bLl26JP9u9erViIiI
gE6nQ82aNfHhhx/KHn+///673cU6ANi2bRtatWoFb29vuLu7o06dOkVuT3rixAnExcXBz88PGo0G
DRs2xMaNG+X7LNYRERERERERERERERE9WlSLdVSUabGOiIiIiIiIiIiIiIiIqKRYrCsBFuuIiIiI
iIiIiIiIiIioNLBYVwIs1hEREREREREREREREVFpYLGOiIiIiIiIiIiIiIiIqIywWEdERERERERE
RERERERURkRubi6Sk5MZhmEY5l+bCxculHkbGIZhGOZh5vLly2XeBoZhGIZ5mLl48WKZt4FhGIZh
HlZEXl4ecnNzce/ePeTk5CAnJwfZ2dnIyspCVlYWMjMzkZmZibt378rcuXOHYRiGYRiGYRiGYRiG
YRiGYRiGYZgHjFmxzliwy87OVi3YMQzDMAzDMAzDMAzDMAzDMAzDMAzzYJHFOqXedUoFO6WU9Zdg
GIZhGIZhGIZhGIZhGIZhGIZhmH9iRF5eHtQKdqZFO3uKdwzDMAzDMAzDMAzDMAzDMAzDMAzDqEfk
5+fDVsHOsminVLhjGIZhGIZhGIZhGIZhGIZhGIZhGKb4MSvWWRbsLIt2SoU7hmEYhmEYhmEYhmEY
hmEYhmEYhmFKFpGfnw+1gp21wh3DMAzDMAzDMAzDMAzDMAzDMAzDMCWPKCgogK2CnbXCHcMwDMMw
DMMwDMMwDMMwDMMwDMMwDxZRUFAA04KdZdFOqXDHMAzDMAzDMAzDMAzDMAzDMAzDMMyDRxbrLAt2
SkU7hmEYhmEYhmEYhmEYhmEYhmEYhmFKL2bFOmtFOxbvGIZhGIZhGIZhGIZhGIZhGIZhGKb0IwAU
KdbZU7hjGIZhGIZhGIZhGIZhGIZhGIZhGObBImDCVtGOYRiGYRiGYRiGYRiGYRiGYRiGYZjSjVmx
joU7hmEYhmEYhmEYhmEYhmEYhmEYhvn7YrVYxwIewzAMwzAMwzAMwzAMwzAMwzAMwzzcFKtYR0RE
RERERERERERERESlh8U6KrFmzZphyZIlZd2Mv11ubi6EEDhy5EhZN4X+v6ioKKxatcru4VNTUyGE
wNmzZx9am4j+qWJiYuT6tGHDBoSHh5dpe+jxNnXqVPTq1ausm0H/AhMnToSvry8MBgN+/fXXsm4O
ERERERERkZlSL9bFxsZCCAEhBBwdHeHn54devXrh0qVLZsP98MMPaNu2LTw8PKDValGnTh0sX77c
bJjo6Gi4uLjA1dUVderUAQDs2rULQgj4+PggLS1NDnvw4EE4OTmZ/f3ly5fx7LPPonz58nB1dUVY
WBg6d+6Mr776qrS/9j/Kpk2bEBoa+sCfo1asq1evHhISEh54PH+306dPQwiB/fv3K75fVsW6gQMH
olOnTqXyWbdv34YQAqdPnzZ7PTQ0FPPmzVP9+/Hjx2PgwIGl0hY1lt9babl6GMU6e6fFv8GDLg9U
yNp0/Kd5FIp1D7L/+PLLL9G0aVN4eHjAw8MDNWrUwHPPPYfLly+Xcivp7/BPLNalpaWhadOmitvP
c+fO4amnnoJOp4OXlxeeeeYZZGZmyvezs7MxatQo+Pj4QKvVom3btkhOTlYcz44dO+Qxt1KaNWtW
6t9t1qxZiuMaM2YMAMDJyQlbt25V/NuCggL85z//QZ06daDVauHh4YG2bdtix44dZsOZnkvodDo0
btzY7Ng9NTUV8fHxKF++PDQaDUJDQxEbG4tPPvnEaru3bduGkJAQnDlzBunp6bhz586DTwyL7/bZ
Z5/BYDCU6uf+XWJjY/Hyyy8Xeb1Vq1aYPn36398gon8Ye8+NTI+tS+ucnIiIiIj+PR5KsW7ChAnI
ysrCrVu3cOTIEYSHh+PVV1+VwyQmJsLFxQVTp07F8ePHcf78eXzwwQfw9vbGSy+9ZPZ5AwcOxDPP
PCP/v2vXLnh6eqJFixYYN26cfN2yWHfx4kWEhoaiZ8+e2L9/P9LT03Hq1Cm89dZbaNOmTWl/7X8U
Futsy8nJwcGDB80unpkqq2LdX3/9hTNnzpTKZ1krKhw7dgzXrl1T/fu/s1hn+b3/rmKdvdPi3+BB
lwcqxGJd6Snp/uObb76BTqfDBx98gJSUFFy5cgXffPMNBg0ahJ9++ukhtJQetn9ase6ZZ55BSEgI
XFxcFIt19erVQ//+/ZGSkoITJ06gVq1aePHFF+X748ePR1RUFJKSknDlyhUMGjQIMTExiuO6d+8e
UlNTZcqVK4eFCxfK/9+8ebPUv9+sWbNQr149s/GmpqbK4petYt3o0aPh4+ODlStX4vz580hKSsKU
KVPg4uKCL774Qg4XGxuLcePG4fbt27h06RIWLFgAJycn/PLLLwCApk2bom3btjh48CDS0tKQlJSE
xYsXY/jw4Vbb/cYbb6BPnz6lOCXu+/333xEREQFvb28W64geU/aeG5keW7NYR0RERESWHkqxzvRk
78KFC6hYsSK+/PJLAEB+fj7CwsIwYcKEIn+7YcMGODo6ml3otFas+/XXX6HRaOSvjS2LdcOGDUOt
WrWQm5tbZDzWijDr169HQECA/P/GjRuh0+nkBYg9e/bAw8MDubm5OHHiBGrUqAF3d3fo9XrUrVsX
W7ZskX/722+/oXXr1vDw8ICfnx+eeuqpIr0LTSUlJaFDhw7w9vZGYGAgevXqhdTUVCQmJqJ8+fJY
unQpqlWrBhcXF1y9ehXp6ekYNWoUypUrB39/f/Tp0wdXr16Vn9e8eXP4+PjA1dUVlSpVkheMLl26
BK1WCwcHBxgMBhgMBqxbtw4AcOLECXTs2BEBAQEICwvD5MmTzabf+vXrERUVBZ1Oh7p16yI4ONhq
sS4+Ph6Ojo7QaDQwGAyoVasWgMJfjE+ZMgXh4eHw9PRE+/btcfLkSavTJTExESEhIZgxYwaCg4Ph
7e2NESNGICsrC8D9ost///tfNGvWDBqNBv/73/9sjmfZsmWoUKECCgoK5Hj+/PNPODs746+//kJ6
erpZIScvLw8zZ85EuXLl4ObmhrZt2xYp1m3evBn169eHt7c3qlatavPX3fn5+Zg6dSrKly8PvV6P
atWqmU3HTZs2oX79+jAYDKhQoYIsSo8ZMwZDhgyRw9maX4mJiQgLC8OCBQtku/v374/s7GwAhb1W
hRDQ6/UwGAyIj48HYH6R/tq1a+jfvz8CAgLg4eGBhg0bYseOHVi3bh1cXFzg7Owsl6FLly5ZHV7J
6NGjzS6ajR07Fi1atJD/nzNnDjp06FDke1tbrqKiovDKK6+ga9eu0Ol0qFy5MrZt22Z1HhiXm4UL
FyIqKgp6vR6xsbH466+/5DCm0wK4v/xrtVpUrVoVgYGBNovVeXl5ePvttxEZGQm9Xo9atWrhww8/
BFDY6zcuLg5+fn4IDg7G//3f/yEjI8OsbYsXL0ZUVBQ0Gg2efPJJnDx5EiNGjICXlxf8/f2xePFi
OS619WTVqlVFLvYOHDgQ48ePB2Df8qC2TAHA4cOH0bp1a+j1eoSEhKBq1ao2L7KrtRsAPvroI9So
UQMGgwF169Y1uwgcHR2NpUuXyv/XqVPH7Ich7dq1w1tvvQUANreZ1rYjSsaPH4+goCC4uroiMDDQ
rFeMteloae3atahYsSK0Wi28vLzQvn17mwU+W9sM43x5++23ERISAoPBgBdeeAGHDh1C+/btodVq
UaVKFbNCldr4i1uss7b/AmzPP2v7SWvruT0mTpyIpk2b2hxmyJAhsheQUWhoKDZt2gTA/v3O3Llz
Ub16dcXtx6+//ooWLVrA3d0dlStXxjvvvIP8/HwA6vuA4uxP4uLi8PTTT5u9lpCQgMjISBQUFKju
c9WmhZKoqChMmjQJnTp1Utze5ufn45133kFkZCS8vb3RtGlT/Pbbb/J9teMX43bEYDCgYsWKqFWr
VrGLdbaOwWytw2rTsziaNWtWpFiXlJQEIQSuXLkiX1uzZg28vb3l5wcEBMjjMqDwuE0IgT/++EN1
nOHh4UWK3LaWp/j4ePTq1QtjxoxBSEgIatWqpXp8O2vWLDRq1MhqG6wV606cOAEHBwd8/fXXRd4b
M2YMwsPD5TRQKhz5+flh2bJluHv3LoQQ+Pbbb1Wnh9GmTZvg4uICJycnGAwGebxhz77Ynv2C0Xff
fWdXsU5tOVNbh2wtw0DhOjpt2jT06NEDnp6eGD16tGqb7C3WqR17luScxZLaPsra91M7j7G0Zs0a
REdHQ6/XIywszOx809Y2vCT7XbV5aqk4xzcPsk0rzrG7PdtHW/v8kuxv0tLSMHLkSISGhsLDwwMt
W7bE3r17AVg/1wXur79Lly5F7dq1odVq0bRpU6u9lI3UjvWtbU+tnRspMR5j2TonN/74680337TZ
XiIiIiL693koxTqdTgdfX194e3vDwcEBrVu3lgfHR48etdkrydPTE++//778v7ViHQAMGDAAvXv3
BlC0WBcQEFDktppq0tPT4ejoiBMnTgAABg8eDHd3d6xduxYAMG/ePHTp0gUAcOPGDfzyyy+4ceMG
MjMzsWnTJuj1enkxLzw8HPPmzcPdu3dx+fJlvP/++1Yvxl6/fh3+/v6YM2cObt26hQsXLuD1119H
cnIyEhMT4eDggBEjRuD333/HkSNHcO/ePbRr1w79+vVDRkYGsrOzMWzYMHTv3l1+5vbt25GSkoKs
rCwcO3YMISEh8qRR6Vd8aWlpCAwMxIIFC3Dv3j2kpKSgTp06ePfddwEAP//8M/R6PdasWYNr167h
jz/+QJUqVYrds27SpEmoW7cuTp8+jdu3b2Pq1KkIDw+3WkBNTEyEq6srpk+fjsOHD2PXrl0IDw/H
66+/DuD+yVjLli2xY8cOnDx5EqmpqTbHc+vWLbi5ueGbb76R45k8eTK6du0qlwPTYt2cOXNQqVIl
7N69G6mpqfjhhx/MluHdu3fDw8MD27dvR0FBAX777Td4enri999/V/xOq1atQuXKlZGcnIzs7Gzs
3bsXy5YtAwDs3LkTbm5u2LRpE7KysnDkyBHFYp3a/EpMTISTkxNeeuklHDx4EL/88gsCAwPlumWt
B5DpRfohQ4agT58+SE1NRUZGBjZu3IjNmzcDUP71qK3hLW3cuBFBQUHy/xUrVoS7u7s8se3UqRPm
z59f5HsD1nvWVa9eHYmJiTh9+jTGjh2LwMBAxXED95eb/v37Y8+ePUhKSsJTTz2FJ554QnFa/Pzz
z9DpdFi3bh1u3LiBgwcPqi7/M2fORPXq1XHo0CFkZmbihx9+wPz581FQUIDGjRtjyJAhSEtLQ0pK
Ctq3by+Ll8a2denSBbt375YXTr28vDBv3jycPXsWq1atgrOzs7zgq7aeqBXr7Fke1Jap9PR0BAYG
4pVXXsGVK1eQnJyMHj16qBbrbLV7y5Yt8PLywo4dO5CVlYUNGzZAq9Xi8OHDAAqLvP369QMAnDlz
Bu7u7qhWrRqAwgtjHh4eOHDgAADY3GZa244o+fXXX3HmzBlkZmbi8uXLaNeuHWbOnGlzOlo6deoU
jh49itu3b+PmzZuYOnWqzR7ftrYZxvkyYcIEHD58GD/++KO8UJiYmIi//voLzz77LGrWrGn3+ItT
rLO1/1Kbf7b2kyXtWff111/D2dkZs2fPxu+//25W+DWyp1hnz37HuP04duwY2rVrJ7cfV65cgYeH
B95//33cvXsXBw8eRIUKFeSFV1vzs7j7kx07dkCr1ZrdFrxevXpYsGABAPV9bkmLdba2t3PmzEHN
mjWRnJyM/Px8JCQkICQkBHfv3gVge100bkemTJmCixcvIjk5Gb169Sp2sc7WsmVrHVabnsWhVKxb
v3499Hq92WsHDx6EEAIpKSm4ceMGhBBFnqfm6ekpj0XVvrfpeqO2PMXHx8NgMGDu3Lk4fvw4kpKS
VI9vZ82aBScnJ3h6esrUqFFDjtNase69996Dr6+vYruN0yApKQmAeeEoNzcXK1asgIuLizzuql+/
Pho3boyNGzfa/CGcqalTp6Jbt27y//bui+3ZLxjZW6xTW87U1iFbyzBQuI6Gh4dj7dq1OHXqFM6d
O6faptjYWGg0GrP56unpCScnJ1mss+fYsyTnLJbU9lFK30+tbZaSk5Ph7OyMn376Cffu3cOpU6fk
NFTbhpdkv6s2Ty0V5/jmQbZpxTl2V/sstX1+SfY3TzzxBHr27InLly8jLS0NH3/8MTZu3AjA9rmu
cf3t2LEjduzYgRMnTqBVq1bo27ev1XGpHeurbU/t7VlneoxlrWddVlYWYmNj7druExEREdG/y0Mp
1j3//PO4cOECzp8/j8OHDyM+Ph6BgYG4efMmdu7cCSGE2YG+qRo1apidcNoq1p07dw46nQ579uwp
UqxzcHCwefBvTYMGDZCQkIB79+4hODgY7777Lnr27AkA6NGjhzzpy8vLw3vvvYc2bdqgYsWKCAoK
MivgBAQEYMyYMbh48aLqOJcuXYro6GjF9xITE4tcKD1+/DicnZ3lr3+BwpNOFxcX5OXlASg8Yere
vTsiIyMRHBwMFxcXebKhdGKwbNkyNGzY0Oy1Dz74AK1btwYA9OzZE//3f/9n9n5JboPp4+Nj9tyR
/Px8BAYGYsOGDXZ///nz56Nu3boArN/OUG08o0aNkhdkcnNzERQUJC8uWRbrfH19sWbNGvlZlrfB
jIuLw6RJk8zGP2jQIMyYMUPxO73//vsIDg7Gjh07kJOTY/Zenz598MILLyj+nWnRSm1+KU23AQMG
4PnnnwdgX3Gmb9++aN26NY4ePVqkR4HSCamt4S1lZGTA2dkZp0+fxq+//ormzZvj6aefxuLFi1FQ
UABfX1/Zi8DeYp1pL7hTp05BCGH1Fo5Ky82BAwcghMCtW7eKTIuePXti5MiRZp+htvz7+/sr/gr/
8OHDcHBwMLs9mfFHDOnp6YptmzhxotwOGel0Ovz4448A1NeT0irW2VqmFi9eXKT3idrt69Ta3bNn
T7PbHQNA79695cWezZs3y23Z22+/jalTp6JcuXI4fPgwDh06BF9fX+Tn56tuM+25LapRUlIShg0b
hujoaISGhsJgMMjvaG+xLi0tDS+//DIaNmyI8uXLw9vb2+pFbMD2NkNpGjZo0MCs5+W+ffvg5OQk
543a+ItTrLO1/1Kbf7b2kw9yG+WNGzeiXbt28PDwgJOTE2rWrIn58+fL/aM9xbri7ndMtx+LFy+W
wxq99957ch20NT+Luz8BgGrVqmHhwoUACi/a6nQ6pKenA1DfF5a0WGdrexsYGGjWEwsAypUrh507
d6qui4sXL0bVqlXN/rYkt8G0tWzZWocB29OzOJSKdR999BH8/f3NXjM+J/f06dM4f/48hBA4duyY
2TChoaF2rQ+WxTq15Sk+Pt5s/wqoH9/OmjULtWvXxtmzZ2UuXLgg/95asW7GjBlWe8leu3YNQgi5
TzP94Z+rqyuqVq1qthxfv34dY8eORZUqVcx1hwoAACAASURBVODo6Ahvb2/06tWryHQzZVmsK8m+
WI29xTrA9nJmax0C1Jfh4t4aHCic5s8++6zZfD179iwaNWoki3UlOfa055zFkto+Sun7qbXN0rFj
x+Dg4IDVq1cXuV2s2ja8JPtdtXlqyd7jG+DBtmnFOXZX+yy1fX5x9zfHjh2DEALXr19XfN/Wua7S
+rtixQqzHxZYUjvWV9uelmaxjoiIiIgeXw/9NphA4cUhg8GA//3vfzhy5Eip9awDCntENW7cuEix
zt/fv9g96wBgypQpGDx4MLZu3YoePXrgxo0b8PDwwO3btxEYGIijR4/K8UZERGDr1q3yBFQIgYMH
D8p2tm7dGlqtFgEBAYiPj1f8hT9QeHBvegHBlNIJ4ZYtW+Dk5ITw8HCzeHp6IiUlBVu3boXBYMCK
FStw5coVFBQUoFWrVvLkSunEYNKkSTAYDGafFxoainr16gEoPAl95513zP6muMU6462LLG/lVK9e
PSxatMju779u3TqEhIQAUD4Zs2c8Bw8ehKurK65du4YNGzagUqVK8iTVtFhn/CzTW9VYFusaNmwI
X19fs2kXGBhY5ITUKDs7GxMnTkS5cuXg4uKChg0bYvv27bKNxvlkybRopTa/lKbbqFGj5LpkT3Hm
woULiIuLg7e3N9zc3NClSxf562ylE1Jbwytp0qQJVq5ciZdffhmLFi3Cpk2b0Lx5cxw/fhz+/v5y
fpSkWJeSkgIhhNkFRFNKy82VK1cghMCpU6eKTIviLv/G6WvcHpjavHkzvLy8FIc/dOiQYtumT59e
ZBvh6+uL7777DoD6evKwinWmy9TEiRPRuXNns/dLUqwzbXeDBg2K/Cp+/Pjx6NGjBwDgzp07cHFx
wZkzZ9CoUSMcOnQI48ePx7Rp07Bs2TLZ81ptm2nvRdkrV67A09MT48aNw5kzZ5Cbm2s2b+wt1jVu
3Bjt2rWTPb927Nhhtl+zZGuboTQNTbf3AOR+13g7MLXxF6dYZ2v/pTb/bO0nS+uZpxcvXsTq1avh
5uYm19eSFOvU9jum24+JEycW6TWyadMmeHt7A7A9P4u7PwGAhQsXyguQw4cPl8/tsmdfWBrFOtPt
bWZmJoQQCA0NNfsOvr6+SExMVF0XS7IdUWJt2VJbh21Nz+Ky1rPOcvtv7FV2+fJl2bPOcp55enqa
/WjIGstindrypFSsUzu+LeltMJcsWVKsnnXPP/88Ll68qFoozcrKwv79+9GtWzcEBQVZve2hZbGu
JPtiNcUp1llbztTWIXuW4ZIW69Rug1mSY0+1dV6J2j5K6fuptU1JQkICoqOj4ezsbNaDSm0bXtz9
rto8VWLv8c2DbtOKe+xu67PU9vnF3d9s2rTJ6rGR2rmu0vq7du1aREREWP1uasf6attTFuuIiIiI
qDT8LcW6nJwcuLi4YP369cjPz0dISEiRX6YBhb+Gd3R0xJ9//ilfUyvWZWRkwN/fH5MnTzYr1g0c
OBC1atXCvXv3iozH2i0XAeCHH35AhQoVMGLECHlhpGPHjpg9e7bZbfvq1KlTpMCkdHE+Ly8Pv/zy
C3x9fbFixQrFcb711lvF6ll39OhRuLq6Wi3+jR07Vp4YGZmewGzZsgXBwcFm77/33ntmzwyz1LVr
1yK/llQr1jVs2LBIwdTHx0c+vxAonD4BAQHF6llneqHIVs86tfE0atQI77zzDjp16iSf+wAU7Vnn
4eFh9otuy2Jd7969zZ4jURzXrl3DCy+8IC8Cd+jQwa6edWrzS62wYrxwYPm8QMvntBmdPn0azZs3
x4ABAwAUXhTp37+/1fFbDq/k1VdfxdChQxEZGYlLly4hJycHPj4+eP311xEXF6f4vQHl5ao0inV7
9uyBi4sLbt++DcB8WnTp0gUTJ040+wxby39+fj7c3Nxs9qwzvQBpvKhj7df8JSnWma4nn376KapU
qWL2vmmxzp7lQW2Zmj9/Pho0aGD2fkmKdabt7tmzJ1566SWz943PVzJq0aIFZs+eLW8P9euvv6Jq
1ap4+umn5a0F1baZ9l6U3bhxo7xYZ2Q6b6xNR1MZGRnyYrCRWrHOlOU2o7gXDe0Zf3GKdbb2X/bM
P0B5P6m0ntvD2i3F2rZtK3uHjxw5ssiv59WKdWr7nV27dsHZ2Rm3b9/G4sWLUbt2bbO/X7JkSZGC
OVB0fpZkf5KWlgadTidvV2j64xK1faHatFCitr318/PDDz/8oPi3auviggULivRoKUmxzshy2VJb
hwHb07M4bD2zznTf9Omnn8LLy8vsmXUff/yxfP/ixYtWf/xhybJYp7Y8KRXr1I5vS1qsS0pKgoOD
Q5HeRUDhcWu4yjPrjHJychR7ZP3888+y6KnEWs+64uyL1RSnWGdrObO1DtmzDD+sYl1Jjj3V1nlL
9uyjlL6fWttsuXv3LlavXi1/cKG2DS/Jj2RszVNr7Dm+Kc1tmj3H7rY+S22fX9z9zb59+yCEULz9
rNq5bkmKdWrH+mrbU7VzIyPTYyylc3IiIiIierw9lGLdhAkTkJWVhbt37+LkyZMYMGAAKlSoIG8v
9/nnn8PV1RWvvvoqTpw4gQsXLmDVqlXw8fEpcpCvVqwDCm/DpdVqzYp1Z86cgb+/P5544gns2rUL
qampOHHiBObNm4cnn3zSavuzs7Oh0+ng7+8vL9obf5Vv+mu5vn37on379jh37hySkpIwePBgeTHj
7t27GDVqlHxWQ3JyMsLCwrB+/XrFcV6+fBne3t6YM2cO0tPTcenSJcydOxd//vmn4gmh8deDffv2
xZ9//onMzEwcO3YMb7/9NoDCW2yFhYXhjz/+wIULF/DGG29Aq9XKE5ikpCQ4Ojpi//79yMjIwI0b
N3D16lX4+fnhjTfewNWrV3Hr1i3s3btXnkysXLkSvr6+2LZtG44fP4758+fD3d3dZrGub9++6NOn
D+7cuYPz588DKDyRqV27Nk6dOmX3M+t8fX1x4MAB3Lx5E99++y38/PzktLR2McWe8axatQrly5eH
Xq83OxG0LNYNHjwY9evXx8GDB3HgwAG88MILZsW677//Hp6envjiiy9w69YtXL16FVu2bDF7Jp6p
5cuXY82aNUhNTUV2djZmzpwpL3Zv3boVbm5u+Oqrr3D37l0cO3ZMXjwxLVqpzS+1wgpQeEFw4cKF
8pk+gPkJ5Msvv4wdO3bgzp07SE9PR6dOnTB69GgAhctYREQErl69isuXLyMnJ8fm8Ep+/PFHuLm5
oXnz5vK1YcOGwc3Nzexio2WxTmm5Kmmxbs2aNUhPT8exY8fQpEkTs/aaTov//ve/CAoKwq5du/DX
X38hISEBXl5eNpf/yZMno3r16jh48CAyMzOxc+dOvPvuuygoKECjRo0waNAg3Lhxw+pzcopbrLO1
nhw6dAgODg7YuHEjTp06hUWLFsHb21sW6wD15UFtmTpx4gScnZ3x0Ucf4eLFi9i8eTOioqJUi3W2
2r1lyxZ4enpi+/btZs8/Mb2IN3PmTLi5uWHatGnytYoVK8LNzU32cFPbZtp7UfbYsWNwcnLCxo0b
ceXKFaxduxYhISFm80ZpOpoqKChAYGAgpk6dipSUFPz0009o1KiRzWKdrW1GcS8a2jP+4hTrbO2/
bM0/tf2k0np+6dIlxMbGWt22AoXb69GjR2P37t24fv06Ll68iOXLl8NgMMjbjS1evBihoaH4448/
8Mcff+Cll16Ck5OTWbHOnv2Ocftx5MgRNGjQQG4/UlJS4OHhgSVLluDu3bv4448/zJ53ZGt+Fnd/
YjRkyBD4+PgUuQ2c2r5QbVooUdvevvrqq4iOjsbevXuRmZmJs2fP4sMPP8Tp06dV18XTp0/D2dkZ
S5cuxenTp7Fu3TpUrly5WMU6W8uWPeuwrelZHErFOgCoW7cuBg4ciIyMDJw+fRrR0dHydsJA4UXo
qKgonD9/HqmpqRg8eDCioqLsukWdZbFObXlSKtbZOr4F7CvWffbZZ0hNTTWLcXy+vr5YtWoVLly4
gBMnTmDatGlwdXXFF198IT/DVrHu+PHjiImJwcqVK5GcnIwbN25g//79iI2NtXl8r/TMuuLui9UU
p1gHWF/ObK1D9izDlutov3795DpmjT3FupIce6qt85bs2UcpFevU2mZp165dmDt3Ls6dO4e8vDx8
//33cHFxwZUrV1S34SUp1tmap9bYc3zzoNu04h672/ostWO24u5v8vPz0bRpU/Ts2RMXL15ERkYG
1qxZg40bN6qe65akWKd2rK+2PVU6N1JieoyldE4O8Jl1RERERI+zh1KsE0LIeHp6okuXLkV6Gnz3
3Xdo06YN3NzcoNFoEBMTg/fff9/sYkSdOnWg0Wig0Whkjw2lYl1ubi6qVatmVqwDCp9pN2TIEISE
hMDZ2Rl+fn7o1q2b4q96TbVt29bs13o3b96ERqPBypUr5Wvnz59Hq1atoNVqERkZiUWLFsmLGffu
3cOQIUNQvnx5aDQaVKhQAXPmzLE5zt9++w1PPvkkPD094efnh969eyM1NVXxhBAofF5HfHw8KlSo
AK1Wi0qVKuHFF18EANy7dw9Dhw6Fm5sbgoKCMGbMGNStW9fsJHLixInw9PSEm5ubPEk6evQounXr
hsDAQOj1esTExMiLPnl5eZg8eTICAgIQFBSE0aNHIyYmxmax4siRI6hVqxZcXV3lr12zs7MxefJk
lC9fHp6enmjfvr3NXiiJiYnw8PBAkyZNoNPpULlyZbMLUdYuptgznszMTHh7exe5ZYllse769evo
1asXPDw8UKVKFSxYsKDIrVw3bdqEJk2awNPTE15eXmjdujV27dql+J22bNkiLzx4enqibdu2Zs9Z
Wbt2LWrXrg29Xo/w8HBZULEsWtmaX/YU6z777DOEhobC1dUVU6ZMAWB+Ajlv3jxUq1YNOp0OAQEB
GDp0qCy43759Gx06dJCF7atXr9ocXsm9e/dgMBjMfsG/bds2CCFw5swZ+Zrl91ZarkparGvatCnc
3Nzk841Mi7mm0yIvLw+TJk1CQEAA3N3dMXLkSERHR9vs+ZOTk4MZM2agUqVK0Ol0iI6OxurVqwEU
Fjj69u0LPz8/BAUFYeTIkfJ2YyUt1tlaTwDgjTfekOOLj49Hx44dzYp1asuDPcvUp59+ioiICGg0
GrRt2xa9e/e2+Stje9r90UcfoUaNGjAYDKhTp06R7bexN4VpAc+47puytc0szkXZRYsWwd/fHx4e
HujRowcGDhxoNm+UpqOlHTt2IDIyEjqdDk2aNMErr7xis1hna5tRkouGauMvTrEOsL7/AqzPP7X9
pNJ6bny2l60eIzt37kT//v3lemcwGBAbGytvMwkUXgSLi4uDu7u73KYHBQWZFevs2e+0adMGHh4e
CAwMxNixY816juzbtw/NmzeHu7s7IiIiMG/ePPl8IbV9QHH2J0Z79+6FEAIffvih2etq+0K1aaFE
bXubm5uLBQsWoEaNGtDpdAgODkbv3r1l8drWugjcv6Dq6emJrl27ol+/fmbFuk8++UTxVpFGasuW
2jpsbXoae7hZu223Uc+ePeHr6wtnZ2fo9Xr4+vqaXXBNTk5G27ZtodVq4eXlhWHDhpn1CM3MzMSI
ESPg5eUFrVaL2NhY1VvrGlkW6wDby5NSsc7W8S1gX7HO9DzAGKCwELN06VLUqlULGo0Gbm5ueOKJ
J4r0OLJVrLtz5w5mzZqFhg0bws/PD87OzihfvjymTJli9lw0S5bFOqD4+2Jr9u7dC19fX3h4eEAI
AV9fX9SpU8euv1Nab9XWIbVl2HIdDQ0NLTKfLdlTrAOKf+wJqK/zltT2UdZ6Dtpqm6XTp0+jQ4cO
8Pf3h06nQ+3atbFx40b5vq1teEn2u2rzVIm9xzcl3aYBto/1rbH2WYDtY7aS7G9SUlIwePBgBAUF
wd3dHa1atcK+fftUz3VLUqyz51jf1vZU6dxIieVdTJTOyY235H3zzTettpeIiIiI/p1KvVhHVJqs
nfgTlbXIyEhs27atrJsB4NFdT0aOHInJkydbff9RbTc93tSWy5L0uHnYvv32W/j6+tp9q7l/ssGD
B9vsQVUalKbnypUr4eXlJe+6QPSgHqf1lspWaS5rj9Ny+ygd6xMRERHR44HFOnqk8WI+PQru3r2L
Tz75BGfOnMG1a9cwf/58BAUF4c6dO2XdNACPznqybt06HD16FGlpafJ2SPv377c6/KPSbiJT/8Ri
XceOHTFhwoSybsbfIjg4WPGZaKVJaXr269fPam8vopJ4nNZbKluluaz9W5fbR/1Yn4iIiIgeDyzW
0SONF/PpUZCRkYHo6GjodDp4eHigdevWOHDgQFk3S3pU1pN+/frJW7dFR0erPmvjUWk3kal/WrHu
5MmTcHJyQnJyclk35aE7fPgwoqKiHuo4lKZnQUEBQkJCcPHixYc6bnp8PE7rLZWt0lzW/s3L7aN+
rE9EREREjwcW64iIiIiIiIiIiIiIiIjKCIt1RERERERERERERERERGWExToiIiIiIiIiIiIiIiKi
MsJiHREREREREREREREREVEZYbGOiIiIiIiIiIiIiIiIqIywWEdERERERERERERERERURlisIyIi
IiIiIiIiIiIiIiojLNYRERERERERERERERERlREW64iIiIiIiIiIiIiIiIjKCIt1RERERERERERE
RERERGWExToiIiIiIiIiIiIiIiKiMsJiHREREREREREREREREVEZYbGOiIiIiIiIiIiIiIiIqIyw
WEdERERERERERERERERURlisIyIiIiIiIiIiIiIiIiojLNYRERERERERERERERERlREW64iIiIiI
iIiIiIiIiIjKSKkX63x9fSGEwNSpU81e12g0EEJg1qxZpT3KIjZu3AghBIQQKFeuHPLz8x/6OP9O
f/75J4QQcHd3L/FnjB8/Xk4jy2zatAkA0KtXLwgh8Mwzz5RW09GoUSMIITB9+nSz152cnCCEwJIl
S0r82Tk5OXjrrbdQu3Zt6HQ6aLVaVKlSBc8//zwuXbr0gC3/+yhNo127dsn5c+TIkb+lHQcOHECf
Pn0QGBgIZ2dn+Pj4IDY2Fp9++ikAYMmSJRBCICIi4qG3ZevWrfL75+bmlvhzQkND8csvvxR5PT8/
H0lJSVi3bh30er3ZemA0depUq+tMaGioHC4iIkJxmPDwcKvtMl0fLbednTp1ku99/PHHAJSXB+O2
1ziM0vwpjfWMiIiIiIiIiIiIiErXv7JY17VrV7OL5Fu3bn3o4/w7ZWVlQQiBatWqlfgzjMUBjUaD
Vq1amWXPnj0A/t5i3YABAxAXF4dvvvmmRJ+bk5OD1q1by3keFhaGJk2awNPTE0IIJCYmlkLr/x5K
0+jEiROIi4tDXFwcLly48NDb8PXXX8PFxQVCCLi6uqJ+/fqoXr06hBCIiooC8M8q1u3evRszZsyA
wWBA3759MXfuXLmcA0B6errVorXRqlWrEBsbaxZvb+8ihThjsS4yMtJs2IEDB1ptn2mxztvbG7du
3QIAHD582KxNxkKc0vJgT7HuQdczIiIiIiIiIiIiIip9ZVasy8rKwtSpU1GlShVotVr4+vqiYcOG
+O677wAU9nT54IMPUK9ePXh4eCAoKAi9e/fGuXPnbI4/JSUFzs7OEEKgSZMmEEKgd+/eZsMYL2KH
hIRg0qRJqFChAvR6PYYPH46TJ0/i6aefhru7O0JDQ7F69Wr5d0uXLkVkZCQ8PDzg7OyMwMBAxMXF
4cqVKwCADRs2WO15c/z4cQDAsWPH0KNHD4SEhMDNzQ0xMTFYvny57P1n2raXX34ZFSpUgJubG7p0
6YK0tDTZFmMvJ6Nz585hyJAhCAsLg0ajQXBwMNq2bWu1sGMsDtjq7WNZrLt16xaaNm2KoKAguLi4
QK/XIyYmBh9++KFd7YiNjS0yXYwFDMtCAwDs3LkTnTp1QlBQEPR6PaKiovD+++8rttU43YQQmDlz
ppyemZmZmDFjhizY3rhxA6NHj0ZERAR0Oh2qVKmCiRMnIiMjAwBw5MgR+TnTp09HrVq1oNVq0bx5
cxw/fhzTpk1DcHAwvLy8MHr06CLjDwoKwnPPPYdy5crBy8sLAwcOlIUX095Q6enpAICPP/4YQgh4
enoCgNVpZNou4zw1zp8nn3wS/fv3R0BAAHx8fDB+/HizabN8+XJERkZCp9Ohfv36KFeunOI6apST
k4Pg4GAIIVChQgWcPXtWvrd//36MGDHC7DubFoPUpq890wAALl++jLi4OOj1evj7+8t12bRYl5iY
KF+7ffu24ncBgGHDhimukzExMXKYe/fuITExEatXr7ZarLN08uRJuLq6QgiBOXPmyNeNxbqFCxfa
/HtTlj1d582bB6CwuKZUrFNaHuwp1imtZ5s3b0azZs3g7e0NX19ftG7dGtu3b5fv27ucERERERER
EREREVHJlFmxzngBvUaNGpg+fTpefPFF1KhRQ16kHjt2LIQQiI6Oxn/+8x/ExcXJ/9vqWTN37lwI
IdCgQQN8//33smdQamqqHMa0sNO4cWO0a9dO/l+r1aJ79+6IioqS/zcWySZNmoQOHTpgwoQJePHF
F2VBo2vXrgCAP/74A6NGjZJxc3OTBZwbN27g5MmTMBgMEELgqaeewujRo+Hu7g4hBCZPnlykbQ0b
NkT37t3lretefvll+R1mzZqFVatWAQAKCgpkgaB9+/aYOXMmRowYAX9/f+zfv19xOhmLA1qt1qz3
T4cOHeQwlsW669evo2rVqhg+fDimTJmCzp07QwgBBwcHHDhwQLUdn3zyCcLCwiCEQJs2bTBr1ix8
+eWXZsuNsYiwYcMGODg4QAiBFi1aYNSoUahZsybat2+v+H2efPJJWXwsKChQHCYnJ0fO15o1a2Lc
uHGoXLkyhBBo2rQpCgoKzIogERER6NWrF7RarfyerVu3xhNPPCGH2bJli9l8c3V1xfDhwzFp0iR4
eHhACCGLevYUqqxNI1vFOmdnZ3To0AHNmzeXwxiLkx999JF8rXnz5hg8eLBsl7Vi3e7du+XfrFy5
UnEY0+9sLAbZM33tmQZ5eXmoX7++7GU2YMCAEhfrrly5IofZsGED6tWrh+3bt+P3339HQkJCkeFN
e9ipFeuMy1yVKlWQk5MjXze9DaaTkxNCQ0PxzDPP2LwVq3F9jImJgZubG0JCQnD8+HE4OTmhRYsW
D61Y9+mnn8plaPjw4RgwYAAcHBzg4OAglyF7ljMiIiIiIiIiIiIiKrkyK9bVq1cPQgjUrl0bCQkJ
2Lt3L+7du4f09HRkZGTIW/Dt2LEDt2/fxo0bN+Rr1gpQABAZGQkhBN577z3k5+fLXkQLFiyQwyhd
xK5ZsyaEELK3iPG5cEII7Nu3Tw53+fJlfPXVV0hISECfPn0ghPnzqoyMxUZvb28cPnwYADBu3Dh5
cd9YUFqwYAGEEDAYDMjNzVVsm3E8HTt2VPzOt27dkoWtnj17Ys2aNUhKSkJWVhaysrIU/8baM+s0
Go0cRuk2mHl5edi7dy8+/vhjLF68WBYbExIS7GqHtdtgWhYRGjZsCCEEunXrJocpKCjAb7/9pvh9
oqOjZZHQmq+++qpIgeP333+Xr/3yyy+KRZAXXngBQgjUq1dPfpaxoPbWW28BUF6mZs+ebbZ82Nur
TGka2SrWmc6fgIAACCHw9ttvAwBq164t54fl51sr1q1fv95smlhj+Z3tmb72TAPTW14a57fSbTDP
nj2LhIQEJCQkWC3g5+XlISQkBEIIBAcHw93dHUOHDsVXX32F7OzsIsPbW6xbs2aNHG7z5s1m77Vp
0wYdOnTAgAED0KJFCzg6OkIIgTp16lj9POP62KpVK7z44osQorBXo7HI+LCKdXXr1oUQQvaWBO7f
Rti4LtmznBERERERERERERFRyZV6sc7f3x9CmPcCKygokLemfOONNwAUPhPL+DwxYwICArBjxw4c
O3ZMsZBkjLXnj/30009ymKeeegpxcXEIDw+HEPefswUoX8Ru2bKlWbEuLS1NftauXbsAFBbbHB0d
4ejoiEqVKqFKlSoQQiAwMNCsHTNmzIAQAnq9Hj///LN8vXfv3hBCoHPnzvK1b775Ro7n6tWrim0b
PXo0hBBmt720NH36dDmNjYmJibHam6ckt8E8duyYLCB4enqiTp060Ol0EEJg2bJldrXD3mKdcTmy
txjQpk0bCCFQvXp1q8O89957EELAzc1NvpaTkyPb+dlnnykWQV577bUixbpatWpBiPvFZ6X5tmrV
KghR2LsKMC/WGXtrlnaxzli0NLbLWKh65513iny+tWLdjz/+KMe1bt06q9PT8jvbM33tmQYrVqyA
EIUFbKMHeWbdyZMnMWDAAFlgMiY8PBznz583G9aeYl1GRobsVdulSxfV8b/55pvyM9XWx1atWuHM
mTOyN23dunXN2lTaxTo/P78iy8eUKVPM1iV7ljMiIiIiIiIiIiIiKrlSL9YZe/K0bNlSPjfsl19+
kReWP/roIwDA6dOnkZWVhe+//x4LFixAxYoVIYRAu3btkJ6eLi9Wz5s3D7t27ZLZvn07Ll68qDju
IUOG2Czy7d27F4DyRexWrVqZFetML5Dv2rULycnJ8v/btm0DcL/IYFqsW7hwIYQQcHFxKXKLOGPP
usjISNmzzljgsNWzbsyYMTaLdXfu3EFKSgpSU1Px5ZdfYvr06fLWjabP0jJVkmLdoEGDIEThbSnv
3bsH4P4t/5YtW2ZXO4y3M3zllVfMxmVZRDD2vLR83uCBAwcU2zpv3jw5f9588005fbOzs/HWW29h
27ZtZj2/jMvQ0aNH5WvWetZNnz69SLEuJiZGtVj3/PPPQwiBihUrAgD27dsnP/vUqVMAlIt1StPI
3mKdZbsaNGgAIcx7Thl7LVor1mVnZ8v5UalSJbOC1uHDhzFq1CjF72zP9LVnGmzevBlCCDg6Osre
dyXtWWf8PkaVKlXCokWL5PezfK6ccFPgGgAAIABJREFUPcU6Y883jUaD5ORks/cuXryIzz//HHl5
eQAKf6hg7Jnp4uJi9XadpsU6AHjmmWcQHh6Ozz///KEW65R61hl/VGCrZ53lckZERERERERERERE
JVfqxbr//ve/8iJypUqV0LJlS9n7qly5csjIyAAAlCtXDm3atMHUqVMxe/ZsWfSZMmUKACA+Ph5C
CHh4eKB///4YPXo0evXqhYCAAMVb82VkZECv10MIgU8//dTsPWMvkJEjRwIoWbHu2rVrssfYgAED
MHv2bHnrTGOxbuPGjfI2kBERERgyZIjMqVOncOLECdnGJ598Es8995x8rp2xMFOSYt3p06eh0+nQ
p08fvP7665g6daocj7GwaMlYHNBoNGjVqpVZ9uzZA6DoRXpjO4KDgzFnzhyMHDlSTpNly5bZ1Y7+
/ftDCIGQkBBMmTIF69evB1C0iJCYmCinZatWrTBq1CjUrVvX6m0uMzMzZRHKWIRs1qwZfHx8IERh
b8ycnBxUr15d9hp68cUXUalSJQgh0KxZsyLPrCtJsc5gMOC5555D165dZfuNt2BNS0uTt4OtXbs2
hg4diqCgoCLFOqVpVNJi3VtvvSX/rmXLlrJXnRAC06ZNU5yWAPD555/L2zdqNBo0atRIrkfGXqpK
z6xTm772TIO7d+/KnmtNmjTBq6++ajZvi/PMOgDQ6/Xo2bMnZsyYAX9/fzz99NPQaDRwdHTE7t27
5fITHx+PkSNHys/s1KkT4uPjZVERKLytp/GHBErTb//+/RCisHdhrVq1ZM9GIQTi4+OtttGyWGfq
YRbrjIVSJycnDBo0CHFxcfKZdcZ1lsU6IiIiIiIiIiIiooer1It1APDJJ5+gSZMmMBgM0Gg0qFy5
Mp5//nmzHnETJ05EjRo14O7uDoPBgBo1amDOnDmyR0p+fj4+/PBDNGnSBP7+/nB1dUVYWBj69eun
eCu55cuXy8LCrVu3zN6bOXMmhBBwd3fHnTt3SlSsAwovbJcvXx4ajQYtWrSQBUVjsc70dneWMX7G
kSNH0K1bNwQHB8NgMCAmJgYrVqyQvRBLUqxLS0tDnz59ULFiReh0Onh5eaFp06ZWbxcKWH9mnWmP
IsuL9NevX0fnzp2h1+sRFBSEyZMny2cCLlu2zK52nDx5Es2aNYNer4dGo8G4ceMAFC0iAMD27dvR
rl07BAYGQqPRIDIyEosXL7b6nTIzM/H666+jZs2a0Gq1cHZ2RmRkJMaNG4eUlBQAQGpqKuLj41Gp
UiXodDpUqVIFkyZNksvMgxbrPD090ahRI2i1WkRERGDJkiVmbTQuQ25ubmjWrBmGDRtWpFinNI1K
WqzLycnBpEmTEBoaCg8PD3Tv3h2BgYEQomivMkt79uxB9+7d4e/vD0dHR3h5eaF9+/aywKq0rKpN
X3unwW+//YYGDRpAr9cjOjpaDlOSYl3Xrl1RsWJFGAwGCCGg0+lQr149fPHFF3IY0/XdMjt27ABQ
2EvOWOwsX7487t69W2Rcly9fRo8ePRAaGgpnZ2d4enqiXr16ePfdd+U6rqSsinVAYY/Ipk2bwsvL
Cz4+PmjdurX8zgCLdUREREREREREREQP20Mp1hE9bpQKI4+CM2fOoHPnzhgxYgRGjRoln+2ndAvH
x0FoaKhiz1wiIiIiIiIiIiIiorLCYh1RKXhUi3Xnzp1DTEwMvLy84OzsjICAAHTq1Ene/vFxw2Id
ERERERERERERET1qWKwjosdG7969cezYsbJuBhERERERERERERGRxGIdERERERERERERERERURlh
sY6IiIiIiIiIiIiIiIiojLBYR0RERERERERERERERFRGWKwrQ7m5uRBC4MiRI2Uy/l69eiE1NbVM
xv1v9t1338HX17dEfxsZGYnt27cjNTUVQgicPXu2dBtHRERERERERERERESPlMeuWBcbGwshBIQQ
cHR0hJ+fH3r16oVLly797W15VIt1586dw1NPPQWdTgcvLy8888wzyMzMVP28nJwcvPjii+jUqVOR
97KzszFq1Cj4+PhAq9Wibdu2SE5OLpXv8agpabFu586dqFKlCgCwWEdERERERERERERE9Jh4LIt1
EyZMQFZWFm7duoUjR44gPDwcr7766t/elrIq1q1btw4NGzaEXq9HSEgImjVrhq+++ur/sXfnYVXU
/f/HB9k5wAEB2URcEBXCDcVdMVJcbitFxaUkzaWvaKbkUuZPrTTLMpfSksrSXLrVzEzN7pRutdsl
FVNRAVFzAfeNBFTg+fvD68zNOZwNxPDO9+O6znV1ZubMfOYzn/k0zovPjDo/MjKS/v37k5OTw/Hj
x2nYsCEvv/yy2XV++umn1KhRA41GYzSsS0pKIjw8nKNHj3LhwgWef/55GjVqVOH79igob1g3cOBA
3n33XUDCOiGEEEIIIYQQQgghhBDicfFYhnUTJ05Uv589e5ZatWrx3XffqdOSkpLw8/PDwcEBX19f
vZFlRUVFTJ48mRo1auDi4kL9+vVZsGCB+tuNGzfSrFkzPD09qVevHl9//bU6r7CwkOnTpxMUFISr
qyudOnWyGNZlZ2cTHx+Pt7c3/v7+DB8+nJs3bwL/DXQ+/vhjGjdujJOTE61btzY7Ym379u34+Phw
7Ngx4uLiuHTpEtu3b+fbb78F4OjRoyiKwoULF9TfrFixAk9PT4qLiy3W7+TJk42GddWqVWPVqlXq
9/Pnz6MoCgcPHjS5rvDwcEaPHk3Hjh1xcnIiPDycbdu2qfOvX7/OiBEjCAoKwsfHhz59+nDx4kW9
uvnss89o06YNjo6OrFmzxuR2JkyYQPfu3XF2diYkJIQff/xRnV9QUMBrr71GcHAwWq2W2NhY0tPT
1flXrlzhueeew9PTE29vb9q1a6cX1hUVFfH+++8TGhqKp6cnrVu3Zt++fXpluHbtGm5ubqXKv3jx
YiIjI40eW3NtAyA4OJh169ap3zMzM1EUhdzcXAASExOJi4tjzJgxBAQE0LBhQ5PHQgghhBBCCCGE
EEIIIYQQD8djGdY5Ozvj5eWFp6cnNjY2REdH64Uge/fu5eTJk+Tl5ZGdnU3nzp2ZPn06AEuWLCEk
JISsrCwKCgrYvXs3ixYtAmDnzp24u7uzbds2iouL2bdvH1qtlgMHDgAwc+ZMateuzc6dO7l8+TJb
t241G9YVFxfTsmVLEhISuHbtGjk5OcTGxtKnTx/gv4FOt27dSElJ4fjx43To0IG+ffua3P+PP/6Y
sLAwiouLjT4Gc+3atbi4uOhNS01NRVEUcnJyLNavsbDu6tWrKIrC3r179aZrtVpWrlxpcl3h4eE0
a9aMH374gczMTCZNmoSnp6caSHXu3Jl+/fpx8+ZNCgoKGDx4MM8++6xe3bRv356UlBTS09NNvp8v
PDycBg0asHr1ajIzMxk7diy+vr7q/AkTJtC0aVMyMzPJzc1l8uTJBAcHqwFubGwsXbp0IT09nQsX
LjBjxgy9sG7mzJk88cQTZGVlUVRURHJyMgEBAdy+fVtdZt68ecTFxanfLR1bS20DrAvrNBoNs2bN
4tixYxw9etTksRBCCCGEEEIIIYQQQgghxMPxWIZ1I0eO5OzZs5w5c4ZDhw6RmJiIr68vN27cAO6P
Lhs8eDAREREEBgai0WjUIGXhwoX4+/uTkpLCnTt39NYdHx/PhAkT9KY9//zzTJs2DQAvLy9WrFih
zrP0GMxDhw5hY2OjlgvgyJEjKIrC9evXjT4qcfHixYSFhZnc/4sXL1KvXj0iIiKoVasW8+fP58yZ
M+r8pUuX4uPjo/cbXciTmZlpcr06xsK6M2fOoCgKaWlpetMDAwNJTk42ua7w8HCWLFmifi8sLMTT
05Pvv/+eY8eOYWdnpzeSLCsrC3t7ewoLC8v0GEnD7WRkZKAoCpcuXQKgatWqeo8JLSoqwtfXl3Xr
1nHo0CEURSE7O1udb/gYTF9fXzZt2qS3zaCgIH755Rf1+xNPPMGWLVvU75aOraW2AdaFdQkJCRbr
RwghhBBCCCGEEEIIIYQQD89jGdaVfAwm3A9fNBoNa9as4cKFC2i1WsaNG8fJkye5d+8eU6dO5Zln
ngHuPxJx/PjxBAUFYW9vT1RUlPpoxqioKLy8vAgODlY/vr6+jBkzhtu3b6Moit7jDy2FdRs3bsTD
w0NvWm5uLoqi8PvvvxsNdFauXEmdOnXM1kFhYSFbt26lcePGdOvWDRcXFz777DPg/sg6w23qRtaV
DKRMMTeyzvCRl1qtVi+8NGQYogHUr1+fxYsXs2nTJmxtbfXqWveYypycnAcK63JyclAUhbNnz6rH
zbDskZGRzJs3j40bN+Lq6qo3r2RYl5eXh6IoBAYG6pXTy8uL1atXA7Br1y5q1qyp95hRS8fWUtsA
CeuEEEIIIYQQQgghhBBCiP8FEtYBd+7cwd7enrVr17J+/Xo8PT315pcM60q6dOkSo0aNIiAgAIDe
vXszZcoUk9t2d3fXG6Fl7cg63UgpgMOHD5sdWWdNWKejewzmnDlzaNKkCfDfd9adPXtWXW758uV4
eHg88Dvrli1bpn4/d+4ciqKQmppqcl2GIVp+fj6urq5s3ryZI0eO4ODgQH5+vtHfVlRYB/dH1pV8
p2FhYSHVqlVj3bp1HDhwABsbG70RfoYj67y9vdm6davJ7Q8ZMoS33nrLYvlLHltLbQOgbt26LF++
XJ0vYZ0QQgghhBBCCCGEEEII8eh5LMO6V199lfz8fG7fvk16ejoDBgygZs2a3Lp1i7S0NGxtbVm/
fj0XLlxg5cqVBAQEqGHdp59+yooVK7h8+TIFBQVMnz6diIgIAH7++We0Wi3ffvstt27d4uLFi2za
tEl9vOGgQYNo1qwZqamp7N+/n1GjRll8Z12LFi14/vnnuXr1qsl31pUlrFu1ahXr16+noKCAuLg4
zpw5w3PPPcewYcPUZZo2bcrAgQO5efMmmZmZREREMHLkSHX+pk2biImJ4cKFC6XWbyqsGzt2LOHh
4Zw5c4bLly8zaNAgwsPDzQaA4eHhvPLKK1y4cIFz584xZMgQmjRpQmFhIcXFxeo73E6cOEFeXh5p
aWm89957JuvG3HbMhXUTJkygcePGZGRklHpn3b1796hTpw5DhgwhPT2dbdu2ERMToxfWTZkyhYiI
CHbv3k1eXh6nTp3iyy+/JDMzk1u3bqHVajl37pxemSwdW0ttA6BXr1507tyZU6dO8e9//5uuXbua
DeveeecdBg4caLG+hBBCCCGEEEIIIYQQQghRcR7LsE5RFPWj1Wrp0aMH6enp6jLz5s3Dx8cHd3d3
evbsycCBA9WwbtOmTbRo0QKtVotWq6VTp05672LbsGEDrVq1QqvV4uHhQXR0NDt27ADgypUrxMXF
4e7uTt26dZkzZ47ZsA4gOzubvn374u3tjZ+fH8OGDVNHcZUnrNuyZQvt2rXD19cXBwcH6tSpQ1JS
Erdv31aXycrKolOnTjg5OeHh4cHgwYP15icnJ5fa7gcffICXlxfOzs7Y29vj5eXFqFGj1Pl5eXkM
HToUDw8PnJyciImJsfgOvPDwcKKiovD19cXNzY1nnnlGL9S6cuUKiYmJ1KxZEycnJ2rXrs3LL79s
sm7MbcdcWFdQUMCkSZOoUaMGWq2W2NhYvfZy8OBBoqKi0Gg0REVFMWnSJL2w7t69e8yZM4ewsDCc
nZ3x9/end+/eZGdn8+mnn9KjR49SZbLm2JprG3B/JF2rVq3Ucs2fP99sWDdw4ECCg4Mt1pcQQggh
hBBCCCGEEEIIISrOYxfWif/SPQbzUWXsnXV/N82aNWPDhg2VXQwhhBBCCCGEEEIIIYQQQlQSCese
YxLWVa4///yTN998k8LCwsouihBCCCGEEEIIIYQQQgghKomEdeKR9XcP64QQQgghhBBCCCGEEEII
ISSsE0IIIYQQQgghhBBCCCGEEKKSSFgnhBBCCCGEEEIIIYQQQgghRCWRsE4IIYQQQgghhBBCCCGE
EEKISiJhnRBCCCGEEEIIIYQQQgghhBCVpMLDusjISBRFUT+2trb4+fnxwgsvcO3atTKtKyYmBkVR
iIuLA2DBggUoikKdOnVM/mbz5s3qtu/du/dA+1IW1pStrPLz89V9SUlJqbD1llVycjKxsbFG5126
dIk9e/YQFxeHoihERkaWWua7774jOjqa6tWr4+joSPXq1UlISODs2bNWl2HWrFlqXXz44Ycml8vN
zVWXc3Nz02tzv/32mzqv5HGytbVFURQWLFgAGD+WXl5eKIrCsmXLgNJtUwghhBBCCCGEEEIIIYQQ
ojweWlgXHBxMXFwcUVFRakDyyiuvlGldb7/9NvHx8Wo4I2HdX+vGjRssXryYTp06ERQUxKRJk1iy
ZAnXr19XlxkzZoxeOGssrEtMTMTGxoaQkBAaNmyoLhsREWFVOb777jtsbGzKHNYpisJbb72lzuvV
q5fRsG7AgAHEx8ezZcsWwLqwzrBtCiGEEEIIIYQQQgghhBBClMdDC+sSEhLUaQEBASiKwujRo9Vp
utFM69atA+Ds2bNqkJKamgqgjtZ68cUXAeMhSnZ2NvHx8bi4uODj40OrVq0shnW//vorjRo1wsvL
C1tbWzw8PIiOjmb37t1m9+3EiRMMHTqUmjVr4ujoSHBwMCNGjDBath07dqjl0IVby5YtQ1EUtFqt
us7t27cTGxuLj48PTk5O1KpVi+eff16vjkp+kpOTAcjKymLgwIEEBwfj4uLCE088weLFi9X16uqu
b9++jBo1Cl9fX6ZOnQpAeHg4iqKQlJRkcl9TU1Px9PQstf2Sxwzg4MGDrF69mu7du5sM67Zs2cKJ
EyfU72+88Ya6ruzsbLN1npqaikajoUuXLvj5+ZU5rPPx8SEvL4/jx49TpUoVo2GdYRBnTVhn2DYB
0tLS6NmzJwEBAbi6utKoUSM+/fRTioqKADh8+LC6/WnTptGwYUNcXFxo2rSp2uaFEEIIIYQQQggh
hBBCCPF4eWhhXf369UlMTOQf//gHiqLQvHlzcnJy1OUqIqwrLCykWbNmKIqCp6cnAwYMsCqsW7du
Ha1atSIxMZEJEybQpEkTFEWhatWqFBYWGv3N6dOn8fDwQFEUQkNDGT58OE899RROTk5Gy2ZNWJeR
kYGDgwOKojB8+HCmTZtGnz598PLyAmD69OnqOoYMGcJbb71Famoqp0+fxtPTExsbG8aPH8+8efPw
8fFBURRWrVqlV3clP2UJ61566SUURaF169Z88803dO7cmZycHJYvX86RI0dKLa8bYWcsrDOke6Sl
i4sLeXl5JpfLyckhKCiIBg0acOPGDQIDA8sU1rVt2xZFUZg/fz6DBw9GURTatWv3UMK69PR0NBoN
iqLQpUsXRo8ejZubG4qiMGnSJEA/rKtduzZ9+vShatWqKIpCixYtLNabEEIIIYQQQgghhBBCCCH+
fh76O+t0H3d3d2bPnq0uVxFhXclHXu7bt6/UNHOPwczNzeVf//oXS5Ys4fXXX1d/k5mZaXT5CRMm
oCgK/v7+3L59W52+d+9eo2WzJqzbsGGDuszEiRNZv3492dnZ6nvWTD0GU1eWTp06kZubS25uLq+9
9hqKotC9e3e9uuvRowcnT57k8uXLarnXrl1LcnIye/bsMVk/ixYtQlEUqlSpQkhICMHBwcyfP5+M
jAyjy1sb1qWnp6sj9nThoTH5+fm0aNECLy8vdVReWcO6lStX4uDgQEBAAA4ODnTo0EEtZ0WHdePG
jUNRFOrWrUtxcTEAc+bMQVEUNBoN9+7d0wvrdO/r+/jjj9XgUgghhBBCCCGEEEIIIYQQj5+H/hjM
goIC/t//+39qSHHs2DHgv2Hdt99+C5QvrFu8eLEahuhYE9atWrUKV1dXNXzTjawrWT5Dffr0QVEU
unXrZnS+ubBOF74ZhnV37tyhW7dueqGmjY0Nffv2paioyGRYpyuLsU94eLjRuiur4uJi5s+fT2Rk
JHZ2dnrlMxayWRPW7dmzB39/f3WkoO7xkMbMnTtX3Z/4+Hji4+NxdnZGURSaNGnC22+/bfR3JcO6
lJQUdUSdoih8//33Dy2s6927N4qi8I9//EP9zZYtW9RtX7x40WhYt3btWhRFwdbW1mRdCCGEEEII
IYQQQgghhBDi7+sveWfdN998Uyp00gUvuveslSes27hxozr6Szd6zZqwLigoSO/xhCW3bSqsS0pK
QlEUgoKCyM/PV6frRvQZlm3Pnj3qOnWj0QzDurNnz1JQUEBmZibLly9nyJAh6m/+85//cOfOHfX7
Tz/9pG5TN4orLCyMHTt26H1++eUXo3VXkjUj6woKCtT/Xrp0Ke3bt2f48OF65S/JXFhXXFzM3Llz
cXBwwN7enjlz5pRaZufOnSQnJ7N+/XoA3nnnHZOBpKIoxMTEGC23YVh3+PBhgoODadOmDcXFxQ99
ZF1oaKg6su6jjz6yOLJu3bp1EtYJIYQQQgghhBBCCCGEEI+xhxbW1axZk/j4eLp3766OYqtfv74a
dEVFRakj24YMGcITTzxR5rDu9u3b6kitVq1aMWXKFHW95sK6Ro0aoSgKLVu2ZNasWXTt2tViWJeV
lYVWq1X3Y/jw4XTp0kV9fKFh2a5du4ajoyOKotC4cWNeeOEF/Pz89MKu5ORkfH19GTZsGDNnzuTF
F19EURTc3Ny4fPkygLp/zZs3Z8qUKezfv5/MzEy1LM2bN2fkyJG8+OKLtG7dWh35Zy6ss+addVOn
TiUsLIzRo0czYMAAGjRoQOvWrVEUhc6dO6vLrVmzhsTERLVOfXx8SExMZO7cueoy/fv3V+u3Ro0a
xMTEqB/dciNGjEBRzL+7rayPwSw5GlHnYYV1x48fx8XFBUVReOqpp/i///s/td2//vrrABLWCSGE
EEIIIYQQQgghhBCilIf+zroqVarg4+PD0KFD1YACYP/+/TRp0gRnZ2caNGigvnOtLGEd3B/Z1rx5
c1xcXIiIiNB77KGpsG7fvn00bdoUBwcH6tWrx9tvv20xrAPIzMxk0KBB1KhRA0dHRwIDAxkyZIjJ
si1btowaNWrg6upKmzZt1LLpwrrffvuNmJgY9Z1qvr6+PPvssxw4cEBdx/fff0+9evWwt7fHzc2N
NWvWAHDixAmGDh1KSEgITk5OaLVamjVrRnJystG6K8masG7dunU0a9YMb29vbG1tsbGxwd/fn6FD
h3LlyhV1OV34Zfjp0KFDqe0Z+4wYMQL43w/r4H4Y98wzz+Dv749Go6FRo0YsXrxYfdynhHVCCCGE
EEIIIYQQQgghhDBU4WGd+PtJTk4mNja2soshhBBCCCGEEEIIIYQQQgjxtyNhnbBIwjohhBBCCCGE
EEIIIYQQQoiHQ8I6YdEPP/zA+PHjK7sYQgghhBBCCCGEEEIIIYQQfzsS1gkhhBBCCCGEEEIIIYQQ
QghRSSSsE0IIIYQQQgghhBBCCCGEEKKSSFgnhBBCCCGEEEIIIYQQQgghRCWRsM5AeHg4S5Ysqexi
mHX9+nUUReHUqVPlXkebNm1YsGBBxRVKqO7du4eiKBw+fLiyi/LQSTsqbfz48Xh5eaHRaNi7d29l
F0dUks2bN+Pl5WX18pcvX37gft0aj1P/9DhZvXo1wcHBD307//rXv8rUrsWjo1GjRo/89e3/kv+F
6x/p7/9669at+0v6YiGEEEIIIcTf02MV1imKYvZz7949i2HdwIED6d69e7m2/yC/LUnCukfbg94c
yczMRFEUfvvttwouWcUr2Y6Sk5PRaDTqvMjISJKTk/WWr6hzQCcwMJDZs2dX2PoMGe6TJT/++CMB
AQGcPHmS69ev8+eff1ZoeXJzc1EUhczMzApdr6GkpCQGDhz4ULfxV6qM/ZGw7vFlrO972H2VhHXl
Y+xY/V1VVFhnbZ2V5Vqm5PmxYcMGAgMDH7icD9v/wnV0RfT3D7vv+ruRsE4IIYQQQgjxIB6rsO7y
5cvqp1+/fvTu3VtvGlgeWffHH39w8uTJcm3/QX5bkoR1j7YHvTly584dUlNTycvLq+CSVbyS7ejq
1ascOnRInWfshl5FnQM6aWlpXLp0qcLWZ8hwnyyZMWMGffr0eWjlkbCufCSs+y8J6x4+Y33fw+6r
JKwrHwnrys7aOivLtUzJ80PCuopTEf39w+67/m4krBNCCCGEEEI8iMcqrCspISHB6M3b8PBwXn/9
dZ5++mmcnZ0JCQnhxx9/VOePGTOGhIQEAIqKipg8eTI1atTAxcWF+vXrm/2He8nf6m7MfvzxxzRu
3BgnJydat25NVlaWuvy1a9cYNmwYgYGBuLu70759e3bv3l0qrEtISGDMmDF62woMDGTDhg3q97Vr
1xIeHo6zszNNmzbF399fr6wbN26kWbNmeHp6Uq9ePb7++mt13r59+4iOjsbd3R1vb2+6dOnC+fPn
je6jbr9mzZpFgwYNcHFxISYmhj/++ENdZu/evbRr1w43NzdCQkJ4//33KSoqAmD06NF6YcfYsWNp
166d+n3mzJl07dpVrf/333+f0NBQPD09ad26Nfv27VOXDQ8P54033qBnz55otVpGjx5ttMwrV66k
Vq1aODk54eHhQWxsrF4YEh4ezoQJE+jevbvRNlFYWMj06dMJCgrC1dWVTp06Wbw5kpSUhJ+fHw4O
Dvj6+vLiiy+qN7QMj29iYiJxcXGMGTOGgIAAGjZsaHK9cP9GV7NmzdBoNNSsWZNx48YBUFBQwGuv
vUZwcDBarZbY2FjS09PV3yUmJtKjRw9GjhyJh4cHPj4+zJo1S2/d5tpRyRsUiYmJVKlSBUdHRzQa
jVrmkucAmG8L1pwjJW8+rl69murVqzNnzhz1WPTv35+CggJ1+UOHDhEdHY2LiwsBAQHUq1ePuLg4
k3VpeNPFXFvYsGED9vb22NraotFoaNeunboPn332GW3atMHR0ZE1a9aYPf4AK1asICIiAhcXF6pX
r86LL74IQEREBIqi4OLigkbH2SfDAAAgAElEQVSjITEx0eQ2rOkXjLWVVatWYW9vj52dHRqNBo1G
w/nz51myZAmNGjXSW9/AgQNJSkrSO16G5bB0nlrDmrZpqg8ztj9HjhzBxsaGtLQ04H4oa2dnx9at
W4H7Nzg1Gg179uwBIDs7m/j4eLy9vfH392f48OHcvHlTr10Y9jWGYd3+/fvx8vIyebNcV3+LFy8m
MjLSaHs3125M1b+l/ikiIoKPP/5Y3UaTJk2YMmWK+r1z5868++675d5+RRz/wsJC3nvvPUJDQ3Fx
caFhw4Z8+eWXVh+bV199lU6dOuHo6Ej9+vXZvXs3M2fOJCgoCDc3NxISEigsLATu9yMBAQFMmzYN
f39/PD09GTp0KPn5+QCcOnUKRVG4fv26uo3k5GQiIyMB031fyb7Kmr6trH3V6tWrCQoKYsGCBQQH
Bxvt/9q2bUvVqlVxcHCgdu3aeqNlVq9eTY0aNfj444+pX78+9vb2XLx4kStXrvDcc8/h6emJt7c3
7dq1U9v1lStXynQelWf7169fZ8SIEQQFBeHj40OfPn24ePGi5UZTgqlrGFPHqjznu6XriJL16OHh
QdOmTfX6h4o4TyytwzCsM3fdZ+qcM1Vnxq5TDK9lzJ3HurKdP38eJycnbGxs1P561apVxMfH89xz
z+ntb3JyMqGhoRQXF1usm+PHjxMWFoabmxsuLi40bdqUTZs2qfMf9PrHGFPtbtGiRQQHB6vXOgAZ
GRnY2dnxxx9/cOnSJfr370+1atVwd3cnKiqKlJQUq/bDUn+v289hw4bh5uaGr68vS5Ys4dtvv6Vh
w4Y4OTnRrl07vWv8sl5nGUpMTKRLly4MGjQINzc3qlevzocffqi3jLm2aKxtWfr319KlSwkLC0Oj
0dC0aVM2b95s9bG2Zh+PHz9Ot27dqFatGtWrV2fSpEncu3cPkLBOCCGEEEII8WAkrDMQHh5OgwYN
WL16NZmZmYwdOxZfX191fsmwYcmSJYSEhJCVlUVBQQG7d+9m0aJFJrdpLKzr1q0bKSkpHD9+nA4d
OtC3b191+SeffJJevXqRnZ3NtWvXWLZsGevXry9zWPfrr7/i4uLCihUruHTpEgcPHqRu3brqP2x3
7tyJu7s727Zto7i4mH379qHVajlw4AAAwcHBzJ49m9u3b5Odnc3ChQtNjuzR7Vf//v35z3/+Q1pa
Gp07d+bJJ58E4MKFC7i7u7Nw4UJu375NamoqNWvWVG8Wr1+/Hj8/P3V9tWrVws3NTb1x0L17dz74
4APgfnD3xBNPkJWVRVFREcnJyQQEBHD79m31WAYHB7Ny5UoyMjI4ffq00TJnZGRw5MgRcnNzuXHj
BpMnT6Zjx47qfEttYubMmdSuXZudO3dy+fJltm7dajGs27t3LydPniQvL4/s7Gw6d+7M9OnTAeNh
nUajYdasWRw7doyjR4+aXO8vv/yCq6srGzZsID8/n8OHD6th3YQJE2jatCmZmZnk5uYyefJkgoOD
1ZvtiYmJeHp6Mm/ePI4fP86KFSuwsbFRt2epHRneoDD21/clzwFLbcGac8TwJpKtrS2vvPIKqamp
7Nq1C19fXxYuXKjWq6+vL6+//joXLlwgKyuLnj17ljmsM9cWJk+ezDPPPKN+1+1D+/btSUlJIT09
ncuXL5s9/llZWdjZ2bF9+3bu3r1LRkaGOs/YyDpT27DUL5hrK8ZGolkb1hmWw9J5ag1LbdNSH2Zs
f5o0acInn3wCwBdffIGbmxsjRowA4LfffsPDw4PCwkKKi4tp2bIlCQkJXLt2jZycHGJjY/X+qMBY
X1MyrDt48CA+Pj56NyANWdPezbUbc/Vvrn8aO3Ys/fr1A+DkyZO4ublRv3594P7Nf3d3d/bv3/9A
23/Q4z99+nQaNGjA77//Tl5eHlu3buWDDz6w+tiEh4ezbt06Tp06xYABA7Czs+Oll14iLS2NXbt2
4eHhwZo1a4D7/YiDgwNTp07l0KFD7Nixg+DgYN58803AclgHxvs+Y2GdqWNdnr7KUv8HsG3bNnJy
csjPzyctLY2AgAC2b9+u/t7GxoahQ4dy4MABDh8+zN27d4mNjaVLly6kp6dz4cIFZsyYoRcyWXse
lXf7nTt3pl+/fty8eZOCggIGDx7Ms88+a7HNlGTuGsbwWJX3fLd0HaGrxxMnTnDx4kXeeustvXqs
iPPE0jpKtkFLfaapc85YnYHx6xTDaxlz6yxZNmMj61JSUnBycuLatWvqtMjISObMmWNV3Vy9epVd
u3Zx9epV8vLy2LBhAy4uLmoI/6DXP8aYane3bt3C1dVVL2QbN24cTz/9NHD/mr5Pnz5cvnyZmzdv
sn79ejZu3GjVfljq7xMTE6latSofffQRmZmZzJ07F1tbWzp27MjOnTvJzMwkKiqKUaNGqWUry3WW
MYmJifj5+fH555+TkZHBypUrsbe3V899S23RWNsy9++vTZs24eHhQUpKCvn5+axbtw4nJyf1KQmW
jrWlfbx27Rq+vr7MmTOHu3fvkpOTQ5MmTZg7dy4gYZ0QQgghhBDiwUhYZ8DwMZgZGRkoiqI+AqZk
2LBw4UL8/f1JSUnhzp07FrdpLKwr+cizxYsXExYWBtx/7IyiKFy5cqXUesoa1vXq1Yvhw4frzS/5
+J74+HgmTJigN//5559n2rRpAFSrVo0xY8Zw7tw5i/tobL/279+PoijcunWL+fPn07RpU73ffPTR
R2oIcPPmTezs7MjMzGTv3r20bduW5557jvnz51NcXIyXlxcHDx4EwNfXV+9mB0BQUBC//PILYPmR
pjrXrl1j4sSJREVFUaNGDTw9PfVuollqE15eXqxYsUKdb81jh44ePcrgwYOJiIggMDAQjUaj3og1
FtaVHI0G8NNPP+Ho6Kh+dDcS+/Tpo3eTpaSqVavy/fffq9+Liorw9fVl3bp1JrcTEBDAP//5T8By
OyprWGepLVg6R6D0TSTDGyQDBgxg5MiR6vYM/wp/8uTJZQ7rzLUFU2Gd4aMNzR3/tLQ0bGxs+Oqr
r7hx44be78yFdYbbsNQvmGsrDxLWGZbD0nlqDUtt01IfZmx/xo8fr07r1q0bn3zyCdWqVaOwsJB5
8+apgcChQ4ewsbHROxZHjhzRC2yM9TW6sO7QoUP4+fmxatUqs/toTXs3125M1b+l/mnjxo3qjfH3
3nuPyZMnExQUxKFDh/j999/x8vJSR4CUZ/sVcfx9fHzUMK2k8hybjRs3UrVqVb31dO3aVQ0djfUj
H3zwgdpXVWRYZ+pYl6evstT/wf2b2M8++yyhoaH4+/tjb2+v9t/Gfn/o0CEURSE7O1udZvgYTGvP
o/Js/9ixY9jZ2emNasvKysLe3l4NAK1h7hrG8FiV93w3dx2hq8eSo5UM67EizhNL6yjZBi31mabO
OTAd1hn20YbXMubWaSmsA6hfv746Imvv3r04OzvrnYfmFBYW8tFHH9GxY0dq1aqFn59fqRDrQa5/
jDHX7kaMGKFeK+Tn5+Pl5aWO0u/bty/R0dEcOXKk1KhBS/thqb833M/bt2+jKIre477fffddvaC5
LNdZxhir2x49eqh/HGSpLRr7vbl/f/Xq1Utdt07v3r3V6yFLx9rSPi5atIioqCi9+Z9//jnR0dGA
hHVCCCGEEEKIByNhnQHDmzA5OTkoisLZs2cB/bChoKCA8ePHExQUhL29PVFRUWzbts3kNi2FdStX
rqROnTrA/ZsVWq3W6HrKGtY1b96c999/X29+yZsMUVFReHl5ERwcrH58fX3Vde7YsYPo6GicnJyo
Vq0aiYmJ6l/xGjK2XxcuXEBRFDIyMhg/fnypv4rfsGEDnp6e6vdWrVrxxRdfMHHiRObNm8eGDRto
27Ytx44dw8fHh+LiYvLy8lAUhcDAQL1ye3l5sXr1asD6sK5ly5Z07tyZAwcOkJ+fT0pKil7dm2sT
uhsdJR81ZSmsu3DhAlqtlnHjxnHy5Enu3bvH1KlT1Rs31oR1t2/fJjMzU/3k5OQA92+iGT5eSLe8
oihq0KkTGRnJvHnzTG6nXr16LFu2DLDcjsoa1llqC5bOEbB8E2nEiBHqIyTHjx/PP/7xD735DxrW
GfYP1oR1lo4/3L/5HxERgZ2dnd5f71dkWGeqrUDFhXXWnKfWsNQ2LfVhxvZny5Yt1KhRgxs3bhAY
GEhhYSGRkZH8/PPPxMfH89FHHwH3wx0PDw+93+qOw++//w6YDuucnZ3x9fUlLCyMP//80+w+Wmrv
ltqNsd9b0z/9+eef2Nvbc/LkSVq0aMHvv/9OUlISb7zxBosWLaJ3797l3n5FHH9dXaemppaaV55j
Y9i/A8TFxTF58mTAeD+yatUqAgICgIcX1pU81uXpqyz1f5s3b0aj0bB48WIuXLhAcXExHTp0UPsA
Y7/fuHEjrq6uetMMQyZrz6PybH/Tpk3Y2trqtR3dY5x1/8+zhrlrGMNjVd7z3dx1hKV6rIjzxJp1
lGyD5vpMc+ecsToDy2GdpXVaE9Z9+OGHaqA9ZMgQhgwZYlXdAEyaNIk6deqwefNmNfwtWZ4Hvf4x
xly7S01Nxc7OjvPnz7N06VJCQkLUYO7s2bPEx8fj6emJq6srPXr0UJ8MYW4/rOnvje2n4XFZsGAB
bdq0Ub+X5TrLGGPbfOmllxgwYABg+f/fxn5v7t9fzZs3V0e56SQlJdGzZ0+T6yt5rC3t44QJE9Bo
NHrlDQwMVP8fIGGdEEIIIYQQ4kFIWGegLGFdSZcuXWLUqFHqDT1jyhLW7dmzB0VRuHz5cqn1GIY5
w4YNY9iwYXrLlLwp//TTT5f6K9OSNxl69+6t944iUwoLC9m1axdeXl4sXrzY6DLG9mvHjh3Y2dmR
m5vL/Pnzady4sd5vFixYoBcCTJkyhRdeeIHQ0FDOnz/PnTt3qFq1Km+++Sbx8fHqct7e3uq7cYyx
Jqy7efOm3k04KH0z11KbcHd31xuxZimsW79+vV44CZQ5rDOla9euZkfWfffdd+r3wsJCqlWrZnZk
XckbGJbakeENiqioKD799FO95Q1H1plrCxUd1n3wwQc0b95cb35lhHWWjn9Jt2/f5quvvlLDbt0N
2ZLvGjQV1lnqF8y1lQkTJtC/f3+9acuXL6du3bp606wZWWfpPLWGpbZpqQ8ztj95eXk4OjoyY8YM
dcTEe++9x4gRI6hevTrHjh0D/jvSpmQ4c/jwYatG1jk6OrJ7927at2/PU089Zfa9Ppbau6V2Y6r+
remf2rVrx9tvv60+/nLv3r3Uq1eP5557Tn20WHm3/6DHv6ioCFdXV7Mj68pybMoT1r311lu0aNEC
gPPnz5caJWUY1hnr+8oS1pWnr7LU/40dO1a9Wa1jKSw7cOAANjY2eiPbDMM6a8+j8mz/yJEjODg4
mPzjoLIydg1jeKzK06YsXUfs378fGxsbvcDesB4rop+0tI6SbdBcn2nunAPj7dtSWGdpnSXLtmnT
Jvz9/Ustc+3aNZydndVHP5blnX5NmjRR/zBJpyxhnaXrH3NMXTu3aNGCN998k9atW5cKAnUyMzNp
27atGmxZ2g9L/f2jEtbFxMQwceJEwPL/vy1dAxv++6tXr1688soresvo3nlnan1lCes++ugjvXdp
G5KwTgghhBBCCPEgJKwzUJaw7tNPP2XFihVcvnyZgoICpk+fTkREhMltliWsKyoqonXr1vTq1Ytz
585x8+ZNVqxYYfSddfPnzycwMJCDBw9y8OBBXnnlFWxtbdWb8l988YX6iJ1jx47xwQcf4Obmpt5k
+Pnnn9FqtXz77bfcunWLixcvsmnTJrZs2cLt27cZMWKE+v6YrKwsqlevztq1a43uo26/VqxYwfXr
1zl8+DDNmzdn9OjRan26u7uzYMECbt++zcGDB/XeUwbw73//G1dXV9q2batOGzx4MK6urnp/zT1l
yhQiIiLYvXs3eXl5nDp1ii+//FIddWRNWFdcXIyvry+TJ08mJyeH7du306JFizKFdYMGDaJZs2ak
pqayf/9+Ro0aZTasS0tLw9bWlvXr13PhwgVWrlxJQEBAhYR1mzdvxtXVle+//57bt2+Tlpam3hCZ
MGECjRs3JiMjw+Q768zdwLDUjgxvUPTt25c+ffrw559/cubMGUD/HLDUFio6rDt+/Dh2dnYsXbqU
c+fOsXHjRsLDw//ysM7S8d+xYwezZs3i9OnTFBYW8vPPP2Nvb8+FCxeA+4/W+vDDD9X34JgKSSz1
C+baysKFC6lTpw4XL14kOzubO3fu8Pvvv2NjY8P69evJyMhg3rx5eHp6WgzrLJ2n1rDUNs31Yab2
B6Bjx464urry888/A3D69Gnc3Nz0RnUUFxfTokULnn/+ea5evWryHVamHoMJ92/mN2nShJ49e5p8
fJ+l9m6p3Ziqf2v6p+nTp+Pq6sobb7yhTqtVqxaurq7qcSrv9ivi+E+aNIkGDRqQmppKXl4ev/zy
C3Pnzi3XsbEmrPPy8mL//v3cuHGDn376CW9vb/X/ecXFxXh7e/P6669z+vRp1qxZQ/369fXCOmN9
X1nCuvL0VZb6v4ULF1K9enUOHjzI2bNnmTFjBk5OTmbDsnv37lGnTh2GDBlCeno627ZtIyYmRi9k
AuvOo/JsXzf6rm/fvpw4cYK8vDzS0tJ47733TNaDIUvXMIbHqjxtytJ1xN27d6lVqxYvv/wyZ86c
Ye/evTzzzDN69VgR54mldZRsg5b6TFPnnLE6A+seg2lunSXLdvToUapUqcJvv/3GzZs3uXr1qrrO
hIQEqlatWuoxhJb07duX2NhYTp8+zdGjRxk0aFCZwjpL1z+GrLl2XrJkCVWrVsXZ2VlvHydOnEhK
Sgp//vkn169fp3v37uo1tKX9sNTfV1ZY16FDB7Kysrhy5QoLFy7E1dWVP/74A7DcFo2V2dy/vzZt
2oRWq2Xbtm1676zThekPGtZdvHgRb29vZsyYwcWLF7l16xa7d+9W68jwuvH8+fPExMSo+yOEEEII
IYQQ5khYZ6AsYd2mTZvUGzJarZZOnTqRlpZmcptlCet02x40aBB+fn64ubnRoUMH9uzZU+oGSH5+
PvHx8bi5uVG3bl3mzJmDn5+felO+sLCQSZMmUa1aNfz8/Bg9ejSNGjXSu8mwYcMGWrVqhVarxcPD
g+joaHbs2MHdu3dJSEigRo0aODo6UrNmTWbOnGlyH3X71bFjR9zd3fH19WXs2LF6fxm/Z88e2rZt
i5ubG3Xq1GH27NnqO5Hg/o0tjUaj99fDP/74I4qicPLkSXXavXv3mDNnDmFhYTg7O+Pv70/v3r3V
9+tY+xjMlJQUQkNDcXZ2plWrVrz++utlCuuuXLlCXFwc7u7uav1bemfdvHnz8PHxwd3dnZ49ezJw
4MAKCevgfjtq3LgxLi4uBAcHq2FKQUEBkyZNokaNGmi1WmJjY/VGaFm6gWGpHRneoDh8+DANGzbE
wcFB/Stkw5Gp5tpCRYd1cH90WJ06dXB0dKRTp0707t271Iirkh5GWAfmj39mZiZdu3bFx8cHZ2dn
GjduzPr169XffvPNNwQGBuLg4MBrr71mchuW+gVdfRprK7m5uXTt2hVnZ2d8fHy4ePEiADNmzMDb
2xs/Pz8SExPp1q2bxbDO0nl67tw5FEUpNVqgJEttE0z3YZb2x8fHRy9Aa9myJYMGDdLbVnZ2Nn37
9lX3fdiwYXqjjSyFdXD/r/9DQ0MZNGhQqfcQmao/w/Zurt2Yqn9r+qdff/211MggXV9RUnm2XxHH
/86dO0ybNo3atWvj7OxMREQEX331FVD2Y2NNWOfu7k6rVq1wdnYmJCSk1CP/Nm7cSO3atdFqtfTo
0YOkpCS9sM5Y31eWsA7K3ldZ6v/u3r3LCy+8gKurK35+fowZM4amTZuaDcsADh48SFRUFBqNhqio
KCZNmlQqrLPmPCrv9q9cuUJiYiI1a9bEycmJ2rVr8/LLL6vzv/76a6OPeC65XXPXMMaOVXnOd0vX
EQcOHKB58+Y4OjoSHh7O2LFj9UaPVcR5YmkdJdsgmO8zzZ1zxurMmrDO3DoNyzZ+/Hi0Wi2urq56
/8/avXs3iqLw5Zdf6m0rJCSk1MjNks6cOUOHDh1wcnIiNDSUefPmlSmss+Y6uiRrrp3z8vLw9PTk
hRde0Js+e/Zs6tevj7OzM9WqVeOFF17g1q1bVu2Hpf6+ssK6unXrqudH8+bN+fXXX/WWMdcWjZXZ
0r+/li5dSlhYGBqNhiZNmui9y/FBwzq4P+r3mWeewdfXFxcXFxo1aqT+f8LwujEzMxNFUaz694gQ
QgghhBBCPLZhnXg4TN2wFeJRNGzYMCZNmlTZxXisffHFF3h4eJCbm1vZRRGV4FE7/qZCo8omfZVx
gwYN4qmnnqrsYpTZ8uXLadmypdXLP2rnSWX56aef8PLy0vsDMN17JHfu3FmJJSu769evo9Fo2Lt3
b2UX5aEq6x+cCSGEEEIIIcTjTMI6UaEkrBOPslWrVnHkyBGuXbumPirpt99+q+xiPdb69eunPn5T
PH4eteP/qIR10ldZx9/fn82bN1d2MSz6+eef2b17N1evXuXgwYM0bNjQ5HvKjHnUzpPK0q1bN159
9VW9aZ988on6Tsn/Je+99x7NmjWr7GI8dBLWCSGEEEIIIYT1JKwTFUrCOvEo69evHx4eHjg5ORER
EcHKlSsru0iPteLiYgICAjh37lxlF0VUgkfx+D8qYZ30VZYdOnSI8PDwyi6GVebMmYOvry8ODg7U
qlWLKVOmcPfuXat++yieJ5UhPT0dW1tbsrKy9Kb36tWLf/7zn5VUqvIpLCwkODiYL774orKL8tBJ
WCeEEEIIIYQQ1pOwTgghhBBCCCGEEEIIIYQQQohKImGdEEIIIYQQQgghhBBCCCGEEJVEwjohhBBC
CCGEEEIIIYQQQgghKomEdUIIIYQQQgghhBBCCCGEEEJUkgoP67y8vFAUhcmTJ+tNd3R0RFEU3nrr
rYrepCopKQlFUdRPlSpVcHd3p0uXLhw6dEhv2ZycHEaNGkXt2rVxcHDA3d2ddu3asXz5cqPlLvkZ
M2YMABs2bFCnBQYGcv36dfV3Wq0WRVHYsGGDOu3OnTu8++67NG7cGGdnZ5ycnKhbty4jR47k/Pnz
5drn5ORkYmNjjc67dOkSe/bsIS4uDkVRiIyMLLXMd999R3R0NNWrV8fR0ZHq1auTkJDA2bNn1WWW
LVtWqg50nyVLlpgt3+eff84TTzyBo6Mjrq6uPPnkk+zatUtvmZ07dxIdHY2rqyuOjo40bNiQr776
Sm+Zs2fP0q9fP7y9vbG3tyc4OJjXXnuNu3fvWllTQgghhBBCCCGEEEIIIYQQj56/ZVjn4uJCXFwc
Xbp0wdbWFkVRaNy4sbrcqVOn8Pf3R1EUHB0dadu2LXXr1lUDqNGjR6vLvvTSS7Rq1UqdN2TIEFat
WgXoh3WKovDCCy+ovzMM6+7cuUN0dLS6bPXq1WnVqpW63OrVq8u0rzdu3GDx4sV06tSJoKAgJk2a
xJIlS/QCwzFjxuiVz1hYl5iYiI2NDSEhITRs2FBdNiIiQl1GF9bZ2dkRExOj99myZYvJMpYM+dq0
aaPWsbOzM1lZWQBkZGTg7OyMoiiEhobSunVr9TcrV64E4O7duzRo0ABFUfD29qZz587Y29ujKAoj
RowoU70JIYQQQgghhBBCCCGEEEI8SiotrMvPz2fy5MnUrVsXJycnvLy8iIqK4l//+hcARUVFfP75
50RGRuLu7o6fnx+9e/fm9OnTJretC+uCg4PVaQMGDCgVPvXs2RNFUfDw8ODo0aMAFBcXM3bsWDUo
+s9//qMuv2DBAnX6vXv31Om6sM7Gxkadv3HjRqB0WFdyHdOnT6eoqAiAvLw8pk2bxubNmwEIDw9H
URSSkpJM7mdqaiqenp5GR7qtW7dOXe7gwYOsXr2a7t27mwzrtmzZwokTJ9Tvb7zxhrqu7Oxs4L+h
m1arNVkmY5o3b46iKHTq1AmA3NxctV5ef/11AMaPH4+iKHh6evLnn38C8OSTT6IoCq1btwZg48aN
apl+/fVXAN58800URcHBwYHc3NwylUsIIYQQQgghhBBCCCGEEOJRUWlh3eDBg1EUhbCwMKZOncrL
L79MWFgYs2fPBlCDs4iICD755BPi4+PV7yUDs5J0YZ2bmxuJiYkMGjQIZ2dn/P392bFjBwD37t1T
yzJs2DC931+/fl0NhSZNmqROtxTWabVaEhIS9B6HaRjWPfXUU2qQWFxcbLL+rAnrXnrpJTXM+uab
b+jcuTM5OTksX76cI0eOlFpeN8LOWFhnaNasWeroxLy8PKD0YzDd3NyIiopi2bJlZtdlbDSlLojr
2rUrALGxsSiKQkxMjLqMLohzdnYG4J133lFH9unqbvv27Wp59uzZY3G/hBBCCCGEEEIIIYQQQggh
HkWVFtZFRkaqj6dMTk5m9+7d3L17l+vXr3Pz5k31MYcpKSnk5uZy9epVddpvv/1mdNuG76zTfezs
7Hjuuee4c+cOV65cUafPnDmz1DqqVq2KoigMHjxYnWZNWHft2jV8fX3Vx2EahnUREREoimLy/XI6
a9euJTk52WwAtWjRIvWdfCEhIQQHBzN//nwyMjKMLm9tWJeenq6O2Js6dao6fc2aNURFRdG3b196
9+6Nn5+fWh/fffed0XUVFhaqy8ydO1ed/swzz6AoCu3atQOgbdu2KIrCs88+qy7z4Ycfqr8tLCxU
R/t5eHioy6SmpqrLbN261ex+CSGEEEIIIYQQQgghhBBCPKoqPKzz8fFBURQmTpyoTisuLsbOzg5F
UZgxYwYAP/zwgxpo6T7VqlUjJSWFtLQ0o6Gb7mPq/W6Gj8EsLCzkp59+Un/3ySef6I2se+mll/R+
f+vWLfWRlmUdWQf3Qy3dcrr16MK6jh07oigKDRo0eOA6Li4uZv78+URGRqr1qttmyZBNx5qwbs+e
Pep7/IYMGaI+ptOY3AelVXkAACAASURBVNxcNZQ1HJ1Yki74fPPNN9Vpunro06cPAL169UJRFJ58
8kl1menTp6MoCj4+PgDMnz9fDV115fr3v/+t7ndaWprJMgghhBBCCCGEEEIIIYQQQjzKKjysa9y4
MYqi0L59ezVY2bVrlxqsLF26FIDMzEzy8/P5+eefmTNnDrVq1UJRFDp37sz169extbVFURRmz57N
jh071M+2bds4d+6c0W0be2fdxYsX1W3rgixdQOTq6qr3zrpx48apy5blnXUl3+WmW7fuowvrZs+e
rU5755131Mc5FhQU8O677/Ljjz8C1o2sKygoUP976dKltG/fnuHDh5t8r5y5sK64uJi5c+fi4OCA
vb09c+bMKbXM6tWrOXXqlPr95MmTaDQavVDzypUrDBw4kIEDB6qP4mzRogWKotCxY0cAbt68ibu7
u9476yZOnIiiKLi7u3Pr1i0AoqOj9d5Zt3nzZrXufvnlFwCmTZumvrNO9647IYQQQgghhBBCCCGE
EEKI/zUVHtZ99tlnarBSu3Zt2rdvj7OzM4qiEBQUxM2bNwEICgqiY8eOTJ48mbfffps6deqgKAqv
vfYaAImJiWqI079/f0aPHk1cXBzVqlVj165dRretC+tcXFyIj4+nV69eBAYGoigKGo1GHYF16tQp
dRSZk5MT7dq1IzQ0VC336NGj1XWOGjVKfVSjoigMHz6cf/7zn4DxsC4nJ0d9lGTJsC4vL4+oqCh1
enBwMG3atFFHn+lGC1rzzrqpU6cSFhbG6NGjGTBgAA0aNKB169Zq2KmzZs0aEhMTadSokTpSLTEx
Ue+xlP3791fLVKNGDWJiYtSPbrnu3btjY2NDcHAwDRs2VB9H6u7uzokTJwBYtWoViqIQGhqqhrRL
ly5V1x0VFUXt2rVRlPvvosvMzAQgIyMDJycnFEWhTp06enX09ddfA3D37l3q16+Poih4enoSExOj
jig0N7JPCCGEEEIIIYQQQgghhBDiUVfhYR3A119/TatWrdBoNDg6OhISEsLIkSP1RsSNHz+esLAw
3Nzc0Gg0hIWFMXPmTAoLCwEoKiriyy+/pFWrVvj4+ODg4ED16tXp168f58+fN7pdY++sc3Nzo2vX
ruzevVtv2ZycHBITE6lZsyb29va4ubnRpk0bli1bprec7pGZJT9jxowBjId1AF9++WWpsA7uB3Zv
vvkmTzzxBE5OTtjZ2REaGsq4cePIyckBrAvr1q1bR7NmzfD29sbW1hYbGxv8/f0ZOnQoV65cUZfT
jagz/HTo0EFdRrc9Y58RI0YA8Mknn9C0aVNcXV2xt7cnODiYPn36qKMSAV588UUUReGrr77SK+vn
n39OeHg4jo6OaDQa2rdvz86dO/WW2blzJx06dECj0eDg4EB4eDifffaZ3jJnz54lPj4eLy8v7Ozs
CAoK4tVXX+XOnTsm60kIIYQQQgghhBBCCCGEEOJR91DCOvHXSU5OJjY2trKLQY0aNahTp44atgoh
hBBCCCGEEEIIIYQQQgjLJKz7H/cohHXp6ekoisLnn39eqeUQQgghhBBCCCGEEEIIIYT4XyNh3f+4
H374gfHjx1d2MYQQQgghhBBCCCGEEEIIIUQ5SFgnhBBCCCGEEEIIIYQQQgghRCWRsE4IIYQQQggh
hBBCCCGEEEKISiJhnRBCCCGEEEIIIYQQQgghhBCVRMK6SnTv3j0UReHw4cOVWo7Lly+jKAqnTp2q
1HL8HYSHh7NkyZLKLkYpj2q5HpQ151BF7/ujct4aOnjwIJGRkTg6OtKrVy+rf/cotI0xY8aQkJBQ
qWWobI0aNar04yCEEEIIIYQQQgghhKgcj11YFxMTg6IoKIpClSpV8Pb2Ji4ujvPnz//lZamMm/4b
NmwgMDBQb5qEdWWXm5uLoihkZmbqTX8Ugg9jHna5jLWrv8LfIaxLSkpi4MCBD7yeli1bMnXqVPLy
8sjJySk1/69us1988QVRUVG4uLjg7OzM6dOnTS77qId1kZGRJCcnP9RtVHRY91eU+e/AWN+VnJyM
RqOppBI9mHfeeadC+uLK6tOFEEIIIYQQQgghHlePZVj36quvkp+fz61btzh8+DDBwcFMmTLlLy+L
hHX/uySs0ydhXflVRFhXXFyMg4MDaWlpJpf5K9vsq6++Sv369fn+++/Jycnh1KlT5Ofnm1xewjoJ
6yqLsb7r6tWrHDp0qJJK9GAuXrxoth+wloR1QgghhBBCCCGEEH+txzKsmzhxovr97Nmz1KpVi+++
+06dlpSUhJ+fHw4ODvj6+vLiiy+Sl5cHQFFREZMnT6ZGjRq4uLhQv359FixYoP5248aNNGvWDE9P
T+rVq8fXX3+tzissLGT69OkEBQXh6upKp06dLN70z87OJj4+Hm9vb/z9/Rk+fDg3b94E/huyffzx
xzRu3BgnJydat25NVlaW0XWdP38eJycnbGxs0Gg0aDQaVq1apa5n8eLFREZGGl3P9evXGTFiBEFB
Qfj4+NCnTx8uXrxostwrV66kVq1aODk54eHhQWxsrBoSLFq0iJo1a1JcXKwuf+LECezs7Pjjjz8s
1mNiYiJxcXGMGTOGgIAAGjZsyPHjxwkLC8PNzQ0XFxeaNm3Kpk2b9Mq0du1awsPDcXJyol69evj6
+lp97AxFRESgKAouLi5oNBoSExOB+8HH66+/ztNPP42zszMhISH8+OOPZssOsHfvXtq1a4ebmxsh
ISG8//77FBUVAbBkyRIaNWqkt/2BAweSlJSkfj906BDR0dG4uLgQEBBAvXr1iIuLU+dbU64uXbow
aNAg3NzcqF69Oh9++KE6PyEhgTFjxuiVITAwkA0bNphsV8aYaxe6ck6YMIHu3bsbLWd5zqHw8HDG
jRtHp06dcHJyIjw8nJSUFHV+cHAw69atU79nZmaiKAq5ublWbbPkfBcXF1q0aEGVKlX0ymSqba1a
tQp7e3vs7OzUujM1ytdcG2nVqhWKouDs7IxGo2Hz5s2lfl/eNltUVMT7779PaGgonp6etG7dmn37
9pms76NHj+Ls7Kyey9YwDOvM9cG6/uqzzz6jTZs2ODo6smbNmgc6DgD79u0jOjoad3d3vL296dKl
C+fPnycxMZEqVarg6OiIRqNRz9mSCgsLCQwM5PPPP9eb/vzzzzN06FAACgoKeO211wgODkar1RIb
G0t6erq6bMmwztI5b6nvN1VmS8fSXD9vqt6NOXr0KF27dsXT0xNfX1/i4uK4fPkyAEuXLiUsLAyN
RkPTpk312urq1aupXr067733HgEBAWg0GkaNGsXvv/9ObGwsTk5O1K1bl+3bt6u/CQ8PZ/To0XTs
2FE9v7dt26bOL0/ftW7dOoKDg9XlExMT6dGjByNHjsTDwwMfHx9mzZqld/wttT1Dlspdnv9XNGzY
EEdHR722Y+n/3caO1eHDh43Wi6XrHyGEEEIIIYQQQghRfo9lWOfs7IyXlxeenp7Y2NgQHR2tF0zt
3buXkydPkpeXR3Z2Np07d2b69OnA/ZuoISEhZGVlUVBQwO7du1m0aBEAO3fuxN3dnW3btlFcXMy+
ffvQarUcOHAAgJkzZ1K7dm127tzJ5cuX2bp1q9mgobi4mJYtW5KQkMC1a9fIyckhNjaWPn36AP+9
edqtWzdSUlI4fvw4HTp0oG/fvib339zIOnPr6dy5M/369ePmzZsUFBQwePBgnn32WZPbycjI4MiR
I+Tm5nLjxg0mT55Mx44dAbh16xaurq5s2bJFXX7SpEk8/fTTVtVjYmIiGo2GWbP+P3vnHhdVtf7/
Qe4MzDDchouAeEGTUEEBL5lYqamZibfS1C5yMLHwEohRP7OOZnlJUekkFWUpFqf8mgmeOkqmpnkD
ERBBVJSrCHiJi4h8fn/wnf2dPezZa8+AQvm8Xy9eL509s/ez13rWs561PnutvRrnzp1Dbm4uqqqq
cPToUVRVVaGurg579uyBjY0Nt5rnyJEjsLa2xs6dO1FVVYWMjAz06tWLm2hkXVMXsVVKjzzyCFJS
UlBQUIBFixZBrVZzx4VsLy8vh0KhQEJCAmpra5GRkYFu3bphy5YtANgT9zU1NVCr1XjrrbdQXl6O
wsJCTJo0qZVYx7LL1dUVn3/+OfLz85GcnAxzc3NuUlxswhuQvgpDzC+k2GloG9Kcc9CgQfjpp59Q
UFCAZcuWQaVScaI3S6xjXVNz/OjRo6iursbPP//MO87yLSkr61g+olntl5GRofccxvrsqlWr8Oij
j6KwsBD37t1DYmIi3N3dUVtbK3id1atXw9vbG+PGjYO9vT2USiWmTZuG0tJSvbbpinViMVgTrx5/
/HGkp6fj/PnzqKysbHM9eHt7Y82aNaitrUVpaSkSEhK4spKySm358uUYMmQI9/+amhpYW1tz54+J
iUFgYCAKCgpw+/ZtxMXFwdvbmxMhjRHrxGK2kM2suhSL8/rKXZfr16/D2dkZq1atwq1bt3D16lW8
9957KCwsRGpqKuzt7ZGeno76+nrs2rULVlZW3Cq2lJQUmJqa4s0330RWVhYOHjzICXQpKSkoKirC
vHnz8Oijj3LX023fsbGxvPZtTOwSEutUKhU2btyIvLw87NixAyYmJsjNzeXKVcz3hGDZbUxfAbRs
4antO2J1KlZXQuUilv8QBEEQBEEQBEEQBEEQbeOhFOvmz5+Pq1ev4sqVK8jKykJkZCTUajVu3LgB
oOVJ85dffhn+/v7w8PCAXC7nhI+EhAS4ubkhPT0dd+7c4Z17+vTpiImJ4X02a9YsvPvuuwAAR0dH
7NixgzvG2k4vKysLJiYmnF0AkJ2dDZlMhpqaGsHtK7du3Yq+ffvqvX+p22Bqn+fcuXMwMzPjJhEB
oLCwEObm5mhqahK8TnV1NZYuXYrg4GB4eXlBpVLB0dGROx4REcGJjnfv3oWrqyu3woJVjpGRka22
zGtqasLmzZsxcuRI+Pj4wNXVlVe2YWFhCA8P5/1m2LBhnFjHuqYuUrcUzM/Ph0wmw7Vr1/TaHh8f
j8DAQN5nmzdv5iZcWRP38fHx8PX15a1UjIuLayXWGWrXhAkTsHjxYgDtJ9ax/IJlp6FtSOicTU1N
UKlU+PHHHwGwxTrWNR0dHbF9+3a9x1m+JUWsY/lIW8U6sTJXq9WtVql6enri119/FbxOREQEBgwY
gNOnT6OhoQGFhYUICQnBiBEj9NqmK9aJxWB92/a2tR5cXFwQFRWF4uLiVvZJEeuKi4thZmbGbUG4
efNmhISEcMcdHBw4nwNaVrmp1WrO94wR68Riv5DNYnXJivNSt0vesmUL/P39BY+FhYVxMUXDlClT
uNiSkpLCE8kAICgoCPHx8dz///jjD5iamnLxjtW+20us042P7u7u+O677wCwfU8Ilt3G9BUAX6xj
1alYXQmVi1j+QxAEQRAEQRAEQRAEQbSNh1Ks094GE2iZNJXL5fj3v/+N8vJyKJVKLF68GBcvXsTd
u3exfPlyTJw4EUDLVmbR0dHw9PSEubk5goODua2rgoOD4ejoCG9vb+5PrVYjKioKtbW1kMlkvC3H
WBN6e/fuhb29Pe8zzYT7mTNnBCdPk5OT0aNHD733L1Ws0z5PamoqTE1Nefel2cqtrKxM8DqDBw/G
6NGjcfr0adTX1yM9PR1KpZI7npGRAQsLC1y7dg27du1C9+7duclXsXIEhCcxY2Nj0aNHD6SlpXET
k9riRVBQENauXcv7jbZYx7qmLlKFj7KyMshkMly9elWv7dHR0a1WKe7ZswcqlQoAe+I+Ojoazzzz
DO84S6yTYte8efMwY8YMAO0n1rH8QsxOY9qQ0DkBoE+fPti6dSsAcbGOdU0pNrF8S4pYx/KR9hTr
tMu8rq4OMpkMHh4ePPsdHR2RkpIieJ2IiAhMmjSJ99n//M//QCaToaGhQfA32mIdKwYLxav2qIdD
hw4hNDQUVlZWcHFxQWRkJLcyV+r73yZOnIiFCxcCAAYMGIAvv/ySZ19mZibv+wMHDsTGjRsBtF2s
0439ujaz6pIV56WKdUuWLOHqSpegoCBs2LCh1fc1/iIk1o0YMYK3Je/Zs2chk8lw9+5dAOz2fb/E
ut69e+Prr7++b3HJmL4C4It1rDoVqyuhchHLfwiCIAiCIAiCIAiCIIi2QWIdgDt37sDc3Bzff/89
du/ezZv4AsCbKNbm2rVrWLBgAdzd3QG0rBB455139F5boVDwVlZIXVlXU1PDfaaZqNS3so4l1qWm
psLNzY33Ges82dnZsLCw4CauWdy8eZMTFDXoijIAEBISgrVr12L8+PH48MMPuc9Z5Sg0iRkQEMBN
emvQFi8mTJiA6Oho3nFtsY51TV00E9/a75wCjBPF4uPjMWDAAN5nmzZt4iZct2/fjl69evGOa0/c
r1u3DkFBQbzj7SHWabeV8PDwVisTtSe8hfxKFyl+wbLT0DYkdM47d+7Azs6O24a1V69evFUxuivr
WNe0s7PD3r179R5n+VZMTAxeeOEFvccBto9IEeuM9VknJyfs379f1D5t1q1bB19fX95n3333XasH
D7TRFutYMVifaNTWetDQ1NSEo0ePwtHRkRNOgoOD8emnnzJ/m5aWBkdHRxw5cgQODg68mOng4MB7
N2pTUxNcXFwEV9ax2ryU2C9ks1hdsuK8VLHuww8/FF1ZpxEzNWjeywa0j1hXX18PW1tbbqW2MbHL
ELEOYPueECy7jekrAL5Yx6pTsbpixXTd/IcgCIIgCIIgCIIgCIJoGw+lWPfmm2+ivr4etbW1OH/+
PGbMmIFu3brh1q1byMnJgampKXbv3o3y8nIkJyfD3d2dmyj+9NNPsWPHDlRWVqKhoQErVqzgJrv+
+9//QqlU4ocffsCtW7dQUVGB1NRUThSYPXs2Bg0ahIyMDJw6dQoLFixgvrMuJCQEs2bNQlVVld53
1hki1uXm5qJLly44ceIEbt68iaqqKuZ5mpubufchXbhwAXV1dcjJycFHH32k1261Wo24uDiUlZXh
t99+Q0hISCuxLikpCV5eXrCxseG9+4hVjkKTmNOmTcOYMWNw+fJl5ObmYvbs2Tzx4rPPPoOrqysO
HTqEoqIiJCYmwt7enhPrWNcUwsXFBR9//DH3jivAOFGsrKwMCoUCmzZtQm1tLTIzM3nvITpz5gxM
TEywe/du5OfnY+PGjVCpVNzEfV5eHszMzLBt2zYUFxdj79698PPzM1isGzFiBAoLC3H9+nUkJCTA
1tYWRUVFAFomiT08PJCZmYnMzEwsXLgQpqam3IS3kF/pIsUvWHYa2oY051y4cCHKy8tRUlLCbdOo
2cI1LCwMo0ePxqVLl3Dw4EGMHTuWJ9axrvniiy9i+PDhOH/+PM6dO4e4uDjecZZvJSQkoEePHqio
qEBpaang9nIsH5Ei1gHG+ew777wDf39/HDt2DHV1dbh06RK+/PLLViv0NJSWlkKpVCIuLg43b97E
+fPnERAQwPmrENpiHSsG6xON2lIPtbW1iIiIwNmzZ9HY2IjCwkJ07doV33//PYCW+DJ16lT8+eef
uHLlit77aG5uho+PD3x8fFpt9xgTE4MBAwYgPz+f+c46VpuXEvuFbBarS1aclyrWlZaWQqVSYdWq
VaipqUFJSQlWr16NCxcuIDU1FUqlEgcOHOC9s04j4Bsr1mnad3FxMV555RUEBARw7duY2GWoWMfy
PSFYdhvTVwB8sY5Vp2J1JVQuYvkPADz//PN68wKCIAiCIAiCIAiCIAhCnIdSrJPJZNyfUqnEhAkT
eKtNNm7cCGdnZygUCkyaNAkzZ87kJopTU1M5gUGpVGLUqFHcO4qAlq2jhgwZAqVSCXt7e4SGhuLQ
oUMAgOvXr2Py5MlQKBTo1asX1q9fz5zQKy0txbRp0+Dk5ARXV1eEh4dz2zwaI9YBLVtpKZVK2Nra
Ys+ePZLOc/36dURGRqJbt26wsrJC9+7d8cYbb+i9Rnp6Onx9fWFtbY0hQ4bgrbfeaiXW1dXVQaVS
CW4BKFaOQpOYV65cwYgRI2BlZQVfX19s3LiRJ140NTUhJiYGLi4usLOzQ3h4OPz9/XkrT8SuKcS3
334LDw8PWFhYYNmyZQCME+uAlvcwPfbYY7Czs0OPHj2wZs0a3Lt3jzu+cuVKzgciIyMxbtw4nvix
fft29OjRA5aWlhg1ahSmTJnCW60lxa5evXpxdRYUFIQjR45w36+vr8f06dNhZ2fH+a6rqys34Q20
9ishWH7BstOYNuTn54eAgAA4OTnBzs4OEyZM4AkuBQUFGDJkCORyOYKDgxEfH88T61jXrKysxKRJ
k2BrawtXV1esWrWq1Qo2Md+6ffs2xo4dC2trazg7O6OiokLwPsR8RKpYZ4zP3r17F+vXr0ffvn1h
bW0NNzc3TJkyhRP7hDh9+jRGjBgBW1tbeHl5Yfny5WhsbNT7fd131onFYH2iUVvqobGxEXPmzIGX
lxcsLS3RrVs3rFq1ivvd2bNn0a9fP1hYWGD48OGiZfzBBx/AxMQE+fn5vM8bGhoQGxsLLy8vKJVK
jBkzhmebtlgHiLd5KTFbyGZWXYrFealiHQCcPHkSTz31FJRKJZycnDBlyhTugYxt27ahb9++kMvl
CAgI4L1Dz1ixLjg4GGq1GnZ2dpg4cSLvvYPGxC5DxTopvqcLy25j+wptsQ5g991idaVbLqz8x8PD
Q9BmgiAIgiAIgiAIgiAIgs1DJ9YRhAZfX1/s27evo824L4SHhyM2Nlby9/VNDBOGU1JSAhMTE8nb
xhL3B6qHhwOhd791NFJ8737ZvWnTplbbIhMEQRAEQRAEQRAEQRCdHxLriIeC2tpafPPNN7h48SKu
XbuGdevWwdXVFX/++WdHm9Yu7Ny5E9nZ2aiurua2mjtx4oTk35NYZzw5OTnYt28fysrKUFRUhBde
eAHPPPNMR5v10EH18HDSGcQ6Y3yvve2+cOECqqurMXr0aLzyyivtdl6CIAiCIAiCIAiCIAjiwUBi
HfFQcPPmTfj7+8Pa2hoKhQKhoaE4depUR5vVbjz//POwt7eHlZUV/P39kZycbNDvSawznoMHD8LH
xwcWFhZQq9WYMWMGysvLO9qshw6qh4eTziDWGeN77W13QEAALC0tMWLECG4LW4IgCIIgCIIgCIIg
COKvA4l1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhHEARBEARBEARBEARBEARBEARBEB0EiXUEQRAE
QRAEQRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQBEEQBEEQBEEQHQSJdQRBEARBEARBEARBEARB
EARBEATRQZBYRxAEQRAEQRAEQRAEQRAEQRAEQRAdBIl1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhH
EARBEARBEARBEARBEARBEARBEB0EiXUEQRAEQRAEQRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQ
BEEQBEEQBEEQHQSJdQRBEARBEARBEARBEARBEARBEATRQZBYRxAEQRAEQRAEQRAEQRAEQRAEQRAd
BIl1BEEQBEEQBEEQBEEQBEEQBEEQBNFBkFhHEARBEARBEARBEARBEARBEARBEB0EiXUEQRAEQRAE
QRAEQRAEQRAEQRAE0UGQWEcQBEEQBEEQBEEQBEEQBEEQBEEQHcRfXqwLCQnBpk2bHtj1Lly4AIVC
gZ07dz6wa3ZWUlJS4O3trfd4TU0NZDIZLl26JOl8s2fPxpNPPonm5uZ2t4XoOPz8/JCUlNTRZhAE
0UmIjIzEnDlz2vWcmZmZGDhwICwtLREWFtau5ybah2HDhj3QfK29iIuLw+TJkzvaDOJ/uR85xc6d
O+Ht7Q0LCwt8/PHH7Xpu4q/DL7/8AkdHx442o1PysLW79hhX3r17FzKZDGfPnm0fo0SIiopq97zq
YeV+5KjEw8X9mJeiXPSvw7x58zBo0CDU1tZ2tCkAgF27dtE8aRt40OPXtsyJE38v2lWsKyoqglKp
hImJCWxsbPD6668DAPbs2QMPDw/m75csWYKZM2cadM0HLdYNHz4cixYtemDX68y0t1h3584d+Pr6
4pNPPhH9npA/kVjX8dy+fRsymQwFBQW8z9tzgC81lnQ2Bg4ciMTExAd+XVNTU8hkMshkMpiZmcHb
2xsLFy7E3bt3ue80NzfjX//6FwICAmBlZQWFQoFRo0YhPT2d+8727dthZ2cHmUwGhUKBb7/9FgDw
/vvvQyaTYeTIkbzrfvzxx3jyySd5n504cQLPPfccHB0dYWlpiZ49e+Lll1/GmTNn7l8B6GHMmDEG
9zVCGNNnPWwI+f79mAgZPHgwli9fjrq6OpSVlbXruf9KJCYmQi6Xd7QZgjysYl1nrpPOzIPIKQCg
uroacrkcP//8M+rq6nD9+vV2Ozfx14LEOmp3Gkisa3+kjDceNEJ5/F9JrPvggw/aZVwsdXzt4eGB
NWvWtPl6D5KZM2di/PjxD/SanV2s0xfn24Pp06dzcw/af/X19QCAhoYGREREwMHBAVZWVhg1ahQK
Cwu531+4cAGPPfYYAgMDERwcjOzsbO5YcXExvLy8cPPmTUm2aM+DaP8tXbpU8HPNX1xcHA4dOqT3
uBj79++Hra0tiouLjSi9tiPUljujWHc/fbC9aev41dAY1JY58c6AoeNeY+6jrXG9oKAAMpkMJ06c
AGD8nJ6+OdL24r6srPPw8MDXX3/N/f/vItb98ssvcHBwwI0bNx7I9To77S3WAcBPP/0ET09P3Llz
R+93SKzrnJBYp5+OFOt+/PFH1NfXo7q6Gvv27YNMJsP+/fu577z++utwcHDAF198gStXriA3NxfL
li2Dubk5fvjhB+57mk7t6tWr3Gfvv/8+HnvsMdjb2+PHH3/kPtcV6/7zn//A0tIS/+///T+cO3cO
N27cwMmTJzF//nwsWbLkPpdCawoLC1FUVNTm85BYx+ZBiHXNzc2wsLBATk5Ou53zr0pVVRWysrI6
2gxBHlaxrjPXmV5ahAAAIABJREFUSWfmQYkGR44cgbOzc7udj/jrQmIdtTsNJNa1P1LHGw+Sv7pY
V1FR0S65r9TxdU5ODq5du9bm6z1IioqKcPHixQd6zYddrIuIiEBlZSXvT8OSJUvg5+eH3NxclJeX
Y9asWejfvz93fNasWVi+fDmAlvmECRMmcMdeeuklg8YRpqam+Pbbb1vZ8ueff3L/Pn36NGQyGY4f
P859Vltby4l1xcXFeu9FiGHDhuH999+XbGN7Q2Jd+9PW8asxMcjYOfHOgKHjXmPuo61x/c6dO8jI
yEBdXR2Ats3pCc2Rthf3XawrKSmBlZUVTExMIJfLIZfLBbeQ3LlzJ8zNzWFmZsZ9r6SkBMnJyfDx
8YGVlRXs7e0xZswYXqPWFuvu3buHl156CQMHDkR1dTUAIC8vD+PGjYOLiwu6du2K2NhYblXJtWvX
8MILL8DFxQUKhQLBwcGiT3e9+OKLmD9/Pvf/pqYmeHh44PPPP+d9b9asWZg7dy5n09q1a+Hr6wuV
SoWhQ4fi5MmT3Hf9/Pzw9ttvY9KkSVAqlYiMjISHhwc+++wz3jlnzpzJnVOXyspKyGQyfPbZZxg2
bBgsLS3x73//Gw0NDVi2bBm8vb2hVCoxZswYnD9/nvvdnDlzEBUVxTuXh4cH9uzZw/3/+++/h5+f
H6ysrNC7d2+o1WquvFNSUuDp6YlNmzbB29sbtra2eOGFF9DQ0ACAL9adO3cOJiYmvLq7d+8evLy8
8M033/A+c3Nzw759+wTvVZ8/sWzRV0YAsHfvXgwaNAgqlQq9e/duZY9Y/emSkpKCrl274qOPPoK7
uzvkcjkWLFiAM2fOYMyYMbCyskKvXr3w22+/cb9ZsmQJXF1dYWFhAbVajVdffZULHECLj8TExGD8
+PGwtrZGz5499ZaPNn5+fnjzzTcxatQoWFpaok+fPjh27BhWrVoFT09P2NnZYc6cOWhqauJ+c/z4
cQwfPhx2dnbo2bMn1q5di3v37vHubf369fD09GxVxv7+/pDJZLCxsYFcLkdkZCRnx1tvvYVnn31W
0P6TJ08iNDQUCoUCTk5OePrpp1FSUiK57gFg27Zt6Nu3L+RyOQIDA5GWliZaNtXV1QgPD4eHhwcU
CgUef/xxHDt2TK+fsPxArA4jIyPRpUsXWFpaQi6Xo1+/fgBa2kdERAQ8PT3h7OyMqVOnoqKiQq/N
rFgohKmpKa8sfv31Vzg5OeHy5csAWuKjiYkJfvrpp1a/jYqKgre3N7cEX59YN3HiRKxduxZ9+vTh
Yqu2WNfc3Izu3bvzYqc22r6ujaYuVq9ejUceeQQ2NjZ48sknOZHNmLhXUlICuVwOMzMzXuwT6yeA
liRi0KBBkMvl6NatGxYvXqy3zwJa/MHS0lKsagCItzfN/W3ZsgUDBgyAlZUVhg4dynv60FAfioyM
xIQJExAeHg47Ozuo1WokJSXhhx9+QL9+/WBlZYXhw4fz2l9paSmmT58OJycnuLm54R//+Af3RCPL
Rn2+HxkZieeeew5RUVFQqVRwdnbG6tWrRctKzI4hQ4ZAJpPB2toacrlcb/sXa6dSylsIff3H9evX
4e3tjaVLl3LfPXLkCBQKBU6dOgWgJTa+/vrrGDlyJKysrODn54cDBw5w3xerX33+rzsgk3IOsXvW
FysBdrvR5A/W1tYIDAyEm5ub6GBHX1/wySefwNvbm2sbAJCfnw8zMzMUFRUZnMux+tysrCyEhoZC
LpfDx8cH/fr14yZINGUWHx8PPz8/WFpa4qmnnsL58+cxd+5c2Nvbw9nZGfHx8dz5dOvE2D5dF7F+
j9VfA+z60+WvklMIoc+OGzduwMrKCjKZjIvjf/75p+A5HnvsMTg4OMDCwgLdu3dnri5gte/IyEhM
njwZUVFRcHd35+KjWJkB4nm5vrggJfYZ4tPG5LqGjoc0u7OI0daYfv36dbz44otQqVRwcnLC8OHD
mWIdtbvO2+6+//57uLi4cP/fvXs3rK2tuXP//vvvUCgUXHmL1UVKSgo8PDzwwQcfwN3dHSqVCuHh
4dzqECGampqwYsUKrlxHjRrFE+vE2sAnn3yCbt268ba9unDhAtfPAeLjVV2xTkrupi+/BozLP8Qw
ZLzB6iPF8hJD8mJ9ebyUHFWsLnSRUt764p9YvOnXrx8sLS15Qgfr/nNzczF27FioVCqo1WpMnjwZ
Z8+elTRXBwD9+/fnRPt79+4hLi4OXl5esLGxQZ8+fURzPKF7TEpK4tkPtMx5aR7klBLHWf6i3TYM
7Rfs7e0RGBho8EMcrPjBum9APBfVPm5jYwN3d3f07t2bd1zMF/TFeV3y8vLQt29f2NnZwcbGBoGB
gUhNTRW99+nTp7eaX9TGxcWF518lJSWQyWTIzMwE0BLzd+zYAaClnfn7+wMAzpw5gz59+qCxsVH0
+trozoMIcenSJUHRSCPWicV8XS5cuIAuXbq02uHFmPG3WD+ur+3pmyvTHodInZPVRt84S8q5duzY
AX9/f9jY2KBr16549dVXAej3QVa/bGjuKQQrrxAbvxqTM+v2z1LGgcbOiQPscYQuxvinWBnqjns1
558/fz5XPpo+Vd99sGKPMWWqjbZOITanJwWhOVKxezaETr+yLj8/H9nZ2bh9+zZu3LiBuLg43pZr
GrGuubkZc+fORUhICLfyrbq6Gmq1GuvXr0djYyPKysoQEBCADRs2AGgRq6ZOnYrKykrcvHkTu3fv
xt69e/Xa5+7ujp9//pn32fLlyzFkyBDu/zU1NbC2tsbp06cBAKtWrcKjjz6KwsJC3Lt3D4mJiXB3
d+f2MPbz84O3tzeSk5ORn5+Py5cvY/ny5QgODubOWVlZCUtLS+6cumiCxuOPP4709HScP38elZWV
iImJQWBgIAoKCnD79m3ExcXB29ubG8iyxLojR47A2toaO3fuRFVVFTIyMtCrVy+eWGdqaoqFCxci
IyMDR48ehVqtRkJCAlcW2ivrRowYgZiYGO5aP/74I5ydnVs9MRAeHo4333xTbz3oW1knZou+Mjp8
+DAUCgUOHDiA5uZmnDx5EkqlUnL96aKx480330RWVhYOHjzIdRwpKSkoKirCvHnz8Oijj3K/OX78
OC5evIi6ujqUlpZi9OjRWLFiBXfcz88PjzzyCFJSUlBQUIBFixZBrVbrLR/t3/n5+WHXrl24dOkS
ZsyYATMzM8ybNw85OTk4evQo7O3tuQFWeXk5FAoFEhISUFtbi4yMDHTr1g1btmyRVMZiT+OK2e/t
7Y01a9agtrYWpaWlSEhI0CtCCdV9amoq7O3tkZ6ejvr6euzatQtWVlaiT3Q88cQTCAsLQ2lpKaqr
q/H1119j9+7dev2E5QesOhRaXTR69Gg8//zzuHnzJhoaGvDyyy/jueee02szKxYKYWpqCoVCAUdH
RygUCshkMrz22mvcxMXmzZv1DkAyMjIgk8mQm5sLQFysu3PnDnx8fLB582YAfLEuNzcXMpmM96CA
FDR18cILL+D3339HTk4ORo8ejSeeeIJ33NC4B7QMiDSxj9VP/Prrr7C1tcWePXtQX1+Ps2fPYvHi
xQD0P4Xz6aefYuzYsaL3x2pvmvsbN24c0tPTkZeXhxEjRmDatGncOQz1ocjISDg4OGDz5s0oKCjA
hg0bYGpqipEjR+Lw4cMoKChAcHAwFixYAKBFaB08eDDmzJmD6upqlJWVYcyYMZg6dapkG/WtrFOp
VNi4cSPy8vKwY8cOmJiYcL6mC8sOzdPrGRkZomUu1k6l3IsurP7jxIkTsLa2xk8//YRr166ha9eu
2L59O/d7Pz8/DBo0CD/99BMKCgoQGxsLlUrFTaiJ1a8+/9dNkKWcQ+ye9cVKVrs5cuQIbGxssGPH
Dly7dg2ZmZm8/EEIfX3BrVu3YGtry0vSFy9ejGeffRaA4bmcmB/U1NRArVZj2bJlKC4uRmFhISZP
ntxKrJswYQIOHz7MDSbs7e2xZs0aXLp0CUlJSTAzM0N5eTkAYbHOmD5dG1a/x+qvWfUnxF8lp9CF
Zccvv/wCpVLJLPMDBw6grKwM9fX1yMnJgbu7u+iEAKt9R0ZGQi6XY/Xq1Th37hz3lLmYray8XF9c
kBL7DPFpY3JdY8ZDLNoa08eMGYOnn34a58+fR3l5OVauXCk6KUvtrnO3u5qaGnTp0gV5eXkAWt77
Ymdnh+TkZADAmjVruFUarLpISUmBhYUFli9fjqysLBw+fBjdunXDe++9p9fWVatWoXv37jh8+DAq
Kyuxf/9+nlgn1gY0/dx//vMf7nyxsbFcP8fKN7QnrqTmbvrya8C4/EMMQ8YbLF/Tl5ew7BZC38o6
sRyVVRe6SClvofgnZXybmJjIE33E7v/69etwdnbGqlWrcOvWLVy9ehXvvfceCgsLJc/VaYt1SUlJ
6NmzJwoLC9HQ0IBjx46JbtsmdI9SxTqxOM7yFyGxTkq/cOHCBVRUVOD99983SqwTix+s+2bloprj
b731FsrLy1FYWIhJkybxxDoxX5C6qqmqqgpHjx5FVVUV6urqsGfPHtjY2IgKWNOnT4etrS3c3Nzw
6KOPYvHixVzeU1VVxa1i00apVHJx+tVXX+XG2e+99x5XN6NHj8b3338vaq8upqamkMvlUCqV3N+2
bdt432GJddq/1fzpY+vWrRg6dGirzw0df7P6T7G2J2VlndQ5WQ1i4yyxcxUWFsLMzAy//fYbGhsb
kZ+fz+VoQj4opV82NPcUQiyvYI1fjcmZhYQlKfmUMXPiLN8RwlD/ZJWhkFgn1qcK3Qcr9hhbphp0
dYr2Xlln6FyXPjq9WFddXY2lS5ciODgYXl5eUKlUvA4zJCQE8fHxmDdvHoYOHcrbw/iTTz7hiV4A
8PnnnyM0NBQAMG3aNISGhiI7O5v5Ase7d+/CxMSk1XLL4uJimJmZcVsQbN68GSEhIdxxtVrd6gkU
T09P/PrrrwCEtxUpLi6Gqakp94TJRx99hMGDB+u1TRM0dLebdHBw4G1Nd+/ePajVauzatQsAW6wL
CwtDeHg477j2MmChJf4zZszgVtDoNoLk5GS4uLhwT8SMGzcOsbGxre7ngw8+4AYUQkjdBlPbFn1l
NH36dF4HA7SsjHz33XcBsOtPFyE7goKCeE9X/PHHHzA1NeV8Ljc3Fy+//DL8/f3h4eEBuVzOS7Z0
fSQ/Px8ymYzbhuLxxx+HpaUl96d5B5ju7/bu3QsHBweebWPHjuU6zfj4eAQGBvKOb968mUsmWWUs
descXftdXFwQFRUlaW9voboPCwvjkjoNU6ZM0ftUV05ODmQymeD7MfT5CcsPWHWoK1icO3cOZmZm
vHhVWFgIc3Nz3tPR2rBioRCmpqb4+uuvcfXqVVy+fBm///47QkND8fTTTwMA3n33Xe5pfl2uXbsG
mUyGgwcPAhAX6wDg22+/hbOzM27evMkT63799VfIZDLcvn1b1FZdhOri1KlTkMlkuHXrltFxD+CL
dax+YurUqbzkRJu2dOys9iZ0f1u3bkXfvn0BGOdDulv71NbWQiaT8Qb+H374IScCZ2VlwcTEhLf1
c3Z2NmQyGWpqapg2AtK3wXR3d8d3330naDfLDqlinVg7lXIvurD6D6BlIsXBwQHDhw9vteWrbmxs
amqCSqXCjz/+yKxfff6v+/SkoefQvmexWMlqN2FhYfjHP/7BO87aRkSsL4iIiOBiTX19PRwdHbkn
5gzJ5QBxP4iPj0fv3r1539feekiozKKjoxEWFsb7jbW1NRc7hcQ6sT5RCqx+j9Vfs+pPiL9KTqEL
yw6pokFqaiqee+45+Pr6ws3NDebm5sxVBPraNyAcB1m2svJyfXHB0NjH8mljcl1jxkMs2hLTs7Ky
IJPJUFpayh1nbYNJ7e7/7Ois7S4oKAiJiYlobGyEm5sbNmzYwPnypEmTuEk/Vl0IldO6deta3ZM2
jo6O3IoQoPU2mKw2EBERwXsIydXVlVsVwso3tCeujMndtPNrY/MPMQwZb4j5mlheYkxeLHUbTO0c
VUrupw2rvIXuGZA2vtUW61j3v2XLFm6Vki7GiHUJCQlwc3NDenq66FZtGoTuUapYJ5abs2KTkFjH
6he0V1UYsz0yK36w7puVi8bHx8PX15eX82ofZ/mCVLGuqakJmzdvxsiRI+Hj4wNXV1deTBMiOzsb
eXl5KCoqwi+//IJ+/fpxD7BeuXIFMpms1datHh4e3FixpKQEEydORP/+/TF+/HgUFRXhP//5DyeC
rVu3DgEBAQgMDGy1E5kupqam+PLLL3Hp0iXuT3c+giXW5eXl8X4vFvfefvttzJ49u9Xnho6/Wf2n
WNuTItZJnZPVIDbOEjtXTk4OTExM8NVXX7V6jZSQDxrTL7NyTyHE8grW+NWYnFlIWJKSTxkzJ87y
HSEM9U9AvAyFxDqxPlXoPlixx9gy1fAgxDpD5rr00enFusGDB2P06NE4ffo06uvrkZ6ezkvuQ0JC
4O3tDZlMhi+++IL325iYGMjlcnh7e3N/Hh4eGDhwIADg6tWrmD59OlQqFWxtbTFhwgS9T3Jev34d
MplMcJuOiRMnYuHChQCAAQMG4MsvvwTQsr2bTCaDh4cHzwZHR0ekpKQA0D84nThxIl577TU0Nzej
Z8+erZ4C0UYoaGgamUbw0zBw4EBs3LgRAFusCwoKwtq1a3nHWWJdREQEt7xZtxHcuXMHLi4u+Pbb
b3H58mWYm5sLlvdnn32GUaNG6b1fqWKdti36BhbBwcFwdHTk1Y9arUZUVJSk+tNFyI4RI0bg448/
5v5/9uxZyGQy3L17F+Xl5VAqlVi8eDEuXryIu3fvYvny5dykJNDaR8rKyngB4erVqygoKOD+NJ22
7u902w4ATJ48GXFxcQBaOhrdpw/37NkDlUolqYylDvB17T906BBCQ0NhZWUFFxcXREZG6n1iS6ju
g4KCWj2VvGTJEkyaNEnvOfRNEAj5CcsPpNShrmCRmpoKU1NT3vm8/3fbRt2tEzSwYqEQQts/HDt2
jBvobtq0qV1W1mkYMmQIli5dyhPrNANrY1fWaddFeXk5ZDIZ8vPzjY57AF+sY/UTAwcO5LVfbdrS
sbPam9D9JScno0ePHgCM8yGhxEFX5Nq0aROGDRsGoGVS0N7envd9TTs/c+YM00ZAuljXu3dvXt6g
DcsOKWIdq51KuRddxPoPbYKCgqBUKlutyBbq//v06YOtW7cy61eKWGfMObTvWSxWstoNK38QQqwv
yMjIgJmZGUpKSrBt2zb07NmTG4gZksux/CA6OhrPPPMM7zcssU433gMtk7a//PILALZYp9snSoHV
77H6a1b9CfFXySl0YdkhRTRIS0uDXC7H1q1bUV5ejubm5la5nS5i7RsQjoMsW1ntSl+/aWjsY/m0
obluW8ZD+mhrTN+7dy9sbW1552RNylK7+z87Omu7W7ZsGWbPno20tDRMmjQJVVVVUCgUuH37NtRq
NbKzswGw60KonHbu3Al3d3fB62ryT+2tXbXFOiltICMjAxYWFrh27Rp27dqF7t27c/0cK9/Qnrgy
JnfTzq+NzT/EMGS8IeZrYnmJMXmxVLFOO0eVmvtpYJW30D0D0sa32mId6/6XLFnSKq5rMEasa2ho
QHR0NDw9PWFubo7g4GDeVs+6tJdYp5ubs2ITS6xra78gBCt+sO6blYuyjrN8QapYFxsbix49eiAt
LY0T/qQ8HKnNzz//zAnTmpV1uuN0pVLJe9BBm3v37qF///74/fffkZmZCZVKherqaly9ehU2Nja4
cuWK3ms/6G0wFyxYILgSytDxN6v/FGt7UsQ6qXOyGsTGWaxzJSYmwt/fH2ZmZrwVakI+aEy/LJZ7
CsHKK4zJs1k5M0tY0pdPGTMnzvIdIQz1T1YZShHrtPtUoftgxR5jy1RDR4h1YnNd+nggYl1qairc
3NyYv4uJicELL7zA/f/mzZtcYqlBSKybOXMmdu3aBWtra15A3rx5M4YPHy7J5oKCAjz22GOYMWOG
4HFNwi0UyNLS0uDo6IgjR47AwcGBF9SdnJywf/9+vdfVNzhNS0uDQqHArl274OTkxHvfgS5iK0z+
53/+h/t/U1MTXFxcuBUm4eHhrZ7Q1RbrJkyYgOjoaN7xtoh1ALB06VI88cQTeOutt1olGRpWrlwp
+hSBkD8ZK9ZNmTIF77zzjt5rsepPF0M7kd27d7cKnoaKdfowdIAfHx+PAQMG8I5v2rRJ9Glc7TLW
DER1RRmp9jc1NeHo0aNwdHTkJrN0Ear7sLAwTizXvi99g6Y//vgDMplMcMsWfX4i5gdS6jA4OBif
fvop9//s7GxYWFhITgClxEIhhJLUAwcOQCaToaqqCrm5uTAxMRHcf37RokXw9pb2zjoNv//+O6ys
rLBw4ULeO+s8PT0xb948QRtZ76zTrotDhw7BzMwMt2/fNjruAXyxjtVPjB07Vu/KOt0+yxBY7Y01
oDTUhwDDkzHN09k1NTXccU380vd0tu4gWtf39dkhlsCw7JAi1rHaqTFiHav/AIAvvvgCvr6+CAoK
avWknm5srK+vh62tLdLS0pj1K0WsM+Yc2vcsFitZ7ebZZ59t9US41Bd06+sLQkJC8N5772Ho0KGt
BlIaWLkcyw/Wr1/f6onEzijWsfo9Vn9tSH6sz+7OnlNoYNkhRTRYtGhRqweADBXrtNs3oH9lnZit
rLxcyD+NiX3tLdYBxo+H9NHWmH769GmYmJjwVh5IWVlH7a6Fztru9u/fj27dumHu3Lnc5O+4cePw
z3/+E66urtz3WHUhVE6rVq3ivfpCF4VCwdvZQXdlnZQxZUhICNauXYvx48fjww8/5D5n5RtCK+sM
yd2082tj8w8xDBlviPmaWF5iTF4slMezclQpuZ82rPIG9K+sY41vtcU61v1/+OGHelfWSZ2r0xbr
tLl27RoWLFigV8wGhO9x+/bt6NWrF++zjhTrTp06BRMTE97D+e0l1mnHD9Z9s3LRdevWISgoSO9x
li/oi/O6BAQE8B52BQwX63bt2gVzc3NuLtPFxYU33isuLhY9Z1JSEqZMmQKgRfDUXnnVq1cv0Zj6
oMW6uLg4vPTSS60+N3T8zeo/tdFte0JtWXccAkibkxVCaJwl5Vy1tbX46quvuIcUhHzQmH7ZULGO
lVewxq8PUqwzZk7cEN/RYKh/ssrQULFO6D5Ysae9xbq2zOn95cW63NxcdOnSBSdOnMDNmzdRVVUl
+LuEhAT06NEDFRUVKC0tRUNDA9RqNeLi4lBWVobffvsNISEhrcQ6TeP56quvIJfLcejQIQBARUUF
nJycsHLlSlRUVODWrVs4duwYV5FLly5Feno6/vzzT9TU1GD8+PGiLzR3d3cXfGKoubkZPj4+8PHx
adW433nnHfj7++PYsWOoq6vDpUuX8OWXX3Idgr7BqeacDg4OrbZa0EVf0hwTE4MBAwYgPz9f8N1N
8fHx8PDwQGZmJjIzM7Fw4UKYmppyYt1nn30GV1dXHDp0CEVFRUhMTIS9vX2bxLqLFy/C1NQUKpVK
7wtqX3nllVbbhWkj5E/GinX//e9/oVQq8cMPP+DWrVuoqKhAamoq984AVv3pYmgnkpOTA1NTU+ze
vRvl5eVITk6Gu7t7h4h1ZWVlUCgU2LRpE2pra5GZmdnqPRdiZQy0JGAff/wx984hlv21tbWIiIjA
2bNn0djYiMLCQnTt2lXvnuRCdZ+amgqlUokDBw7w9vTXFra0uXfvHoYOHYqwsDAUFxfj5s2b2LFj
B++ddbp+IuYHUupw2rRpmDp1Kv78809cuXKFewJl2rRpuHDhAurq6pCTk4OPPvpI0Obm5mZmLBTC
1NQUP/74I+rr63Hr1i38/vvvCAwM5G3RGRkZCUdHRyQlJeHq1avIy8vD22+/DQsLC/zwww/c96SI
dUDLtpFWVlacWAe0TKqZmZlh/vz5yMrKQlVVFU6cOIE33nhD717cmrrYsWMHampqcPbsWQQFBXEx
2ti4B/DFOlY/kZaWBltbW/z444+ora1FTk4Oli5dCqB1n6VZ1SrlnXWs9sYaUBrqQ4DhyVhzczNC
QkIwa9YsVFVV6X3vidggWtf39dkhlsCw7JAi1rHaqTFiHav/OH78OOzt7XHmzBlcunQJ9vb2+Pzz
z7nf+/n5YeHChSgvL0dxcTFeeeUVBAQEoKmpiVm/UsQ6Y86hfc9isZLVbr744gtuq8pz585h3bp1
sLOz0yvWSekLkpKS4ODgAGtra14eaUgux/KDgoICmJmZYcuWLSgoKMDOnTvRs2fPTifWsfo9Vn/N
qj8h/go5hRAsO6SIBgkJCejatSsyMzNx9epVrFy5ElZWVkyxTl/7BoTjIMtWVl4u5J/GxL77IdYZ
Ox7SR1tj+t27d9GjRw+88sorOH/+PA4cOIAnn3yS+c46anfgrtMZ211DQwOsra3h7OzMCSFfffUV
bG1teU9Ns+oiJSUFjo6OOHXqFG7cuIH9+/dDrVaLvjNp9uzZGDRoEDIyMnDq1CksWLCAJ9ZJGVMm
JSXBy8sLNjY2PEGKlW/ovrNOSu6mL782NHcoKSnBk08+yXvfnhBSxxtiviaWlxiTFwvl8awclVUX
urDKW+ieAXa8AfhiHev+S0tLoVKpsGrVKtTU1KCkpASrV6/GhQsXJM/VaYt1n376KXbs2IHKyko0
NDRgxYoVesVAffd45swZmJiYYPfu3cjPz8fGjRuhUqk6TKxrbGyEj48P3njjDVy5cgXHjx/HxIkT
jRLrxOIH675ZuWheXh7MzMywbds2FBcXY+/evfDz8+OOS2kLQnFel2nTpmHMmDG4fPkycnNzMXv2
bNHx1q1bt/DKK6/g4MGDqKiowKFDh+Dr64vXXnuN+86iRYvg5+eHK1euoLKyErNnz4afn5/gtoV1
dXXw8fHhYuQff/zB9V+NjY1QqVS4cOGC3npoD7GuuLgYlZWVvD99bN26FY8//nirzw0df7P6T7G2
J9SWhcTUeYhSAAAgAElEQVQ6KXOyGljjLH3nOnToEFavXo3Lly+jqakJ//3vf2Fubs69y03XB6X0
y20V61h5BWv8+iDFOmPmxFm+I4Sh/skqQ0PFOqH7YMWe9hbrhHIBqbnNX0asu3LlChwdHdGlSxfY
2tryngaKjo6GUqmEra0tJwbpcvv2bYwdO5ZLsisqKpCeng5fX19YW1tjyJAheOutt/SKdQCwYcMG
KJVKnDp1CkDLkyUTJ06EWq2GjY0N+vfvz23JtWbNGvTp0wfW1tZwcXHBSy+9xO0dLsTMmTOxaNEi
wWMffPABTExMuO0MNNy9exfr169H3759YW1tDTc3N0yZMkXv4Eeb1atXo0uXLq3ek6eLvkm7hoYG
xMbGwsvLC0qlEmPGjOE9vVBfX4/p06fDzs4OvXr1wvr16+Hq6srVT1NTE2JiYuDi4gI7OzuEh4fD
39+fWyVhjFgHAE8//TRvaw/d8nJxcWF2rLr+ZKxYB7QsvR0yZAiUSiXs7e0RGhrKCb6s+tPFmE5k
48aNcHZ2hkKhwKRJkzBz5swOEeuAliToscceg52dHXr06IE1a9bg3r17eu9Nd4D/7bffwsPDAxYW
Fli2bBnT/sbGRsyZMwdeXl6wtLREt27dsGrVKtH7Eool27ZtQ9++fSGXyxEQEMBMOsrKyjB79my4
urrCzs4OI0aMwB9//KHXT1h+wKrDs2fPol+/frCwsOCeGLp+/ToiIyPRrVs3WFlZoXv37njjjTf0
2syKhUKYmppCJpNBJpOhS5cucHV1xfz583lPkjc3N2PLli3o168fLC0tYWtriyeeeIL3pFpycjJU
KhVkMhlUKhW3ZY+QWFdYWAgLCwueWAcAv/32G8aOHQuVSgUzMzN4e3tj7ty53JZEumjqYuTIkVAo
FFCr1Vi0aBH3hJuxcQ/gi3WAeD+huf8BAwbAxsYG3t7eXOIk1GcBLUvpLS0t9VfM/yLW3qQMUA31
IUOTMaBlcD9t2jQ4OTnB1dUV4eHhnP9IsVHI941JYMTskPrOOrF2aoxYB+jvPyoqKtC1a1eeH2km
WjTbZPn5+SE4OBhqtRp2dnaYOHEi731tYvUrRawz5hy696wvVgLi7aapqQmxsbFwcXGBq6srXn/9
dfTv31+vWCelL6irq4NKpWr11KqhuRwrXmvKQKlU4tlnn8Xzzz//wMW6nj176t3KWYNYvyelv2bF
PV3+CjmFPsTskCIaNDY24qWXXoKtrS1cXV0RFRWFwMBAplgn1r6F4iDLVlZeri8uGBr77odYZ+h4
aO7cuXB1dRXdWaStMT0zMxPBwcGQy+UIDg5GbGwsc1KW2l0LnbXdAcCoUaN48fPGjRuwtLRs9boM
sbpISUmBUqlE//79ub7zX//6l+h1r1+/jsmTJ0OhUHDjam2xTsqYUtPPCW3HJDZe1Z24kpK76cuv
NfciNXfQTFSxxHYp4w2A7WtieYmhebFQHi8lRxWrC12klLe++SDW+FZbrJNy/ydPnsRTTz0FpVIJ
JycnTJkyhRMfpMzVaYt1qamp3IOjSqUSo0aNavUuMm303ePKlSs5P42MjMS4ceM6TKwDWlZdBwUF
wdLSEn5+fli0aFGrVR+sHE1K/BC7b227hHJRoGV1Xo8ePWBpaYlRo0ZhypQpvJUhLF8QivO6XLly
BSNGjICVlRV8fX2xceNG0fFWQ0MDZsyYwcvlly1bxvP1uro6zJ07F/b29tzDvfoegl+5cmWrh++i
o6MxYcIEPP3008w5o/YQ64T+9FFQUABzc/NW79Q0Zvwt1n+y2p5uWxYS6wDxOVltpIyzhM5VUFCA
sWPHwtnZGdbW1hgwYAB2797NHRfyQVa/3FaxjpVXsMavD0qsM3ZOHBD3HSEM9U9WGRoq1gndByv2
tLdYJ5QLSMlt9M2Rdkqx7u/Ovn374Orq2uq9M/eLt956C+PGjXsg15KKr68v9u3b16ZzDB06VO9T
bt999x08PDwkvaiYIIi/L8ZssyOVyZMnt9pKjCAeNIauJHnYqampgVwux/HjxzvalPuKZuLg8OHD
HW0K0QYeVPtuj7y8M+Lt7Y1//vOfHW0GQfztuJ/5NdGa+1nemzZtarUdItG+bN++HYMHD+b+31lz
tPDwcMTGxna0GQ89gwcPxrp16zraDEmIzcl25LkImhMnWiCxzkCGDRtm0D7lxlJfXw8nJyf89NNP
9/1a+qitrcU333yDixcv4tq1a1i3bh1cXV15+3gbyvHjx2FlZdXqiRPN9bp164bNmze3xWyCIP4G
tPfgtq6uDsXFxSgsLISbmxu2bdvWLuclCGMhsc4wPvroIwwaNKijzbjv/Otf/0JISEhHm0G0kfvR
vu9HXt4ZycvLg42Njd6t2AiCMB4S6x4s96O8L1y4gOrqaowePRqvvPJKu52XaNnm9NixY6iqqkJm
Zib69evHe09yZ8nRdu7ciezsbFRXV3Nbpp44caKjzXro+fnnn6FSqQTnOjsTYnOyHXkugubEif+D
xDoDKSgogL29Pfbu3Xtfr5OYmAgfHx/RJav3m5s3b8Lf3x/W1tZQKBQIDQ3lthc1lpkzZ2L27Nmt
Pm9ubkZYWBieeOIJ5lJsgiD+/rT34LaoqAj29vaws7PDyy+/zL03iCA6ChLrpNPU1ARvb+9W25j9
HQkLC8N3333X0WYQbeR+tO/7kZd3RuLj4zF//vyONoMg/paQWPdguR/lHRAQAEtLS4wYMcKg990S
bNavXw+1Wg0LCwv4+PjgnXfeQWNjI3e8s+Rozz//PLeVpL+/P5KTkzvaJOJ/iYiIwMiRIzv1qih9
c7Idfa6HHZoTJ7QhsY4gCIIgCIIgCIIgCIIgCIIgCIIgOggS6wiCIAiCIAiCIAiCIAiCIAiCIAii
gyCxjiAIgiAIgiAIgiAIgiAIgiAIgiA6CBLrRIiOjoajoyPkcjmOHz/e6nhKSgq8vb3vux2//PIL
HB0d7/t1/irk5ORAJpMhNzcXABAVFYU5c+YAAGpqajrdPvxxcXGYPHlyR5shCvkY8XfmfrTBzMxM
DBw4EJaWlggLC2vXcxOdl8jISK6/Ie4/2v07QRAEQRAEQRAEQRDE35l2F+sGDhyIxMTE9j7tA2ff
vn1wd3fHxYsXUVNTgz///LPVd0is6xjKy8shk8lw7do1ACTWSWHmzJkYP3683uPkY4Qh3L59GzKZ
DAUFBR1tiiTuRxscPHgwli9fjrq6OpSVlbXpXH+XflOIJUuWYObMmbzPEhMTIZfL79s128s/hWwn
sa7teHh4YM2aNZK+yxLrXnvtNVhbW6NLly5QKpUoKSmRdF6huu0I9uzZAw8Pj442gyAIgiAIgiAI
giCITgCJdXpYuXIlpk6dKvodEus6hsbGRpiamuLevXsASKyTQlFRES5evKj3OPkYYQgPu1jX3NwM
CwsL5OTktMv5/i79phBCokhVVRWysrLu2zVJrOvc5OTkcA/bsJCysi4xMRE9evQwyAYS6wiCIAiC
IAiCIAiC6Gy0q1gXGRmJLl26wNLSEnK5HP369QPQIqBERETA09MTzs7OmDp1KioqKgAAlZWVkMlk
+OyzzzBs2DBYWlri3//+N1JSUtC1a1d89NFHcHd3h1wux4IFC3DmzBmMGTMGVlZW6NWrF3777Tfu
+jt27IC/vz9sbGzQtWtXvPrqq6L2btu2DX379oVcLkdgYCDS0tIAtEyemJubw9TUFHK5HMOHDxf8
fUpKCjw9PbFp0yZ4e3vD1tYWL7zwAhoaGrjvPPbYY3BwcICFhQW6d+/Oe5o8JSUFXl5e2LJlC/r0
6QNzc3NUVFTg+vXrePHFF6FSqeDk5IThw4dzQsr3338PFxcX7hy7d++GtbU1t/Lv999/h0KhwN27
d5GXl4e+ffvCzs4ONjY2CAwMRGpqKvP6YvUlhU8++QTe3t6cmAYA+fn5MDMzQ1FRkWjZA0BSUhL6
9+/PO+fMmTOxZMkS7v8rV67k/m2oWOfn54eYmBiMHz8e1tbW6NmzJ/bt28cdv3fvHtauXQtfX1+o
VCoMHToUJ0+e5I6zyicrKwuhoaGQy+Xw8fFBv379RIWC5ORk+Pj4wMrKCvb29hgzZozoJLOmzcTH
x8PPzw+WlpZ46qmncP78ecydOxf29vZwdnZGfHy8YBkBEPUxMfz8/PD2229j0qRJUCqVeP3115n2
s8q7qakJK1asgKenJ2xsbBASEoIuXbrg7NmzkupDl3v37iEuLg5eXl6wsbFBnz59sGnTJu743r17
MWjQIKhUKvTu3RvffPMNdywyMhKTJ09GVFQU3N3d0a9fP0yfPh2zZs3iXePzzz+Hr68vmpubmfYJ
lZkQTU1N+Oijj+Dr6wsbGxv069cPX375JQCgtLQU06dPh5OTE9zc3PCPf/wDN2/eBGCcP6SkpMDd
3R3vvvsu3NzcoFKpMHfuXNTX1wNgt0F/f3/IZDLY2NhALpcjMjISgHGxXghW3OzatSvWr18PT09P
wbhraBtkxUpdhgwZAplMBmtra8jlcqSlpTHPcfLkSYSGhkKhUMDJyQlPP/00SkpK9PabQuTm5mLs
2LFQqVRQq9WYPHkyKisrAYjH1MjISEyYMAHz58/n/GH16tUGlWleXh7GjRsHFxcXdO3aFbGxsbh7
9y53fM+ePRg0aBDkcjm6deuGxYsXY+fOnTA3N4eZmRnkcjnkcjlKSkqwa9cu3oMuYv4NsGOILvr8
8/jx4xg+fDjs7OzQs2dPrF27ltdPaaPP9sjISDz33HOIioqCSqVqVZaAeIwRorq6GuHh4fDw8IBC
ocDjjz+OY8eOMW02Jk/S+EJ4eDjs7OygVquRlJSEH374Af369YOVlRWGDx/OW6EmVvf68gixeNa/
f38kJSVx5xZrN8aKdWI+o69ujYnlbWk7JSUlsLKygomJCWfHzp07Re+VIAiCIAiCIAiCIIi/Lw9k
Zd3o0aPx/PPP4+bNm2hoaMDLL7+M5557DsD/TeA+/vjjSE9Px/nz51FZWYmUlBSYmprizTffRFZW
Fg4ePMhNPKWkpKCoqAjz5s3Do48+CgAoLCyEmZkZfvvtNzQ2NiI/Px8rVqzQa2dqairs7e2Rnp6O
+vp67Nq1C1ZWVtzT/nFxcZg4caLovWpsXLhwITIyMnD06FGo1WokJCRw3zlw4ADKyspQX1+PnJwc
uLu7cxNnKSkpMDExwdy5c3H69GmcPXsWjY2NGDNmDJ5++mmcP38e5eXlWLlyJSek1NTUoEuXLsjL
ywMAzJ49G3Z2dkhOTgYArFmzBhMmTADQsnrh6NGjqKqqQl1dHfbs2QMbGxtuQl7f9cXqSwq3bt2C
ra0tb8Jt8eLFePbZZyWVvRSxThtjxLpHHnkEKSkpKCgowKJFi6BWq7njq1atwqOPPorCwkLcu3cP
iYmJcHd3R21tLQBxf66pqYFarcayZctQXFyMwsJCTJ48WVQoyM/PR3Z2Nm7fvo0bN24gLi4OI0eO
1Pt9TZuZMGECDh8+zE122tvbY82aNbh06RKSkpJgZmaG8vLyVmUEQNTHxPDz84O3tzeSk5ORn5+P
y5cvM+2XUt7du3fH0aNHUV1djZ9//hkymYwT61j1oUtSUhJ69uyJwsJCNDQ04NixY/jkk08AAIcP
H4ZCocCBAwfQ3NyMkydPQqlU4vTp0wBaJrLlcjlWr16Nc+fOITc3F+np6bC2tsaNGze4awwePBjr
16+XZJ9QmQmxYsUKPPLIIzhz5gzq6uqwf/9+rFu3Ds3NzRg8eDDmzJmD6upqlJWVYcyYMdzKX2P8
ISUlBRYWFli+fDmysrJw6NAheHt747333uPKUKwN6lu5ZEysF4IVN8XirjFtkBUrdbl79y5kMhky
MjIkn8Pb2xtr1qxBbW0tSktLkZCQwJWflJV1169fh7OzM1atWoVbt27h6tWreO+991BYWMiMqZGR
kVCpVNi4cSPy8vKwY8cOmJiYcO/9ZJVpdXU11Go11q9fj8bGRpSVlSEgIAAbNmwAAPz666+wtbXF
nj17UF9fj7Nnz2Lx4sUAhFcwaYt1LP8G2DFEFyH/LC8vh0KhQEJCAmpra5GRkYFu3bphy5Ytes+j
b2WdWFmyYowQTzzxBMLCwlBaWorq6mp8/fXX2L17N9NmQ/Mkjf0ODg7YvHkzCgoKsGHDBpiammLk
yJE4fPgwCgoKEBwcjAULFgBg172+PEJfPAP4Yh2r3bRFrBPzGaG6NSaWt7Xt0Mo6giAIgiAIgiAI
giA03Hex7ty5czAzM+M9JV9YWAhzc3M0NTVxE7i64orQFpNBQUG81SF//PEHTE1N0dzcjJycHJiY
mOCrr77iTarrIywsjJtM1DBlyhRERUUBkC7W6do4Y8YMzJ8/n/t/amoqnnvuOfj6+sLNzQ3m5ubc
Kh+h32dlZUEmk6G0tJT7THeLwqCgICQmJqKxsRFubm7YsGEDwsLCAACTJk3iJoGampqwefNmjBw5
Ej4+PnB1deWJIELXZ9WXVCIiIrjyq6+vh6OjI/dUO6vsH4RYp5koBFrEMu134KnV6larajw9PfHr
r78yyyc+Ph69e/fm/Za1BV91dTWWLl2K4OBgeHl5QaVSiQpnQm0mOjqa8wEN1tbWOHjwIAB+GbF8
rKGhAZaWltyf9gSnbtlJsZ9V3o6Ojti+fTt3XCOEaPxUrD6ESEhIgJubG9LT03Hnzh3esenTpyMm
Job32axZs/Duu+8C0L/FXZ8+fbgJ8uzsbFhbW6O6ulqSfUJlJoSzs7PgSrOsrCyYmJjw4lp2djZk
MhlqamqM8gehtr9u3ToEBgYCME6sMzbWC2Fo3NSOu8a0QVas1EVIrGOdw8XFBVFRUSguLm51Pili
3ZYtW+Dv7y94jBVThfza3d0d3333HQB2mX7yyScIDg7mHf/8888RGhoKAJg6dSon7ujCEutY/g2w
Y4guQv4ZHx/P+beGzZs3t/Jzlu2ssmTFGF1ycnIgk8lw/fr1VsdYNhuaJwnZX1tbC5lMxtuW9MMP
P+QeuGDVvb7twPXFM4Av1rHaTVvEOjGfEapbY2J5W9sOiXUEQRAEQRAEQRAEQWi472JdamoqTE1N
4e3tzftTKpUoKyszSKwbMWIEPv74Y+7/Z8+ehUwm47ZjSkxMhL+/P8zMzNCrVy/e1ne6BAUFcaKW
hiVLlmDSpEkAjBfrIiIiuO0309LSIJfLsXXrVpSXl6O5uZl3D0K/37t3L2xtbXmf6Yp1y5Ytw+zZ
s5GWloZJkyahqqoKCoUCt2/fhlqtRnZ2NgAgNjYWPXr0QFpaGjeBrj3BLHR9Vn1JJSMjA2ZmZigp
KcG2bdvQs2dPbrKQVfYPWqwrKyuDTCbD1atXUVdXB5lMBg8PD979Ozo6IiUlhVk+0dHReOaZZ3jX
YwkFgwcPxujRo3H69GnU19cjPT0dSqVS7/eF2szy5ctb+aujoyN++eWXVmXE8rHm5mYUFBRwf9rv
uhOarGTZL1bemoli7a3GtMU6Vn0I0dDQgOjoaHh6esLc3BzBwcE4cOAAACA4OBiOjo68c6nValFR
AwA+/vhjBAQEcGX50ksvAYAk+6SIdRpxQVv80bB3717Y29sLfv/MmTNG+YNQ29+5cyfc3d0BGCfW
GRvrdTEmbmrHXWPaICtW6iIk1rHOcejQIYSGhsLKygouLi6IjIzkVg9JEeuWLFmit09ixVQhv+7d
uze+/vprAOwyjYmJgVwu59Wrh4cHBg4cyNmv3Tfr2iEm1rH8GxCPIUII+Wd0dHSrFeJ79uyBSqUS
PIc+21llyYoxuuzZs0dvvGfZbEyeJGS/ri9v2rQJw4YNA8CueyEbxOIZwBfrWO2mvcQ6XZ/RrVtj
Y3lb287/b+9+Y6os/ziOg0vgyMETcghYLlHQTZuGzcFwNdvSNZirxYhFM3Ct5gOZ5oPUZGz2ByJr
Fllt9qCiGdaD3NCF1fxXrAFqRSk6QKepwE6I/FEYKvD5PXDcP8/hPvd9wCOnn7/3a/s+8JzD8eK6
7+sLOx+u+yasAwAAAAAAo4Ie1qWnp2vnzp3Gv0+ePKmIiAi/lxMLZlg3qr+/X5WVlQoLC1NLS4vp
/5uTk6NXX33V67HRe1VJwQnrNmzYYHxYavY9mH3977//rvDwcK/dKb5h3cGDB5WcnKyXX35ZVVVV
kqTs7Gy9/fbbSkxMNF63ePFiVVRUeL2/XVhnd7zGIyMjQ2+++aaWLl2q999/33jcbu6//vprzZ07
1+v5yQrrJMntduvgwYOmX2s3P9u3bx+zE8IqKOjt7fX6UFrSXQ/rAjnH/PGdu0DGbzffMTEx+v77
743nfXfWWR0PO//884+KioqMECo3N1clJSV+X+8vrLty5YocDod+/fVXxcXFqaGhwXjObnyBhHXD
w8NyOp2WO+tGdxlJ/+19/nbWTSSse+utt5SRkSHJfg2OfrDd3NxsPD/RXu9rIn3z9r473jUo2fdK
X2ZhXaDvMTQ0pLq6OsXFxemzzz6TNPbnppl3333XcmedVU+907Du448/9nvvVknKysryu7Nu48aN
ys/P93rMbGedv/NbGn9YZ3Z+fvTRR0pLS/N63Y4dOyx31pmN3W4u7XqMr4aGBoWFhZleEtZuzJMR
1tkde7MxWPUzyTuss1s3dyusMzu2E+nld7p2ampqlJSU5Pd5AAAAAADw/yPoYV1eXp6ee+45Xbt2
TRcuXDB2ReTl5enMmTMaGBhQU1OTtm3bJil4YV1tba3Ky8t1/vx5DQ0N6cCBA5o6dapxjyZfNTU1
crlcOnTokNc9fkZDh2CEdZ9++qlmzpypxsZGXbx4UaWlpYqKirL80PnmzZtKSUnRSy+9pObmZh06
dEhPPvmkV5AyODgoh8Oh+Ph4Xb16VZJUWVkpp9Pp9ZfieXl5euqpp3T+/HmdOnVKBQUFtmGd3fEa
jy+++EIzZsyQw+FQV1eX8bjd3P/5558KDw9XdXW1WlpaVFFRodjY2EkL60pKSrRw4ULV19drYGBA
586d05dffqnW1lbb+WltbdV9992nTz75RK2trfrmm2+UmprqNygYGRlRQkKCiouL1dHRoV9++UUZ
GRl3NawL5BwLdO4CGb/dfK9atUqPP/64mpubdfr0aRUXF3uFdVbHw8zOnTtVVVWlzs5ODQ4O6o03
3jBCjgMHDsjlcmnPnj3q6+uTx+NRTU2NfvzxR0n+wzpJKiws1OzZs8cEQXbjC/QymJs3b9b8+fP1
xx9/aGBgQEeOHNGHH36okZERZWRk6MUXX1RXV5ffe9aNN6yLi4vTb7/9pp6eHv30009yu9367rvv
JAW2Bh944AF98MEHxj3YJtrrfU2kb97ed8e7BiX7XunLLKyzeo/+/n6tWbPGuJ/X2bNnNXPmTGO+
fX9ummlvb1dsbKzKysrU3d2ttrY2lZeX68yZM7Y99U7DOo/HI7fbrdLSUnk8HvX19am+vt44r/fv
3y+n06m9e/eqv79fTU1N2rRpk6RbxzMlJUUej0ft7e26fv36mHvWWZ3f0vjDOmns+dnR0aHp06dr
x44d6u/vV2Njo+0968zGbjeXdj3G1/DwsJYuXaqcnBxdunRJvb29qqqqUnV1te2YJyOsszv2/i6D
6a+fSd5hnd3au1thndmxnUgvv9O1c+rUKU2ZMkXHjh1Tb2+v8bvSO++8M2ZXJwAAAAAAuLcFPaw7
ceKEFi1apIiICOOviS9fvqy1a9cqOTlZUVFRmjNnjtatWycpeGFda2ursrKyFB8fL4fDobS0NFVX
V1uO9auvvtKCBQsUHR2txYsXe92rJBhh3Y0bN7R69Wo5nU4lJiZq/fr1evTRRy0/dJakxsZGpaen
Kzo6Wunp6dq8efOYIGXFihVeu096enoUGRmpzz//3HjswoULWrZsmaKiojRv3jxVVFTYhnWS9fGS
pF27diksLEyNjY2W8zMwMKDY2FjjkoG3s5p7SSotLZXb7VZiYqLWrl2r7OzsSQvrbt68qe3bt2vB
ggVyOBxKSkpSbm6ucY83u/nZvXu3UlJS5HK59PTTT+v555+3DAoOHz6sefPmyeFwKDMzU1u2bLmr
YZ0U2DkWyNwFMn67+e7s7NSzzz5rrJOysjKvXTF2x8NXTU2NERi6XC6tWLFCTU1NxvP79u1TZmam
XC6X7r//fj3xxBOqra2VZB3W1dXVKSwsbMzlCu3GF2hYd/36dW3dulVz5syRw+HQwoULVVlZKelW
UJOXl2esiVdeecXYGTnRsG769OnKzMyUw+FQamrqmO/Lbg1+++23evDBBxUREaHXX39d0sR6va+J
9M3b+640/jVo1yt9mYV1Vu9x48YNFRYW6qGHHlJkZKSSk5NVVlZmfK3Zz00zx48f1/Lly+VyueR2
u5Wbm2vsyLLqqXca1km3dk4+88wzSkhI0LRp0/TII494nTO7d+9WWlqapk2bplmzZnldMjUrK8v4
AxOPx+MV1knW57c0sbDO7PxsaGjQY489ppiYGKWkpOi9997T8PCw3/cwG7vdXErWPcZMR0eHCgoK
lJiYqJiYGC1btszYvWs15skI6yTrY+/v9wirfnZ7WGe39uzCuqKiIjmdTk2ZMkVxcXF++67vOWN2
bCfSy4Oxdl577TW5XC45nU7t27dP0q2dzGbzCgAAAAAA7l1BD+tw7ysoKNDy5cttX9fd3a3o6Ggd
PXp0EkaFe0VbW5vCw8ODcilWmPP3ATsAAAAAAAAAYPIR1mHckpKStH//ftvXbdu2TUuWLJmEEeF/
WVNTk3744Qd1dHTo77//Vn5+vlauXBnqYd3TCOsAAAAAAAAA4N+DsA7j8tdff+nhhx+2fd3Q0JBm
zZrldVlOwMzPP/+s2bNnKyIiQgkJCXrhhRf83msSwUFYBwAAAAAAAAD/HoR1AAAAAAAAAAAAQIgQ
1gEAAAAAAAAAAAAhQlgHAAAAAAAAAAAAhAhhHQAAAAAAAAAAABAihHUAAAAAAAAAAABAiBDWAQAA
AAdMSRkAAACVSURBVAAAAAAAACFCWAcAAAAAAAAAAACECGEdAAAAAAAAAAAAECKEdQAAAAAAAAAA
AECIENYBAAAAAAAAAAAAIUJYBwAAAAAAAAAAAITIuMK6kZERiqIoiqIoiqIoiqIoiqIoiqIoiqKC
VH7DulAPjKIoiqIoiqIoiqIoiqIoiqIoiqLu9eIymAAAAAAAAAAAAECI/AfI/8L+8VrOYwAAAABJ
RU5ErkJggg==
--00000000000073a14405bdb5305e--
|