1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
Return-Path: <ZmnSCPxj@protonmail.com>
Received: from smtp1.linuxfoundation.org (smtp1.linux-foundation.org
[172.17.192.35])
by mail.linuxfoundation.org (Postfix) with ESMTPS id 7D99D120D
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 21 Mar 2018 07:54:07 +0000 (UTC)
X-Greylist: domain auto-whitelisted by SQLgrey-1.7.6
Received: from mail4.protonmail.ch (mail4.protonmail.ch [185.70.40.27])
by smtp1.linuxfoundation.org (Postfix) with ESMTPS id CCC4937D
for <bitcoin-dev@lists.linuxfoundation.org>;
Wed, 21 Mar 2018 07:54:04 +0000 (UTC)
Date: Wed, 21 Mar 2018 03:53:59 -0400
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=protonmail.com;
s=default; t=1521618841;
bh=lE3KmJr+snPZAIJIaDtct6c0lWZDomdkhijNVaGoGg4=;
h=Date:To:From:Reply-To:Subject:In-Reply-To:References:Feedback-ID:
From;
b=c8/md8YxljLCJEDcvmfyei8XHrC0vYOERRsErPal3v+Mkn+6gfv7vT6aD8PEnqtUr
bIZ4kYhdhWaQWxMSygOJ2TpdGdlZD6KS2kigCl7tmHeiof3/fsDx0L/NPODQrfOcU3
pTAva5hHKDITMqf9QF99+QXb7EI95qYM+s/EFrLA=
To: Anthony Towns <aj@erisian.com.au>,
Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
From: ZmnSCPxj <ZmnSCPxj@protonmail.com>
Reply-To: ZmnSCPxj <ZmnSCPxj@protonmail.com>
Message-ID: <d_OOMciZ--WI6X8V1PWVCcPGyEFo7AWcNcXls8uUK8itK8pkoUJLRsekBYUdXTRYg_pOinoBQliMFKfzWW48kd3isE6DbkIVoI5frIxOBFo=@protonmail.com>
In-Reply-To: <20180321040618.GA4494@erisian.com.au>
References: <20180321040618.GA4494@erisian.com.au>
Feedback-ID: el4j0RWPRERue64lIQeq9Y2FP-mdB86tFqjmrJyEPR9VAtMovPEo9tvgA0CrTsSHJeeyPXqnoAu6DN-R04uJUg==:Ext:ProtonMail
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
X-Spam-Status: No, score=-2.2 required=5.0 tests=BAYES_00,DKIM_SIGNED,
DKIM_VALID, DKIM_VALID_AU, FREEMAIL_FROM, FROM_LOCAL_NOVOWEL,
RCVD_IN_DNSWL_LOW autolearn=ham version=3.3.1
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on
smtp1.linux-foundation.org
X-Mailman-Approved-At: Wed, 21 Mar 2018 13:25:48 +0000
Subject: Re: [bitcoin-dev] Soft-forks and schnorr signature aggregation
X-BeenThere: bitcoin-dev@lists.linuxfoundation.org
X-Mailman-Version: 2.1.12
Precedence: list
List-Id: Bitcoin Protocol Discussion <bitcoin-dev.lists.linuxfoundation.org>
List-Unsubscribe: <https://lists.linuxfoundation.org/mailman/options/bitcoin-dev>,
<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=unsubscribe>
List-Archive: <http://lists.linuxfoundation.org/pipermail/bitcoin-dev/>
List-Post: <mailto:bitcoin-dev@lists.linuxfoundation.org>
List-Help: <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=help>
List-Subscribe: <https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev>,
<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=subscribe>
X-List-Received-Date: Wed, 21 Mar 2018 07:54:07 -0000
Good morning aj,
I am probably wrong, but could solution 2 be simplified by using the below =
opcodes for aggregated signatures?
OP_ADD_AGG_PUBKEY - Adds a public key for verification of an aggregated sig=
nature.
OP_CHECK_AGG_SIG[VERIFY] - Check that the gathered public keys matches the =
aggregated signature.
Then:
pubkey1 OP_ADD_AGG_PUBKEY
OP_IF
pubkey2 OP_ADD_AGG_PUBKEY
OP_ELSE
cond OP_CHECKCOVENANT
OP_ENDIF
OP_CHECK_AGG_SIG
(omitting the existence of buckets)
I imagine that aggregated signatures, being linear, would allow pubkey to b=
e aggregated also by adding the pubkey points (but note that I am not a mat=
hematician, I only parrot what better mathematicians say) so OP_ADD_AGG_PUB=
KEY would not require storing all public keys, just adding them linearly.
The effect is that in the OP_CHECKCOVENANT case, pre-softfork nodes will no=
t actually do any checking.
OP_CHECK_AGG_SIG might accept the signature on the stack (combined signatur=
e of pubkey1 and pubkey2 and from other inputs), or the bucket the signatur=
e is stored in.
We might even consider using the altstack: no more OP_ADD_AGG_PUBKEY (one l=
ess opcode to reserve!), just push pubkeys on the altstack, and OP_CHECK_AG=
G_SIG would take the entire altstack as all the public keys to be used in a=
ggregated signature checking.
This way, rather than gathering signatures, we gather public keys for aggre=
gate signature checking. OP_RETURN_TRUE interacts with that by not perform=
ing aggregate signature checking at all if we encounter OP_RETURN_TRUE firs=
t (which makes sense: old nodes have no idea what OP_RETURN_TRUE is really =
doing, and would fail to understand all its details).
I am very probably wrong but am willing to learn how to break the above, th=
ough. I am probably making a mistake somewhere.
Regards,
ZmnSCPxj
=E2=80=8BSent with ProtonMail Secure Email.=E2=80=8B
=E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90 Original Me=
ssage =E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90=E2=80=90
On March 21, 2018 12:06 PM, Anthony Towns via bitcoin-dev <bitcoin-dev@list=
s.linuxfoundation.org> wrote:
> Hello world,
>=20
> There was a lot of discussion on Schnorr sigs and key and signature
>=20
> aggregation at the recent core-dev-tech meeting (one relevant conversatio=
n
>=20
> is transcribed at \[0\]).
>=20
> Quick summary, with more background detail in the corresponding footnotes=
:
>=20
> signature aggregation is awesome \[1\], and the possibility of soft-forki=
ng
>=20
> in new opcodes via OP\_RETURN\_VALID opcodes (instead of OP_NOP) is also
>=20
> awesome \[2\].
>=20
> Unfortunately doing both of these together may turn out to be awful.
>=20
> RETURN_VALID and Signature Aggregation
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
------------------
>=20
> Bumping segwit script versions and redefining OP_NOP opcodes are
>=20
> fairly straightforward to deal with even with signature aggregation,
>=20
> the straightforward implementation of both combined is still a soft-fork.
>=20
> RETURN_VALID, unfortunately, has a serious potential pitfall: any
>=20
> aggregatable signature operations that occur after it have to go into
>=20
> separate buckets.
>=20
> As an example of why this is the case, imagine introducing a covenant
>=20
> opcode that pulls a potentially complicated condition from the stack
>=20
> (perhaps, "an output pays at least 50000 satoshi to address xyzzy"),
>=20
> checks the condition against the transaction, and then pushes 1 (or 0)
>=20
> back onto the stack indicating compliance with the covenant (or not).
>=20
> You might then write a script allowing a single person to spend the coins
>=20
> if they comply with the covenant, and allow breaking the covenant with
>=20
> someone else's sign-off in addition. You could write this as:
>=20
> pubkey1 CHECKSIGVERIFY
>=20
> cond CHECKCOVENANT IFDUP NOTIF pubkey2 CHECKSIG ENDIF
>=20
> If you pass the covenant, you supply "SIGHASHALL|BUCKET_1" and aggregate
>=20
> the signature for pubkey1 into bucket1 and you're set; otherwise you supp=
ly
>=20
> "SIGHASHALL|BUCKET\_1 SIGHASHALL|BUCKET\_1" and aggregate signatures for =
both
>=20
> pubkey1 and pubkey2 into bucket1 and you're set. Great!
>=20
> But this isn't a soft-fork: old nodes would see this script as:
>=20
> pubkey1 CHECKSIGVERIFY
>=20
> cond RETURN_VALID IFDUP NOTIF pubkey2 CHECKSIG ENDIF
>=20
> which it would just interpret as:
>=20
> pubkey1 CHECKSIGVERIFY cond RETURN_VALID
>=20
> which is fine if the covenant was passing; but no good if the covenant
>=20
> didn't pass -- they'd be expecting the aggregted sig to just be for
>=20
> pubkey1 when it's actually pubkey1+pubkey2, so old nodes would fail the
>=20
> tx and new nodes would accept it, making it a hard fork.
>=20
> Solution 0a / 0b
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
------------
>=20
> There are two obvious solutions here:
>=20
> 0a) Just be very careful to ensure any aggregated signatures that
>=20
> are conditional on an redefined RETURN_VALID opcode go into later
>=20
> buckets, but be careful about having separate sets of buckets every
>=20
> time a soft-fork introduces a new redefined opcode. Probably very
>=20
> complicated to implement correctly, and essentially doubles the
>=20
> number of buckets you have to potentially deal with every time you
>=20
> soft fork in a new opcode.
>=20
> 0b) Alternatively, forget about the hope that RETURN_VALID
>=20
> opcodes could be converted to anything, and just reserve OP_NOP
>=20
> opcodes and convert them to CHECK\_foo\_VERIFY opcodes just as we
>=20
> have been doing, and when we can't do that bump the segwit witness
>=20
> version for a whole new version of script. Or in twitter speak:
>=20
> "non-verify upgrades should be done with new script versions" \[3\]
>=20
> I think with a little care we can actually salvage RETURN_VALID though!
>=20
> Solution 1
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
-----------------------------------------------------
>=20
> You don't actually have to write your scripts in ways that can cause
>=20
> this problem, as long as you're careful. In particular, the problem only
>=20
> occurs if you do aggregatable CHECKSIG operations after "RETURN_VALID"
>=20
> \-\- if you do all the CHECKSIGs first, then all nodes will be checking
>=20
> for the same signatures, and there's no problem. So you could rewrite
>=20
> the script above as:
>=20
> pubkey1 CHECKSIGVERIFY
>=20
> IF pubkey2 CHECKSIG ENDIF
>=20
> cond CHECKCOVENANT OR
>=20
> which is redeemable either by:
>=20
> sig1 0 \[and covenant is met\]
>=20
> sig1 1 sig2 \[covenant is not checked\]
>=20
> The witness in this case is essentially committing to the execution path
>=20
> that would have been taken in the first script by a fully validating node=
,
>=20
> then the new script checks all the signatures, and then validates that th=
e
>=20
> committed execution path was in fact the one that was meant to be taken.
>=20
> If people are clever enough to write scripts this way, I believe you
>=20
> can make RETURN_VALID soft-fork safe simply by having every soft-forked
>=20
> RETURN_VALID operation set a state flag that makes every subsequent
>=20
> CHECKSIG operation require a non-aggregated sig.
>=20
> The drawback of this approach is that if the script is complicated
>=20
> (eg it has multiple IF conditions, some of which are nested), it may be
>=20
> difficult to write the script to ensure the signatures are checked in the
>=20
> same combination as the later logic actually requires -- you might have
>=20
> to store the flag indicating whether you checked particular signatures
>=20
> on the altstack, or use DUP and PICK/ROLL to organise it on the stack.
>=20
> Solution 2
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
------------------------------------------------------------------------
>=20
> We could make that simpler for script authors by making dedicated opcodes
>=20
> to help with "do all the signatures first" and "check the committed
>=20
> execution path against reality" steps. I think a reasonable approach
>=20
> would be something like:
>=20
> 0b01 pubkey2 pubkey1 2 CHECK\_AGGSIG\_VERIFY
>=20
> cond CHECKCOVENANT 0b10 CHECK\_AGG\_SIGNERS OR
>=20
> which is redeemed either by:
>=20
> sighash1 0 \[and passing the covenant cond\]
>=20
> sighash2 sighash1 0b10
>=20
> (I'm using the notation 0b10110 to express numbers as binary bitfields;
>=20
> 0b10110 =3D 22 eg)
>=20
> That is, two new opcodes, namely:
>=20
> CHECK\_AGGSIG\_VERIFY which takes from the stack:
>=20
> \- N: a count of pubkeys
>=20
> \- pubkey1..pubkeyN: N pubkeys
>=20
> \- REQ: a bitmask of which pubkeys are required to sign
>=20
> \- OPT: a bitmask of which optional pubkeys have signed
>=20
> \- sighashes: M sighashes for the pubkeys corresponding to the set
>=20
> bits of (REQ|OPT)
>=20
> CHECK\_AGGSIG\_VERIFY fails if:
>=20
> \- the stack doesn't have enough elements
>=20
> \- the aggregated signature doesn't pass
>=20
> \- a redefined RETURN_VALID opcode has already been seen
>=20
> \- a previous CHECK\_AGGSIG\_VERIFY has already been seen in this script
>=20
> REQ|OPT is stored as state
>=20
> CHECK\_AGG\_SIGNERS takes from the stack:
>=20
> \- B: a bitmask of which pubkeys are being queried
>=20
> and it pushes to the stack 1 or 0 based on:
>=20
> \- (REQ|OPT) & B =3D=3D B ? 1 : 0
>=20
> A possible way to make sure the "no agg sigs after an upgraded
>=20
> RETURN\_VALID" behaviour works right might be to have "RETURN\_VALID"
>=20
> fail if CHECK\_AGGSIG\_VERIFY hasn't already been seen. That way once you
>=20
> redefine RETURN\_VALID in a soft-fork, if you have a CHECK\_AGGSIG_VERIFY
>=20
> after a RETURN_VALID you've either already failed (because the
>=20
> RETURN\_VALID wasn't after a CHECK\_AGGSIG_VERIFY), or you automatically
>=20
> fail (because you've already seen a CHECK\_AGGSIG\_VERIFY).
>=20
> There would be no need to make CHECKSIG, CHECKSIGVERIFY, CHECKMULTISIG
>=20
> and CHECKMULTISIGVERIFY do signature aggregation in this case. They could
>=20
> be left around to allow script authors to force non-aggregate signatures
>=20
> or could be dropped entirely, I think.
>=20
> This construct would let you do M-of-N aggregated multisig in a fairly
>=20
> straightforward manner without needing an explicit opcode, eg:
>=20
> 0 pubkey5 pubkey4 pubkey3 pubkey2 pubkey1 5 CHECK\_AGGSIG\_VERIFY
>=20
> 0b10000 CHECK\_AGG\_SIGNERS
>=20
> 0b01000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00100 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00010 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00001 CHECK\_AGG\_SIGNERS ADD
>=20
> 3 NUMEQUAL
>=20
> redeemable by, eg:
>=20
> 0b10110 sighash5 sighash3 sighash2
>=20
> and a single aggregate signature by the private keys corresponding to
>=20
> pubkey{2,3,5}.
>=20
> Of course, another way of getting M-of-N aggregated multisig is via MAST,
>=20
> which brings us to another approach...
>=20
> Solution 3
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
--------------
>=20
> All we're doing above is committing to an execution path and validating
>=20
> signatures for that path before checking the path was the right one. But
>=20
> MAST is a great way of committing to an execution path, so another
>=20
> approach would just be "don't have alternative execution paths, just have
>=20
> MAST and CHECK/VERIFY codes". Taking the example I've been running with,
>=20
> that would be:
>=20
> branch1: 2 pubkey2 pubkey1 2 CHECKMULTISIG
>=20
> branch2: pubkey1 CHECKSIGVERIFY cond CHECKCOVENANT
>=20
> So long as MAST is already supported when signature aggregation becomes
>=20
> possible, that works fine. The drawback is MAST can end up with lots of
>=20
> branches, eg the 3-of-5 multisig check has 10 branches:
>=20
> branch1: 3 pubkey3 pubkey2 pubkey1 3 CHECKMULTISIG
>=20
> branch2: 3 pubkey4 pubkey2 pubkey1 3 CHECKMULTISIG
>=20
> branch3: 3 pubkey5 pubkey2 pubkey1 3 CHECKMULTISIG
>=20
> branch4: 3 pubkey4 pubkey3 pubkey1 3 CHECKMULTISIG
>=20
> branch5: 3 pubkey5 pubkey3 pubkey1 3 CHECKMULTISIG
>=20
> branch6: 3 pubkey5 pubkey4 pubkey1 3 CHECKMULTISIG
>=20
> branch7: 3 pubkey4 pubkey3 pubkey2 3 CHECKMULTISIG
>=20
> branch8: 3 pubkey5 pubkey3 pubkey2 3 CHECKMULTISIG
>=20
> branch9: 3 pubkey5 pubkey4 pubkey2 3 CHECKMULTISIG
>=20
> branch10: 3 pubkey5 pubkey4 pubkey3 3 CHECKMULTISIG
>=20
> while if you want, say, 6-of-11 multisig you get 462 branches, versus
>=20
> just:
>=20
> 0 pubkey11 pubkey10 pubkey9 pubkey8 pubkey7 pubkey6
>=20
> pubkey5 pubkey4 pubkey3 pubkey2 pubkey1 11 CHECK\_AGGSIG\_VERIFY
>=20
> 0b10000000000 CHECK\_AGG\_SIGNERS
>=20
> 0b01000000000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00100000000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00010000000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00001000000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000100000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000010000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000001000 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000000100 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000000010 CHECK\_AGG\_SIGNERS ADD
>=20
> 0b00000000001 CHECK\_AGG\_SIGNERS ADD
>=20
> 6 NUMEQUAL
>=20
> Provided doing lots of hashes to calculate merkle paths is cheaper than
>=20
> publishing to the blockchain, MAST will likely still be better though:
>=20
> you'd be doing 6 pubkeys and 9 steps in the merkle path for about 1532byt=
es in MAST, versus showing off all 11 pubkeys above for 11(32+4)
>=20
> bytes, and the above is roughly the worst case for m-of-11 multisig
>=20
> via MAST.
>=20
> If everyone's happy to use MAST, then it could be the only solution:
>=20
> drop OP_IF and friends, and require all the CHECKSIG ops to occur before
>=20
> any RETURN_VALID ops: since there's no branching, that's just a matter of
>=20
> reordering your script a bit and should be pretty easy for script authors=
.
>=20
> I think there's a couple of drawbacks to this approach that it shouldn't
>=20
> be the only solution:
>=20
> a) we don't have a lot of experience with using MAST
>=20
> b) MAST is a bit more complicated than just dealing with branches in
>=20
> a script (probably solvable once (a) is no longer the case)
>=20
> c) some useful scripts might be a bit cheaper expressed with
>=20
> of branches and be better expressed without MAST
>=20
> If other approaches than MAST are still desirable, then MAST works fine
>=20
> in combination with either of the earlier solutions as far as I can see.
>=20
> Summary
>=20
>=20
> -------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
---------------------------------------------------------------------------=
-----------------------------------------------
>=20
> I think something along the lines of solution 2 makes the most sense,
>=20
> so I think a good approach for aggregate signatures is:
>=20
> - introduce a new segwit witness version, which I'll call v2 (but which
> =20
> might actually be v1 or v3 etc, of course)
> =20
> - v2 must support Schnorr signature verification.
> - v2 should have a "pay to public key (hash?)" witness format. direct
> =20
> signatures of the transaction via the corresponding private key shoul=
d
> =20
> be aggregatable.
> =20
> - v2 should have a "pay to script hash" witness format: probably via
> =20
> taproot+MAST, possibly via graftroot as well
> =20
> - v2 should support MAST scripts: again, probably via taproot+MAST
> - v2 taproot shouldn't have a separate script version (ie,
> =20
> the pubkey shouldn't be P+H(P,version,scriptroot)), as signatures
> =20
> for later-versioned scripts couldn't be aggregated, so there's no
> =20
> advantage over bumping the segwit witness version
> =20
> - v2 scripts should have a CHECK\_AGG\_SIG_VERIFY opcode roughly as
> =20
> described above for aggregating signatures, along with CHECK\_AGG\_SI=
GNERS
> =20
> - CHECK{MULTI,}SIG{VERIFY,} in v2 scripts shouldn't support aggregated
> =20
> signatures, and possibly shouldn't be present at all?
> =20
> - v2 signers should be able to specify an aggregation bucket for each
> =20
> signature, perhaps in the range 0-7 or so?
> =20
> - v2 scripts should have a bunch of RETURN_VALID opcodes for future
> =20
> soft-forks, constrained so that CHECK\_AGG\_SIG_VERIFY doesn't appear
> =20
> after them. the currently disabled opcodes should be redefined as
> =20
> RETURN_VALID eg.
> =20
> For soft-fork upgrades from that point:
> =20
> - introducing new opcodes just means redefining an RETURN_VALID opcode
> - introducing new sighash versions requires bumping the segwit witness
> =20
> version (to v3, etc)
> =20
> - if non-interactive half-signature aggregation isn't ready to go, it
> =20
> would likewise need a bump in the segwit witness version when
> =20
> introduced
> =20
> I think it's worth considering bundling a hard-fork upgrade something
> =20
> like:
> =20
> - ~5 years after v2 scripts are activated, existing p2pk/p2pkh UTXOs
> =20
> (either matching the pre-segwit templates or v0 segwit p2wpkh) can
> =20
> be spent via a v2-aggregated-signature (but not via taproot)
> =20
> \[4\]
> =20
> - core will maintain a config setting that allows users to prevent
> =20
> that hard fork from activating via UASF up until the next release
> =20
> after activation (probably with UASF-enforced miner-signalling that
> =20
> the hard-fork will not go ahead)
> =20
> This is already very complicated of course, but note that there's sti=
ll
> =20
> more things that need to be considered for signature aggregation:
> =20
> - whether to use Bellare-Neven or muSig in the consensus-critical
> =20
> aggregation algorithm
> =20
> - whether to assign the aggregate sigs to inputs and plunk them in the
> =20
> witness data somewhere, or to add a new structure and commitment and
> =20
> worry about p2p impact
> =20
> - whether there are new sighash options that should go in at the same t=
ime
> - whether non-interactive half-sig aggregation can go in at the same ti=
me
> =20
> That leads me to think that interactive signature aggregation is goin=
g to
> =20
> take a lot of time and work, and it would make sense to do a v1-upgra=
de
> =20
> that's "just" Schnorr (and taproot and MAST and re-enabling opcodes a=
nd
> =20
> ...) in the meantime. YMMV.
> =20
> Cheers,
> =20
> aj
> =20
> \[0\] http://diyhpl.us/wiki/transcripts/bitcoin-core-dev-tech/2018-03=
-06-taproot-graftroot-etc/
> =20
> \[1\] Signature aggregation:
> =20
> Signature aggregation is cool because it lets you post a transaction
> =20
> spending many inputs, but only providing a single 64 byte signature
> =20
> that proves authorisation by the holders of all the private keys
> =20
> for all the inputs. So the witnesses for your inputs might be:
> =20
> p2wpkh: pubkey1 SIGHASH_ALL
> =20
> p2wpkh: pubkey2 SIGHASH_ALL
> =20
> p2wsh: "3 pubkey1 pubkey3 pubkey4 3 CHECKMULTISIG" SIGHASH\_ALL SIGHA=
SH\_ALL SIGHASH_ALL
> =20
> where instead of including full 65-byte signature for each CHECKSIG
> =20
> operation in each input witness, you just include the ~1-byte sighash=
,
> =20
> and provide a single 64-byte signature elsewhere, calculated either
> =20
> according to the Bellare-Neven algorithm, or the muSig algorithm.
> =20
> In the above case, that means going from about 500 witness bytes
> =20
> for 5 public keys and 5 signatures, to about 240 witness bytes for
> =20
> 5 public keys and just 1 signature.
> =20
> A complication here is that because the signatures are aggregated,
> =20
> in order to validate any signature you have to be able to validate
> =20
> every signature.
> =20
> It's possible to limit that a bit, and have aggregation
> =20
> "buckets". This might be something you just choose when signing, eg:
> =20
> p2wpkh: pubkey1 SIGHASH\_ALL|BUCKET\_1
> =20
> p2wpkh: pubkey2 SIGHASH\_ALL|BUCKET\_2
> =20
> p2wsh: "3 pubkey1 pubkey3 pubkey4 3 CHECKMULTISIG" SIGHASH\_ALL|BUCKE=
T\_1 SIGHASH\_ALL|BUCKET\_2 SIGHASH\_ALL|BUCKET\_2
> =20
> bucket1: 64 byte sig for (pubkey1, pubkey1)
> =20
> bucket2: 64 byte sig for (pubkey2, pubkey3, pubkey4)
> =20
> That way you get the choice to verify both of the pubkey1 signatures
> =20
> or all of the pubkey{2,3,4} signatures or all the signatures (or
> =20
> none of the signatures).
> =20
> This might be useful if the private key for pubkey1 is essentially
> =20
> offline, and can't easily participate in an interactive protocol
> =20
> \-\- with separate buckets the separate signatures can be generated
> =20
> independently at different times, while with only one bucket,
> =20
> everyone has to coordinate to produce the signature)
> =20
> (For clarity: each bucket corresponds to many CHECKSIG operations,
> =20
> but only contains a single 64-byte signature)
> =20
> Different buckets will also be necessary when dealing with new
> =20
> segwit script versions: if there are any aggregated signatures for
> =20
> v1 addresses that go into bucket X, then aggregate signatures for
> =20
> v2 addresses cannot go into bucket X, as that would prevent nodes
> =20
> that support v1 addresses but not v2 addresses from validating
> =20
> bucket X, which would prevent them from validating the v1 addresses
> =20
> corresponding to that bucket, which would make the v2 upgrade a hard
> =20
> fork rather than a soft fork. So each segwit version will need to
> =20
> introduce a new set of aggregation buckets, which in turn reduces
> =20
> the benefit you get from signature aggregation.
> =20
> Note that it's obviously fine to use an aggregated signature in
> =20
> response to CHECKSIGVERIFY or n-of-n CHECKMULTISIGVERIFY -- when
> =20
> processing the script you just assume it succeeds, relying on the
> =20
> fact that the aggregated signature will fail the entire transaction
> =20
> if there was a problem. However it's also fine to use an aggregated
> =20
> signature in response to CHECKSIG for most plausible scripts, since:
> =20
> sig key CHECKSIG
> =20
> can be treated as equivalent to
> =20
> sig DUP IF key CHECKSIGVERIFY OP_1 FI
> =20
> provided invalid signatures are supplied as a "false" value. So
> =20
> for the purpose of this email, I'll mostly be treating CHECKSIG and
> =20
> n-of-n CHECKMULTISIG as if they support aggregation.
> =20
> \[2\] Soft-forks and RETURN_VALID:
> =20
> There are two approaches for soft-forking in new opcodes that are
> =20
> reasonably well understood:
> =20
> 1. We can bump the segwit script version, introducing a new class of
> =20
> bc1 bech32 addresses, which behave however we like, but can't be
> =20
> validated at all by existing nodes. This has the downside that it
> =20
> effectively serialises upgrades.
> =20
> 2. We can redefine OP\_NOP opcodes as OP\_CHECK\_foo\_VERIFY
> =20
> opcodes, along the same lines as OP_CHECKLOCKTIMEVERIFY or
> =20
> OP_CHECKSEQUENCEVERIFY. This has the downside that it's pretty
> =20
> restrictive in what new opcodes you can introduce.
> =20
> A third approach seems possible as well though, which would combi=
ne
> =20
> the benefits of both approaches: allowing any new opcode to be
> =20
> introduced, and allowing different opcodes to be introduced in
> =20
> concurrent soft-forks. Namely:
> =20
> 3. If we introduce some RETURN_VALID opcodes (in script for a new
> =20
> segwit witness version), we can then redefine those as having any
> =20
> behaviour we might want, including ones that manipulate the stack=
,
> =20
> and have the change simply be a soft-fork. RETURN_VALID would
> =20
> force the script to immediately succeed, in contrast to OP_RETURN
> =20
> which forces the script to immediately fail.
> =20
> \[3\] https://twitter.com/bramcohen/status/972205820275388416
> =20
> \[4\] https://lists.linuxfoundation.org/pipermail/bitcoin-dev/201=
8-January/015580.html
> =20
>=20
> bitcoin-dev mailing list
>=20
> bitcoin-dev@lists.linuxfoundation.org
>=20
> https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
|