summaryrefslogtreecommitdiff
path: root/inc/IntWalk_IWalking_2.gxx
blob: 406e8632c9366d47207346b8247ece2b04095cfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//-- IntWalk_IWalking_2.gxx

#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif


// _______________________________________________
//
// Cadrage d un point (u, v) dans le domaine naturel d une surface ET mise 
// a jour du couple (u, v) pour le calcul du point suivant.
//
Standard_Boolean IntWalk_IWalking::Cadrage 
  (math_Vector& BornInf,
   math_Vector& BornSup,
   math_Vector& UVap,
   Standard_Real& Step,
//   Standard_Real& StepV,
   const Standard_Integer StepSign) const 

// on a toujours :
// BorInf(1) <= UVap(1) <= BornSup(1) et BorInf(2) <= UVap(2) <= BornSup(2)
// 1) on verifier si le point approche ne depasse pas le domaine naturel de 
//  la surface
// 2) si c est le cas on cadre le point approche sur frontiere en prenant la
//  meilleure direction. On MODIFIE alors le pas d avancement et une des 
//  bornes bloquer un des parametres lors du prochain appel a FunctionSetRoot;
// 3) on recalcule couple (u, v) approche pour le le calcul du point suivant.
// 4) return Standard_True si cadrage, Standard_False si pas de cadrage.
{
  Standard_Real Duvx = previousd2d.X();
  Standard_Real Duvy = previousd2d.Y();

  if (!reversed) {
    previousPoint.ParametersOnS2(UVap(1),UVap(2));
  }
  else {
    previousPoint.ParametersOnS1(UVap(1),UVap(2));
  }

  Standard_Real U1 = UVap(1) + Step * Duvx * StepSign;
  Standard_Real V1 = UVap(2) + Step * Duvy * StepSign;


  Standard_Boolean infu = (U1 <= BornInf(1)+Precision::PConfusion());
  Standard_Boolean supu = (U1 >= BornSup(1)-Precision::PConfusion());
  Standard_Boolean infv = (V1 <= BornInf(2)+Precision::PConfusion());
  Standard_Boolean supv = (V1 >= BornSup(2)-Precision::PConfusion());

  Standard_Real theStepU,theStepV;

  if (!infu && !supu && !infv && !supv) {
    UVap(1) = U1;
    UVap(2) = V1;
    return Standard_False;
  }

  if ((infu || supu) && (infv || supv)) {
    if (infu) { // jag 940616
      if(Duvx) { 
	theStepU = Abs((BornInf(1) - UVap(1)) / Duvx);  // iso U =BornInf(1)
      }
      else { 
	theStepU = Step; 
      }
    }
    else {
      if(Duvx) { 
	theStepU = Abs((BornSup(1) - UVap(1)) / Duvx);  // iso U =BornSup(1)
      }
      else { 
	theStepU = Step;
      }
    }
    if (infv) { // jag 940616
      if(Duvy) { 
	theStepV = Abs((BornInf(2) - UVap(2)) / Duvy);  // iso V =BornInf(2)
      }
      else { 
	theStepV = Step;
      }
    }
    else {
      if(Duvy) { 
	theStepV = Abs((BornSup(2) - UVap(2)) / Duvy);  // iso V =BornSup(2)
      }
      else { 
	theStepV = Step; 
      }
    }


    if (theStepU <= theStepV) {
      Step = theStepU;
      if (infu) {
	UVap(1) = BornInf(1);
	BornSup(1) = BornInf(1);
      }
      else {
	UVap(1) = BornSup(1);
	BornInf(1) = BornSup(1);
      }
      UVap(2) += Step*Duvy*StepSign;
    }
    else {
      Step = theStepV;
      if (infv) {
	UVap(2) = BornInf(2);
	BornSup(2) = BornInf(2); 
      }
      else {
	UVap(2) = BornSup(2);
	BornInf(2) = BornSup(2); 
      }
      UVap(1) += Step*Duvx*StepSign;
    }
    return Standard_True;
  }

  else if (infu) { // jag 940616
    if(Duvx) { 
      Standard_Real aStep = Abs((BornInf(1) - UVap(1)) / Duvx);  // iso U =BornInf(1)
      if(aStep<Step) Step=aStep;
    }
    BornSup(1) = BornInf(1);                     // on bloque le parametre
    UVap(1) = BornInf(1);
    UVap(2) += Step*Duvy*StepSign;;
    return Standard_True;
  }
  else if (supu) { // jag 940616
    if(Duvx) { 
      Standard_Real aStep = Abs((BornSup(1) - UVap(1)) / Duvx);  // iso U =BornSup(1)
      if(aStep<Step) Step=aStep;
    }
    BornInf(1) = BornSup(1);                    // on bloque le parametre
    UVap(1) = BornSup(1);
    UVap(2) += Step*Duvy*StepSign;
    return Standard_True;
  }
  else if (infv) { // jag 940616
    if(Duvy) { 
      Standard_Real aStep = Abs((BornInf(2) - UVap(2)) / Duvy);  // iso V =BornInf(2) 
      if(aStep<Step) Step=aStep;
    }
    BornSup(2) = BornInf(2);
    UVap(1) += Step*Duvx*StepSign;
    UVap(2) = BornInf(2);
    return Standard_True;
  }
  else if (supv) { // jag 940616
    if(Duvy) { 
      Standard_Real aStep = Abs((BornSup(2) - UVap(2)) / Duvy);  // iso V =BornSup(2)
      if(aStep<Step) Step=aStep;
    }
    BornInf(2) = BornSup(2);
    UVap(1) += Step*Duvx*StepSign;
    UVap(2) = BornSup(2);
    return Standard_True;
  }
  return Standard_True;
}


Standard_Boolean IntWalk_IWalking::TestArretPassage
  (const TColStd_SequenceOfReal& Umult,
   const TColStd_SequenceOfReal& Vmult,
   TheIWFunction& sp,
   math_Vector& UV,
   Standard_Integer& Irang)

// Umult et Vmult : tableau des points d arret (ou passant) sur frontiere, ici
//          on ne s interesse qu aux points passant.
// UV     : le point courant.
// Irang  : en sortie : donne l index du point d arret dans uvstart1 ou 0.
//          on considere qu on ne risque de passer que sur un seul point
//          passant.


// test d arret pour une ligne d intersection OUVERTE
// 1) test de passage sur l ensemble des points interieur
// 2) test d arret sur l ensemble des points depart
// si on detecte un arret on renvoie l index du point d arret (Irang) dans 
// l iterateur des points de depart et les parametres associes dans 
// l espace UV.
{
  Standard_Real Up, Vp, Du, Dv, Dup, Dvp, Utest,Vtest; 
  Standard_Integer i, j, k, N, ind;
  Standard_Real tolu = tolerance(1);
  Standard_Real tolv = tolerance(2);
  Standard_Real tolu2 = 10.*tolerance(1);
  Standard_Real tolv2 = 10.*tolerance(2);
  
  Standard_Boolean Arrive = Standard_False;
  
  // test de passage sur point pouvant demarrer une boucle;les marquer traites
  // si passe sur la ligne ouverte
  
  if (!reversed) {
    previousPoint.ParametersOnS2(Up,Vp);
  }
  else {
    previousPoint.ParametersOnS1(Up,Vp);
  }

  for (i = 1; i <= etat2.Length(); i++) { 
    if (etat2(i) > 0) { 
      // debug jag 05.04.94

//      if ((Up-ustart2(i))*(UV(1)-ustart2(i)) +
//	  (Vp-vstart2(i))*(UV(2)-vstart2(i)) <= 0)
      Utest = ustart2(i);
      Vtest = vstart2(i);

      Du  = UV(1)-Utest;
      Dv  = UV(2)-Vtest;
      Dup = Up - Utest;
      Dvp = Vp - Vtest;
      
//-- lbr le 30 oct 97 

      //IFV for OCC20285


 
      if ((Abs(Du) < tolu2 && Abs(Dv) < tolv2) ||
	  (Abs(Dup) < tolu2 && Abs(Dvp) < tolv2)) { 
	    
	etat2(i) = -etat2(i);
      }
      else {
	Standard_Real DDu = (UV(1)-Up);
	Standard_Real DDv = (UV(2)-Vp);
	Standard_Real DDD = DDu*DDu+DDv*DDv;
	Standard_Real DD1 = Du*Du+Dv*Dv;
	if(DD1<=DDD) { 
	  Standard_Real DD2 = Dup*Dup+Dvp*Dvp;
	  if(DD2<=DDD && ((Du*Dup) + (Dv*Dvp*tolu/tolv) <= 0.)) { 	
	    etat2(i) = -etat2(i);
	  }
	}
      }
    }
  }

  // test d arret sur point donne en entree et non encore traite

//  Modified by Sergey KHROMOV - Tue Nov 20 10:55:01 2001 Begin
// Check of all path points in the following order:
//   * First check all not treated points;
//   * After that check of already treated ones.
  Standard_Integer l;

  //// Modified by jgv, 28.07.2010 for OCC21914 ////
  // There are several path points between (Up,Vp) and UV
  // So several path points satisfy the condition
  // Dup*UV1mUtest + Dvp*UV2mVtest) < 0
  // We choose from them the path point with
  // minimum distance to (Up,Vp)
  TColStd_SequenceOfInteger i_candidates;
  TColStd_SequenceOfReal    SqDist_candidates;

  for (l = 1; l <= 2 && !Arrive; l++) {
    Standard_Boolean isToCheck;

    for (i = 1; i <= etat1.Length(); i++) {
      if (l == 1)
	isToCheck = (etat1(i) > 0);
      else
	isToCheck = (etat1(i) < 0);
	
      if (isToCheck) {
//  Modified by Sergey KHROMOV - Tue Nov 20 11:03:16 2001 End

	// debug jag voir avec isg

	Utest = ustart1(i);
	Vtest = vstart1(i);
	Dup = Up - Utest;
	Dvp = Vp - Vtest;
	if (Abs(Dup) >= tolu || Abs(Dvp) >= tolv) {
	  Standard_Real UV1mUtest = UV(1)-Utest;
	  Standard_Real UV2mVtest = UV(2)-Vtest;
	  if(( (Dup*UV1mUtest + Dvp*UV2mVtest) < 0) ||
	     (   Abs(UV1mUtest) < tolu 
	      && Abs(UV2mVtest) < tolv)) {
	    i_candidates.Append(i);
	    SqDist_candidates.Append(Dup*Dup + Dvp*Dvp);
	    /*
	    Irang=i;
	    Arrive = Standard_True;
	    UV(1) = Utest;
	    UV(2) = Vtest;
	    */
	  }
	  else if (nbMultiplicities(i) > 0 && i_candidates.IsEmpty()) {
	    N=0;
	    for (k = 1; k < i; k++) { 
	      N+=nbMultiplicities(k);
	    }
	    for (j = N + 1; j <= N + nbMultiplicities(i); j++) {
	      if (((Up-Umult(j))*(UV(1)-Umult(j)) +
		   (Vp-Vmult(j))*(UV(2)-Vmult(j)) < 0) ||
		  (Abs(UV(1)-Umult(j)) < tolu &&
		   Abs(UV(2)-Vmult(j)) < tolv)) {
		Irang=i;
		Arrive = Standard_True;
		UV(1) = Utest;
		UV(2) = Vtest;
		break;
	      }
	    }
	  }
	  if (Arrive) {
	    static math_Vector bidF(1,1);
	    static math_Matrix bidD(1,1,1,2);
	    sp.Values(UV,bidF,bidD);
	    break;
	  }
	}
      }
    } //end of for (i = 1; i <= etat1.Length(); i++)
    if (!i_candidates.IsEmpty())
      {
	Standard_Real MinSqDist = RealLast();
	for (ind = 1; ind <= i_candidates.Length(); ind++)
	  if (SqDist_candidates(ind) < MinSqDist)
	    {
	      MinSqDist = SqDist_candidates(ind);
	      Irang = i_candidates(ind);
	    }
	Arrive = Standard_True;
	UV(1) = ustart1(Irang);
	UV(2) = vstart1(Irang);
      }
  } //end of for (l = 1; l <= 2 && !Arrive; l++)
  return  Arrive;
}

Standard_Boolean IntWalk_IWalking::TestArretPassage
  (const TColStd_SequenceOfReal& Umult,
   const TColStd_SequenceOfReal& Vmult,
   const math_Vector& UV, 
   const Standard_Integer Index, 
   Standard_Integer& Irang)
{
// Umult, Vmult : tableau des points d arret (ou passant) sur frontiere, ici
//          on ne s interesse qu aux points passant.
// UV     : le point courant.
// Index  : l index du point de demarrage dans uvstart2 de la ligne en cours
//          (c est un point interieur).
// Irang  : en sortie : donne l index du point passant dans uvstart1 ou 0.
//          on considere qu on ne risque de passer que sur un seul point
//          passant.

// test d arret pour une ligne d intersection FERMEE.
// 1) test de passage sur l ensemble des points interieur
// 2) test de passage sur les points passant.

  Standard_Real Up, Vp, Scal;
  Standard_Boolean Arrive = Standard_False;
  Standard_Integer N, k, i;
  Standard_Real Utest,Vtest;
  Standard_Real tolu = tolerance(1);
  Standard_Real tolv = tolerance(2);

  
  // tests d arret et de passage sur points interieurs.

  if (!reversed) {
    previousPoint.ParametersOnS2(Up,Vp);
  }
  else {
    previousPoint.ParametersOnS1(Up,Vp);
  }

  Standard_Real UV1=UV(1);
  Standard_Real UV2=UV(2);


  //-- On met tout le monde ds une boite 0 1  x 0 1 
  //-- en tourte rigueur il faudrait faire les test en 3d

  Standard_Real deltau=UM-Um;
  Standard_Real deltav=VM-Vm;

  Up/=deltau; UV1/=deltau; 
  Vp/=deltav; UV2/=deltav;

  tolu/=deltau;
  tolv/=deltav;

  Standard_Real tolu2=tolu+tolu;
  Standard_Real tolv2=tolv+tolv;

  
  Standard_Real dPreviousCurrent = (Up-UV1)*(Up-UV1)+(Vp-UV2)*(Vp-UV2);
  for (k = 1; k <= etat2.Length(); k++) { 
    if (etat2(k) > 0) {
      Utest = ustart2(k);
      Vtest = vstart2(k);
      
      Utest/=deltau;
      Vtest/=deltav;
      
      Standard_Real UV1mUtest=UV1-Utest;
      Standard_Real UV2mVtest=UV2-Vtest;
      if(   (UV1mUtest<tolu2 && UV1mUtest>-tolu2)
	 && (UV2mVtest<tolv2 && UV2mVtest>-tolv2)) { 
	if(Index!=k) { 
	  //-- cout<<"* etat2 : ("<<k<<")"<<endl;
	  etat2(k)=-etat2(k); //-- marque le point comme point de passage 
	}
	else {  //-- Index == k
	  //-- cout<<"* Arrive"<<endl;
	  Arrive=Standard_True;
	}
      }
      else { 
	Standard_Real UpmUtest = (Up-Utest);
	Standard_Real VpmVtest = (Vp-Vtest);
	Standard_Real dPreviousStart = (UpmUtest)*(UpmUtest)+(VpmVtest)*(VpmVtest);
	Standard_Real dCurrentStart  = UV1mUtest * UV1mUtest + UV2mVtest * UV2mVtest;

	Scal=(UpmUtest)*(UV1mUtest)+(VpmVtest)*(UV2mVtest);
	if( (Abs(UpmUtest)<tolu && Abs(VpmVtest)<tolv)) { 
	  if(Index != k ) { 
	    //-- cout<<"** etat2 : ("<<k<<")"<<endl;
	    etat2(k) = -etat2(k);
	  }
	}
	else if(Scal<0 && (dPreviousStart+dCurrentStart < dPreviousCurrent)) { 
	  if (Index == k ) { // on a boucle.
	    Arrive = Standard_True;
	    //-- cout<<"** Arrive  : k="<<k<<endl;
	  }
	  else {
	    //-- cout<<"*** etat2 : ("<<k<<")"<<endl;
	    etat2(k) = -etat2(k); // marque le point point de passage 
	  }
	}
	else if(k!=Index) {
	  if(dPreviousStart < dPreviousCurrent*0.25) { 
	    etat2(k) = -etat2(k); // marque le point point de passage 
	    //-- cout<<"**** etat2 : ("<<k<<")"<<endl;
	  }
	  else { 
	    if(dCurrentStart < dPreviousCurrent*0.25) {
	      //-- cout<<"***** etat2 : ("<<k<<")"<<endl;
	      etat2(k) = -etat2(k); // marque le point point de passage 
	    }
	    else { 
	      Standard_Real UMidUtest = 0.5*(UV1+Up)-Utest;
	      Standard_Real VMidVtest = 0.5*(UV2+Vp)-Vtest;	    
	      Standard_Real dMiddleStart =  UMidUtest* UMidUtest+VMidVtest*VMidVtest;

	      if(dMiddleStart < dPreviousCurrent*0.5) { 
		//-- cout<<"*********** etat2 : ("<<k<<")"<<endl;
		etat2(k) = -etat2(k); // marque le point point de passage 
	      }
	    }
	  }
	}
      }
    }
  }

  // test de passage sur points passant.
  
  Irang =0;
  for (i = 1; i <= etat1.Length(); i++) {
    if (etat1(i) > 0 && etat1(i) < 11) { //test des points passant
      Utest = ustart1(i);
      Vtest = vstart1(i);
      Utest/=deltau;
      Vtest/=deltav;
      
      if (((Up-Utest) * (UV1-Utest) + (Vp-Vtest) * (UV2-Vtest) < 0) ||
	  (Abs(UV1-Utest) < tolu &&  Abs(UV2-Vtest) < tolv)) 
	Irang = i;
      else if (nbMultiplicities(i) > 0) {
	N=0;
	for (k = 1; k < i; k++) N = N + nbMultiplicities(k);
	for (Standard_Integer j = N + 1; j <= N + nbMultiplicities(i); j++) {
	  Standard_Real Umultj = Umult(j)/deltau;
	  Standard_Real Vmultj = Vmult(j)/deltav;	  
          if (((Up-Umultj)*(UV1-Umultj) +
	       (Vp-Vmultj)*(UV2-Vmultj) < 0) ||
	      (Abs(UV1-Umultj) < tolu &&
	       Abs(UV2-Vmultj) < tolv)) {
	    Irang=i;
	    break;
          }
	}
      }
    }    
  }
  return Arrive;
}


Standard_Boolean IntWalk_IWalking::TestArretAjout
  (TheIWFunction& sp,
   math_Vector& UV, 
   Standard_Integer& Irang,
   IntSurf_PntOn2S& Psol) 

// test d arret sur les points rajoutes 
// ces points sont des points sur frontiere naturelle qui n ont pas ete 
// donnes en entree
// on renvoit : Psol,  le point rajoute.
//              Irang, l index dans l iterateur des points rajoutes.
//              UV,     parametre du point rajoute.
//
{
  Standard_Boolean Arrive = Standard_False;
  Standard_Real U1,V1;
  Standard_Real Up,Vp; 

  if (!reversed) {
    previousPoint.ParametersOnS2(Up,Vp);
  }
  else {
    previousPoint.ParametersOnS1(Up,Vp);
  }

  Standard_Integer nbAjout = seqAjout.Length();
  for (Standard_Integer i = 1; i <= nbAjout; i++) {
    Irang = seqAjout.Value(i);

// on rajoute le test Abs(Irang) <= lines.Length() pour le cas ou
// on ouvre une ligne fermee suite a l ajout 1 point sur cette meme
// ligne. De toute facon on a un gros pb , car on va avoir 2 points
// rajoutes sur cette ligne...

    if (Abs(Irang) <= lines.Length()) {

      const Handle(IntWalk_TheIWLine)& Line = lines.Value(Abs(Irang));
      if (Irang>0) 
	Psol = Line->Value(Line->NbPoints()); 
      else 
	Psol = Line->Value(1);
      if (!reversed) {
	Psol.ParametersOnS2(U1, V1);
      }
      else {
	Psol.ParametersOnS1(U1, V1);
      }
      if (((Up-U1) * (UV(1)-U1) + 
	   (Vp-V1) * (UV(2)-V1)) < 0 ||
	  (Abs(UV(1)-U1) < tolerance(1) &&  
	   Abs(UV(2)-V1) < tolerance(2))) {
//jag 940615	Irang= -Abs(Irang); 
	Arrive = Standard_True; 
	UV(1) = U1;
	UV(2) = V1;
	static math_Vector bidF(1,1);
	static math_Matrix bidD(1,1,1,2);
	sp.Values(UV,bidF,bidD);
	break;
      }
    }
  }
  return Arrive;
}

void IntWalk_IWalking::TestArretCadre
  (const TColStd_SequenceOfReal& Umult,
   const TColStd_SequenceOfReal& Vmult,
   const Handle(IntWalk_TheIWLine)& Line,
   TheIWFunction& sp,
   math_Vector& UV,
   Standard_Integer& Irang)

// test d arret alors qu on est sur frontiere.
// on a essaye tous les tests d  arret et on est arrive.
// test d  arret sur les points donne au depart deja marques et sur 
// l  ensemble de la ligne courante. Cette ligne peut etre racourcie si
// on trouve in point d arret.
// Abs(Irang) = index dans l  iterateur des points de depart ou 0
//  si Irang <0 , il faut ajouter ce point a la ligne ( pas de Line->Cut)
// UV = parametre du point de depart
{
  Standard_Real Scal, Up, Vp, Uc, Vc;
  Standard_Integer N;
  Standard_Boolean Found = Standard_False;


  Irang =0;
  for (Standard_Integer i = 1; i <= etat1.Length(); i++) {
    if (etat1(i) < 0) {
      N=0; // rang dans UVMult.
      if (nbMultiplicities(i) > 0) {
	for (Standard_Integer k = 1; k < i; k++) 
	  N+=nbMultiplicities(k);
      }
      if (!reversed) {
	Line->Value(1).ParametersOnS2(Up,Vp);
      }
      else {
	Line->Value(1).ParametersOnS1(Up,Vp);
      }
      Standard_Integer nbp= Line->NbPoints();
      for (Standard_Integer j = 2; j <= nbp; j++) {
	if (!reversed) {
	  Line->Value(j).ParametersOnS2(Uc,Vc);
	}
	else {
	  Line->Value(j).ParametersOnS1(Uc,Vc);
	}

	Scal = (Up-ustart1(i)) * (Uc-ustart1(i)) +
	       (Vp-vstart1(i)) * (Vc-vstart1(i));
        // si on a trouve un point d arret : on arrete la ligne sur ce point.
	if (Scal < 0) { 
          Line->Cut(j);  nbp= Line->NbPoints();
          Irang = i;
	  UV(1) = ustart1(Irang);
	  UV(2) = vstart1(Irang);
          Found = Standard_True;
	}
	else if (Abs(Uc-ustart1(i)) < tolerance(1) &&
		 Abs(Vc-vstart1(i)) < tolerance(2) ) {
          Line->Cut(j);  nbp= Line->NbPoints();
          Irang=i; 
	  UV(1) = ustart1(Irang);
	  UV(2) = vstart1(Irang);
          Found = Standard_True;
	}
	else if (nbMultiplicities(i) > 0) {
          for (Standard_Integer k = N+1; k <= N + nbMultiplicities(i); k++) {
	    Scal = (Up-Umult(k)) * (Uc-Umult(k)) +
	           (Vp-Vmult(k)) * (Vc-Vmult(k));
	    if (Scal < 0) { 
	      Line->Cut(j);  nbp= Line->NbPoints();
	      Irang=i;
	      UV(1) = ustart1(Irang);
	      UV(2) = vstart1(Irang);
	      Found = Standard_True;
	      break;
	    }
	    else if (Abs(Uc-Umult(k)) < tolerance(1) &&
		     Abs(Vc-Vmult(k)) < tolerance(2)) {
	      Line->Cut(j);  nbp= Line->NbPoints();
	      Irang=i; 
	      UV(1) = ustart1(Irang);
	      UV(2) = vstart1(Irang);
	      Found = Standard_True;
	      break;
	    }
          }
	}
	if (Found) {
	  static math_Vector bidF(1,1);
	  static math_Matrix bidD(1,1,1,2);
	  sp.Values(UV,bidF,bidD);
	  Standard_Integer NBP =  Line->NbPoints();
	  Standard_Integer Indextg;	  
	  Line->TangentVector(Indextg);
	  if(Indextg > NBP) { 
	    if(j>3 && j<=NBP+1) { 
	      gp_Vec Dir3d = sp.Direction3d();
	      gp_Vec Dir3d1 = gp_Vec(Line->Value(j-2).Value(),Line->Value(j-1).Value());
	      Standard_Real dot = Dir3d.Dot(Dir3d1);
	      if(dot<0.0) { // Normalement on ne doit pas passer souvent ds cette Fonction !!! 
		Dir3d.Reverse();
		//-- cout<<" IntWalk_IWalking_2.gxx REVERSE "<<endl;
	      }
	      Line->SetTangentVector(previousd3d,j-1);
	    }
#ifdef DEB
	    else { 
	      cout<<" IntWalk_IWalking_2.gxx : bizarrerie 30 10 97 "<<endl;
	    }
#endif
	  }

	  return;
	}
	Up = Uc;
	Vp = Vc;
      }

      // et maintenant on compare le dernier point de la ligne et le dernier
      // point calcule.
      // il n y aura pas besoin de "Cuter"

      Scal = (Up-ustart1(i)) * (UV(1)-ustart1(i)) +
	// 	(Vp-ustart1(i)) * (UV(2)-vstart1(i));
      // modified by NIZHNY-MKK  Fri Oct 27 12:29:41 2000
	(Vp-vstart1(i)) * (UV(2)-vstart1(i));

      if (Scal < 0) { 
        Irang = i;
	UV(1) = ustart1(Irang);
	UV(2) = vstart1(Irang);
	Found = Standard_True;
      }
      else if (Abs(UV(1)-ustart1(i)) < tolerance(1) &&
	       Abs(UV(2)-vstart1(i)) < tolerance(2)) {
        Irang=i; 
	UV(1) = ustart1(Irang);
	UV(2) = vstart1(Irang);
	Found = Standard_True;
      }
      else if (nbMultiplicities(i) > 0) {
        for (Standard_Integer j = N+1; j <= N+nbMultiplicities(i); j++) {
	  Scal = (Up-Umult(j)) * (UV(1)-Umult(j)) +
                 (Vp-Vmult(j)) * (UV(2)-Vmult(j));
	  if (Scal < 0) { 
	    Irang=i;
	    UV(1) = ustart1(Irang);
	    UV(2) = vstart1(Irang);
	    Found = Standard_True;
	    break;
	  }
	  else if (Abs(UV(1)-Umult(j)) < tolerance(1) &&
		   Abs(UV(2)-Vmult(j)) < tolerance(2)) {
	    Irang=i; 
	    UV(1) = ustart1(Irang);
	    UV(2) = vstart1(Irang);
	    Found = Standard_True;
	    break;
	  }
        }
      }
      if (Found) {
	Irang = -Irang; // jag 941017
	static math_Vector bidF(1,1);
	static math_Matrix bidD(1,1,1,2);
	sp.Values(UV,bidF,bidD);
	return;
      }
    }
  } 
}