summaryrefslogtreecommitdiff
path: root/engines/kokompe/kokompe/engine/interval.cpp
blob: 48fc1c95a70940c7f3368bd0919d9615528c12a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570


//#include <stdfx.h>
#include <iostream>
#include <cmath>
using namespace std;


#include "interval.h"

#ifndef M_PI
#define M_PI 3.14159f
#endif

// An interval on the real line

  // Constructor
  // Real Interval
interval_t::interval_t() {
    status = unknown;
    lower = 0.0;
    upper = 0.0;
  }

ostream& operator<< (ostream &s, const interval_t &i) {
  switch (i.status) {
  case everywhere_false:
    return(s << "False");
    break;
  case everywhere_true:
    return(s << "True");
    break;
  case mixed_boolean:
    return(s << "Mixed");
    break;
  case real_interval:
    return(s << "[" << i.lower << " : " << i.upper << "]");
    break;
  case real_number:
    return(s << i.lower);
    break;
  }
  return(s << "Invalid!");
}

//foo
// Interval algrebra functions
// Returns the interval of possible output values given the input

// See, e.g. http://interval.louisiana.edu/Moores_early_papers/Boche_operational.pdf
// (although our handling of the concept of interval boolean operations is different

// For now, does not allow arithmetic operations on boolean data, 
// although this would be easy to add if it were needed !!!!!

interval_t interval_t::add(const interval_t& a, const interval_t& b) {
  interval_t temp;
  if (a.is_real_number() && b.is_real_number()) {
    temp.set_real_number(a.lower + b.lower);
  }
  else if ((a.is_real_interval() || a.is_real_number()) &&
	  (b.is_real_interval() || b.is_real_number())) {
    temp.set_real_interval(a.lower + b.lower, a.upper + b.upper);        
  }
  return(temp);
}

interval_t interval_t::sub(const interval_t &a, const interval_t& b) {
  interval_t temp;
  if (a.is_real_number() && b.is_real_number()) {
    temp.set_real_number(a.lower - b.lower);
  }
  else if ((a.is_real_interval() || a.is_real_number()) &&
	  (b.is_real_interval() || b.is_real_number())) {
    temp.set_real_interval(a.lower - b.upper, a.upper - b.lower);        
  }
  return(temp);
}

interval_t interval_t::mul(const interval_t &a, const interval_t& b) {
  interval_t result;
  float c[4];
  float min = (float)HUGE, max = -(float)HUGE;
  int i;

  // Number multiplication
  if (a.is_real_number() && b.is_real_number()) {
    result.set_real_number(a.lower * b.lower);
    return(result);
  }

  // Interval multiplication
  else if ((a.is_real_interval() || a.is_real_number()) &&
	  (b.is_real_interval() || b.is_real_number())) {
    
    c[0] = a.lower*b.lower;
    c[1] = a.lower*b.upper;
    c[2] = a.upper*b.lower;
    c[3] = a.upper*b.upper;
    
    for (i=0; i < 4; i++) {
      if (c[i] > max)
	max = c[i];
      if (c[i] < min)
	min = c[i];
    }
    result.set_real_interval(min, max);        
    return(result);
  }

  // Boolean times real number/interval: 0 if false, interval if true, interval including zero if mixed
  else if (a.is_boolean() && (b.is_real_number() ||  b.is_real_interval())) {
    if (a.is_true())
      result = b;
    else if (a.is_false())
      result.set_real_number(0.0f);
    else if (a.is_mixed()) {
      result = b;
      result.expand_to_include_number(0.0f);
    }
    return(result);
  }
  else if (b.is_boolean() && (a.is_real_number() ||  a.is_real_interval())) {
    return(mul(b,a));
  }

  // Boolean multiplication is AND
  else if (a.is_boolean() && b.is_boolean()) {
    return(bool_and(a,b));
  }
  else {
    return(result);
  }
}
    

interval_t interval_t::div(const interval_t &a, const interval_t& b) {
  interval_t temp;
  interval_t b2;
  static int warning = 1;

  //  cout << "entering divide.\n";

  if ((a.is_real_number()) && (b.is_real_number())) {
    // Scalar / Scalar
    //cout << "scalar/scalar.\n";
    temp.set_real_number(a.lower / b.lower);
  }
  else if ((a.is_real_interval()) && (b.is_real_number())) {
    // Interval / Scalar --> Very common case
    //cout << "inteval/scalar\n";
    b2.set_real_number(1/b.lower);
    temp = mul(a, b2);
    //cout << "a: " << a << " b: " << b << " b2: " << b2 << " temp: " << temp << "\n";  

  }
  else if ((a.is_real_number() || a.is_real_interval()) && b.is_real_interval()) {
    // Division by Interval
    //cout << "/interval.\n";     

    if ((b.lower > 0) || (b.upper < 0)) {
      // Division by intervals not containing zero
      //cout << "not containing zero\n";
      b2.set_real_interval(1/b.upper, 1/b.lower);
      temp = mul(a, b2);
    }
    
    else {
      // Division by intervals containing zero

      // I think there may be some limit analysis
      // that could be done here, but for now just
      // set interval to +/- Inf
      if (warning) {
	cerr << "Division by interval containing zero, setting interval to (-Inf, +Inf)" << endl;
	warning = 0;
      } 
      temp.set_real_interval(-(float)HUGE, +(float)HUGE);
    }
  }
  // cout << "about to return.\n";

  return(temp);  
}


// Less than and greater than:  Real intervals and numbers to boolean
interval_t interval_t::less_than(const interval_t &a, const interval_t &b) {
  interval_t result;

  if (a.is_real_number() && b.is_real_number()) {
    result.set_boolean(a.lower < b.lower);
  }
  else if ((a.is_real_number() || a.is_real_interval()) &&
	  (b.is_real_number() || b.is_real_interval())) {
    if (a.upper < b.lower)
      result.set_boolean(1);
    else if(b.upper < a.lower)
      result.set_boolean(0);
    else
      result.set_mixed();
  }
  return(result);
}
 
interval_t interval_t::greater_than(const interval_t &a, const interval_t &b) {
  interval_t null_interval;

  return(less_than(b,a));
}

interval_t interval_t::greater_than_or_equals(const interval_t &a, const interval_t &b) {
  interval_t null_interval;

  return(bool_or(greater_than(a,b), equals(a,b)));
}

interval_t interval_t::less_than_or_equals(const interval_t &a, const interval_t &b) {
  interval_t null_interval;
  
  return(bool_or(less_than(a,b), equals(a,b)));
}


// Equals: Real numbers to boolean

interval_t interval_t::equals(const interval_t &a, const interval_t &b) {
  interval_t result, temp;

  if (a.is_real_number() && b.is_real_number()) {
    result.set_boolean(a.lower == b.lower);
  }
  else if ((a.is_real_number() || a.is_real_interval()) &&
	  (b.is_real_number() || b.is_real_interval())) {
    
    temp = less_than(a, b);
    if (temp.is_resolved()) 
      result.set_boolean(0);
    else
      result.set_mixed();
  }
  return(result);
}


// Boolean NOT
interval_t interval_t::bool_not(const interval_t &a, const interval_t &b) {
  interval_t result;
  
  if (a.is_boolean()) {
    
    if (a.is_resolved()) {
      result.set_boolean(a.get_boolean() == 0);
    }
    else {
      result.set_mixed();
    }
  }
 
  return(result);

}

// Boolean OR
interval_t interval_t::bool_or(const interval_t &a, const interval_t &b) {
  interval_t result;

  if (a.is_boolean() && b.is_boolean()) {
    
    if (a.is_false())
      return(b);
    if (b.is_false())
      return(a);
    
    if (a.is_true()) {
      result.set_boolean(1);
      return(result);
    }
    if (b.is_true()) {
      result.set_boolean(1);
      return(result);
    }
    result.set_mixed();
    return(result);
  }
  return(result);
}

// Boolean AND
interval_t interval_t::bool_and(const interval_t &a, const interval_t &b) {
  interval_t result;

  if (a.is_boolean() && b.is_boolean()) {
    
    if (a.is_true())
      return(b);
    if (b.is_true())
      return(a);
    
    if (a.is_false()) {
      result.set_boolean(0);
      return(result);
    }
    if (b.is_false()) {
      result.set_boolean(0);
      return(result);
    }
    result.set_mixed();
    return(result);
  }
  return(result);
}

interval_t interval_t::sin(const interval_t &a, const interval_t &b) {
  interval_t result;
  float mod_arg, range, upper, lower;
  float x;
  float y;


  if (a.is_real_number()) {
    result.set_real_number(sinf(a.lower));
  }
  else {
    range = a.upper - a.lower;
    if (range > (2*M_PI)) {
      result.set_real_interval(-1.0f, 1.0f);
    }
    else {
      mod_arg = fmodf(a.lower,2*(float)M_PI);
      
      x = sinf(a.lower);
      y = sinf(a.upper);
      if (x > y) {
	upper = x;
	lower = y;
      }
      else {
	lower = x;
	upper = y;
      }

      if (mod_arg <= (M_PI*0.5f)) {
	if (( (M_PI*0.5f) - mod_arg) < range) {
	  // M_PI/2 is inside range
	  upper = 1.0f;
	}
      }
      if (mod_arg <= (1.5f*M_PI)) {
	if (((1.5f*M_PI) - mod_arg) < range) {
	  // 3*M_PI/2 is inside range
	  lower = -1.0f;
	}
      }
      result.set_real_interval(lower, upper);
    }
  }
  return(result);
}


interval_t interval_t::cos(const interval_t &a, const interval_t &b) {
  interval_t result;
  interval_t offset;
  
  
  if (a.is_real_number()) {
    result.set_real_number(cosf(a.lower));
    return(result);
  }
  else {
    offset.set_real_number((float)M_PI/2);
    return(sin(add(a, offset), offset)); 
  }
}


// Identical to powf(x,y), but checks for some trivial cases 
// and computes them more efficiently
inline float powcheckf(float x, float y) {
  if (y == 2)
    return(x*x);
  else if (y == 1)
    return(x);
  else
    return(powf(x,y));
}

#ifdef WIN32
inline float roundf(float x) { return floorf(x + 0.5); }
#endif


int is_integer(float x) {
  float epsilon = 1e-6;

  if (fabsf( x - roundf(x)) < epsilon)
    return(1);
  else
    return(0);
}

int is_odd(float x) {
  int xint = (int)roundf(x);
  if (xint % 2)
    return(1);
  else
    return(0);
}


interval_t interval_t::power(const interval_t &a, const interval_t &b) {
  interval_t result;
  float x, y;
  int unbounded = 0;
  static int warning1 = 1, warning2 = 1, warning3 = 1, warning4 = 1;
  
  if ( a.is_real_interval()   && (a.lower > a.upper) ) {
    cerr << "entered power with out-of-order interval " << a.lower << " " << a.upper <<" " << a.status << endl;    
  }
  
  if (b.is_real_number()) {
    if (a.is_real_number()) {
      // For purely numerical (non-interval) arguments, just
      // compute the result and be done with it.
      result.set_real_number(powcheckf(a.lower, b.lower));
    }
    else {
      // Interval raised to a power.
      
      float power = fabsf(b.lower);
      
      if (power == 0) {
	// ********************* RAISING TO THE ZEROTH POWER
	
	if (a.lower >= 0) {
	  // any positive number or zero to the zero power is one
	  result.set_real_number(1.0f);
	}
	else if (a.upper < 0) {
	  // negative number to the zero power is infinity
	  result.set_real_number(HUGE);
	}
	else {
	  // interval containing positive and negative numbers
	  // raised to the zero power could be zero OR infinity
	  if (warning1) {
	    cerr << "Interval containing zero raised to the zero power; unbounded. " << endl;
	    warning1 = 0;
	  }
	  unbounded = 1;
	}
      }
      else {
	
	// ******************* FIRST COMPUTE FOR POSITIVE POWER
	
	if (is_integer(power)) {
	  if (is_odd(power)) {
	    // odd integer power -> monotonic
	    result.set_real_interval(powcheckf(a.lower,power), powcheckf(a.upper,power));
	  }     
	  else {
	    // even integer power -> not monotonic, need to consider cases
	    if ((a.lower <= 0) && (a.upper >= 0)) {
	      x = fabsf(a.lower);
	      y = fabsf(a.upper);
	      if (x > y) {
		result.set_real_interval(0, powcheckf(x, power));
	      }
	      else {
		result.set_real_interval(0, powcheckf(y, power));;
	      }
	    }
	    else if (a.upper > 0) {
	      result.set_real_interval(powcheckf(a.lower, power), powcheckf(a.upper, power));
	    }
	    else if (a.lower < 0) {
	      result.set_real_interval(powcheckf(a.upper, power), powcheckf(a.lower, power));
	    }
	  }
	}
	else {
	  // non-integral power
	  if (a.upper > 0) {
	    // if argument is guaranteed positive -> monotonic
	    result.set_real_interval(powf(a.lower, power), powf(a.upper, power));
	  }
	  else {
	    // possibly negative number raised to non-integral power
	    // this could be undefined.  we don't know how to handle this case yet,
	    // so just punt and set to -INF, INF, meaning it could be anything.  This 
	    // will force an actual numerical evaluation.  Also print an error message. 
	    if (warning2) {
	      cerr << "Possibly negative number raised to non-integral power.  Setting interval to (-INF, INF)" << endl;
	      warning2 = 0;
	    }
	    unbounded = 1;	    
	  }
	}
	
	// THEN CHECK TO SEE IF POWER IS NEGATIVE AND RECIPROCAL NEEDED
	
	if (b.lower < 0) {
	  // Negative power -- equiv. to 1/(x^y), so interval divide
	  if ((result.upper < 0) || (result.lower > 0)) {
	    result.set_real_interval(1.0f/result.upper, 1.0f/result.lower);
	  }
	  else {	    
	    if (warning4) {
	      cerr << "Negative power results in division by interval containing zero, setting interval to (-Inf, +Inf)" << endl;
	      warning4 = 0;
	    } 
	    unbounded = 1;
	  }
	}
      }
    }
  }
  else {
    if (warning3) {
      cerr << "Raising a power to a non-constant expression --- not yet supported --- setting interval to (-Inf, Inf)" << endl;
      warning3 = 0;
    }
    unbounded = 1;
  }
  
  
  // IF UNBOUNDED IS SET -- SET INTERVAL TO WHOLE REAL INTERVAL  
  if (unbounded) {
    result.set_real_interval(-(float)HUGE, (float)HUGE);
  }	

  return(result);
    
}    



interval_t interval_t::sqrt(const interval_t &a, const interval_t &b) {
  interval_t result;

  if (a.is_real_number()) {
    result.set_real_number(sqrtf(a.lower));
  }
  else {
    if (a.lower < 0) {
      cout << "Possibly Negative square root " << a.lower << " " << a.upper << "\n";
    }
    else {
      result.set_real_interval(sqrtf(a.lower), sqrtf(a.upper));
    }
  }
  
  return(result);
}

interval_t interval_t::unary_minus(const interval_t &a, const interval_t &b) {
  interval_t result;
  
  if (a.is_real_number()) {
    result.set_real_number(-a.lower);
  }
  else {
    result.set_real_interval(-a.upper, -a.lower);
  }
  return(result);
}