summaryrefslogtreecommitdiff
path: root/trunk/users/adrian/FiveD_GCode/FiveD_GCode_Interpreter/applet/cartesian_dda.h
blob: 9082cf58ac93d2a8f9a3e311048d6ff49de06a95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * This class controls the movement of the RepRap machine.
 * It implements a DDA in four dimensions, so the length of extruded 
 * filament is treated as a variable, just like X, Y, and Z.
 *
 * Adrian Bowyer 9 May 2009
 */

#ifndef CARTESIAN_DDA_H
#define CARTESIAN_DDA_H

// Main class for moving the RepRap machine about

class cartesian_dda
{
private:

  //extruder* ext;               // The extruder I'm currently using - keep this up to date...

  FloatPoint units;            // Factors for converting either mm or inches to steps

  FloatPoint target_position;  // Where it's going
  FloatPoint delta_position;   // The difference between the two
  float distance;              // How long the path is
  
  LongPoint current_steps;     // Similar information as above in steps rather than units
  LongPoint target_steps;
  LongPoint delta_steps;
  LongPoint dda_counter;       // DDA error-accumulation variables
  long t_scale;                // When doing lots of t steps, scale them so the DDA doesn't spend for ever on them
  
  volatile bool x_direction;            // Am I going in the + or - direction?
  volatile bool y_direction;
  volatile bool z_direction;
  volatile bool e_direction;
  volatile bool f_direction;

  volatile bool x_can_step;             // Am I not at an endstop?  Have I not reached the target? etc.
  volatile bool y_can_step;
  volatile bool z_can_step;
  volatile bool e_can_step;
  volatile bool f_can_step;

// Variables for acceleration calculations

  volatile long total_steps;            // The number of steps to take along the longest movement axis
  
  long timestep;               // microseconds
  bool nullmove;               // this move is zero length
  volatile bool real_move;     // Flag to know if we've changed something physical
  volatile bool live;          // Flag for when we're plotting a line

// Internal functions that need not concern the user

  // Take a single step

  void do_x_step();               
  void do_y_step();
  void do_z_step();
  void do_e_step();
  
  // Can this axis step?
  
  bool can_step(int min_pin, int max_pin, long current, long target, bool dir);
  
  // Read a limit switch
  
  bool read_switch(byte pin);
  
  // Work out the number of microseconds between steps
  
  long calculate_feedrate_delay(const float& feedrate);
  
  // Switch the steppers on and off
  
  void enable_steppers();
  void disable_steppers();
  
  // Custom short delay function (microseconds)
  
  //void delayMicrosecondsInterruptible(unsigned int us);
  
  
public:

  cartesian_dda();
  
  // Set where I'm going
  
  void set_target(const FloatPoint& p);
  
  // Start the DDA
  
  void dda_start();
  
  // Do one step of the DDA
  
  void dda_step();
  
  // Are we running at the moment?
  
  bool active();
  
  // Kill - stop all activity and turn off steppers
  void kill();
  
  // True for mm; false for inches
  
  void set_units(bool using_mm);
  
  // Record the selection of a new extruder
  
  //void set_extruder(extruder* ex);
};

// Short functions inline to save memory; particularly useful in the Arduino


//inline void cartesian_dda::set_extruder(extruder* ex)
//{
//  ext = ex;
//}

inline bool cartesian_dda::active()
{
  return live;
}

inline void cartesian_dda::do_x_step()
{
	digitalWrite(X_STEP_PIN, HIGH);
	delayMicrosecondsInterruptible(5);
	digitalWrite(X_STEP_PIN, LOW);
}

inline void cartesian_dda::do_y_step()
{
	digitalWrite(Y_STEP_PIN, HIGH);
	delayMicrosecondsInterruptible(5);
	digitalWrite(Y_STEP_PIN, LOW);
}

inline void cartesian_dda::do_z_step()
{
	digitalWrite(Z_STEP_PIN, HIGH);
	delayMicrosecondsInterruptible(5);
	digitalWrite(Z_STEP_PIN, LOW);
}

inline void cartesian_dda::do_e_step()
{
        ex[extruder_in_use]->sStep();
}

inline long cartesian_dda::calculate_feedrate_delay(const float& feedrate)
{  
        
	// Calculate delay between steps in microseconds.  Here it is in English:
        // (feedrate is in mm/minute, distance is in mm)
	// 60000000.0*distance/feedrate  = move duration in microseconds
	// move duration/total_steps = time between steps for master axis.

	return round( (distance*60000000.0) / (feedrate*(float)total_steps) );	
}

inline bool cartesian_dda::read_switch(byte pin)
{
	//dual read as crude debounce

	#if ENDSTOPS_INVERTING == 1
		return !digitalRead(pin) && !digitalRead(pin);
	#else
		return digitalRead(pin) && digitalRead(pin);
	#endif
}

#endif