summaryrefslogtreecommitdiff
path: root/tags/firmware/gen3/1.1/gcode/MasterGCodeInterpreter/stepper_control.pde
blob: a04228706fe797fbcd36ee6963c46d0da10f554d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Yep, this is actually -*- c++ -*-

//init our variables
long max_delta;
long x_counter;
long y_counter;
long z_counter;
bool x_can_step;
bool y_can_step;
bool z_can_step;
int milli_delay;

#if INVERT_ENABLE_PINS == 1
#define ENABLE_ON LOW
#else
#define ENABLE_ON HIGH
#endif

void init_steppers()
{
	//turn them off to start.
	disable_steppers();
	
	//init our points.
	current_units.x = 0.0;
	current_units.y = 0.0;
	current_units.z = 0.0;
	target_units.x = 0.0;
	target_units.y = 0.0;
	target_units.z = 0.0;
	
	pinMode(X_STEP_PIN, OUTPUT);
	pinMode(X_DIR_PIN, OUTPUT);
	pinMode(X_ENABLE_PIN, OUTPUT);
	pinMode(Y_STEP_PIN, OUTPUT);
	pinMode(Y_DIR_PIN, OUTPUT);
	pinMode(Y_ENABLE_PIN, OUTPUT);
	pinMode(Z_STEP_PIN, OUTPUT);
	pinMode(Z_DIR_PIN, OUTPUT);
	pinMode(Z_ENABLE_PIN, OUTPUT);

#if ENDSTOPS_MIN_ENABLED == 1
	pinMode(X_MIN_PIN, INPUT);
	pinMode(Y_MIN_PIN, INPUT);
	pinMode(Z_MIN_PIN, INPUT);
#endif
#if ENDSTOPS_MAX_ENABLED == 1
	pinMode(X_MAX_PIN, INPUT);
	pinMode(Y_MAX_PIN, INPUT);
	pinMode(Z_MAX_PIN, INPUT);
#endif
	
	//figure our stuff.
	calculate_deltas();
}

void dda_move(long micro_delay)
{
	//turn on steppers to start moving =)
	enable_steppers();
	
	//figure out our deltas
	max_delta = max(delta_steps.x, delta_steps.y);
	max_delta = max(delta_steps.z, max_delta);

	//init stuff.
	long x_counter = -max_delta/2;
	long y_counter = -max_delta/2;
	long z_counter = -max_delta/2;
	
	//our step flags
	bool x_can_step = 0;
	bool y_can_step = 0;
	bool z_can_step = 0;
	
	//how long do we delay for?
	if (micro_delay >= 16383)
		milli_delay = micro_delay / 1000;
	else
		milli_delay = 0;

	//do our DDA line!
	do
	{
		x_can_step = can_step(X_MIN_PIN, X_MAX_PIN, current_steps.x, target_steps.x, x_direction);
		y_can_step = can_step(Y_MIN_PIN, Y_MAX_PIN, current_steps.y, target_steps.y, y_direction);
		z_can_step = can_step(Z_MIN_PIN, Z_MAX_PIN, current_steps.z, target_steps.z, z_direction);

		if (x_can_step)
		{
			x_counter += delta_steps.x;
			
			if (x_counter > 0)
			{
				do_step(X_STEP_PIN);
				x_counter -= max_delta;
				
				if (x_direction)
					current_steps.x++;
				else
					current_steps.x--;
			}
		}

		if (y_can_step)
		{
			y_counter += delta_steps.y;
			
			if (y_counter > 0)
			{
				do_step(Y_STEP_PIN);
				y_counter -= max_delta;

				if (y_direction)
					current_steps.y++;
				else
					current_steps.y--;
			}
		}
		
		if (z_can_step)
		{
			z_counter += delta_steps.z;
			
			if (z_counter > 0)
			{
				do_step(Z_STEP_PIN);
				z_counter -= max_delta;
				
				if (z_direction)
					current_steps.z++;
				else
					current_steps.z--;
			}
		}
		
		//wait for next step.
		if (milli_delay > 0)
			delay(milli_delay);			
		else
			delayMicrosecondsInterruptible(micro_delay);
	}
	while (x_can_step || y_can_step || z_can_step);
	
	//set our points to be the same
	current_units.x = target_units.x;
	current_units.y = target_units.y;
	current_units.z = target_units.z;
	calculate_deltas();
}

bool can_step(byte min_pin, byte max_pin, long current, long target, byte direction)
{
	//stop us if we're on target
	if (target == current)
		return false;
#if ENDSTOPS_MIN_ENABLED == 1
	//stop us if we're at home and still going 
	else if (read_switch(min_pin) && !direction)
		return false;
#endif
#if ENDSTOPS_MAX_ENABLED == 1
	//stop us if we're at max and still going
 	else if (read_switch(max_pin) && direction)
 		return false;
#endif

	//default to being able to step
	return true;
}

void do_step(byte step_pin)
{
	digitalWrite(step_pin, HIGH);
	delayMicroseconds(5);
	digitalWrite(step_pin, LOW);
}

bool read_switch(byte pin)
{
	//dual read as crude debounce
	#if ENDSTOPS_INVERTING == 1
		return !digitalRead(pin) && !digitalRead(pin);
	#else
		return digitalRead(pin) && digitalRead(pin);
	#endif
}

long to_steps(float steps_per_unit, float units)
{
	return steps_per_unit * units;
}

void set_target(float x, float y, float z)
{
	target_units.x = x;
	target_units.y = y;
	target_units.z = z;
	
	calculate_deltas();
}

void set_position(float x, float y, float z)
{
	current_units.x = x;
	current_units.y = y;
	current_units.z = z;
	
	calculate_deltas();
}

void calculate_deltas()
{
	//figure our deltas.
	delta_units.x = abs(target_units.x - current_units.x);
	delta_units.y = abs(target_units.y - current_units.y);
	delta_units.z = abs(target_units.z - current_units.z);
				
	//set our steps current, target, and delta
	current_steps.x = to_steps(x_units, current_units.x);
	current_steps.y = to_steps(y_units, current_units.y);
	current_steps.z = to_steps(z_units, current_units.z);

	target_steps.x = to_steps(x_units, target_units.x);
	target_steps.y = to_steps(y_units, target_units.y);
	target_steps.z = to_steps(z_units, target_units.z);

	delta_steps.x = abs(target_steps.x - current_steps.x);
	delta_steps.y = abs(target_steps.y - current_steps.y);
	delta_steps.z = abs(target_steps.z - current_steps.z);
	
	//what is our direction
	x_direction = (target_units.x >= current_units.x);
	y_direction = (target_units.y >= current_units.y);
	z_direction = (target_units.z >= current_units.z);

	//set our direction pins as well
#if INVERT_X_DIR == 1
	digitalWrite(X_DIR_PIN, !x_direction);
#else
	digitalWrite(X_DIR_PIN, x_direction);
#endif
#if INVERT_Y_DIR == 1
	digitalWrite(Y_DIR_PIN, !y_direction);
#else
	digitalWrite(Y_DIR_PIN, y_direction);
#endif
#if INVERT_Z_DIR == 1
	digitalWrite(Z_DIR_PIN, !z_direction);
#else
	digitalWrite(Z_DIR_PIN, z_direction);
#endif
}


long calculate_feedrate_delay(float feedrate)
{
	//how long is our line length?
	float distance = sqrt(delta_units.x*delta_units.x + 
                              delta_units.y*delta_units.y + 
                              delta_units.z*delta_units.z);
	long master_steps = 0;
	
	//find the dominant axis.
	if (delta_steps.x > delta_steps.y)
	{
		if (delta_steps.z > delta_steps.x)
			master_steps = delta_steps.z;
		else
			master_steps = delta_steps.x;
	}
	else
	{
		if (delta_steps.z > delta_steps.y)
			master_steps = delta_steps.z;
		else
			master_steps = delta_steps.y;
	}

	//calculate delay between steps in microseconds.  this is sort of tricky, but not too bad.
	//the formula has been condensed to save space.  here it is in english:
        // (feedrate is in mm/minute)
	// distance / feedrate * 60000000.0 = move duration in microseconds
	// move duration / master_steps = time between steps for master axis.

	return ((distance * 60000000.0) / feedrate) / master_steps;	
}

long getMaxSpeed()
{
	if (delta_steps.z > 0)
		return calculate_feedrate_delay(FAST_Z_FEEDRATE);
	else
		return calculate_feedrate_delay(FAST_XY_FEEDRATE);
}

void enable_steppers()
{
	// Enable steppers only for axes which are moving
	// taking account of the fact that some or all axes
	// may share an enable line (check using macros at
	// compile time to avoid needless code)
	if ( target_units.x == current_units.x
		#if X_ENABLE_PIN == Y_ENABLE_PIN
		     && target_units.y == current_units.y
		#endif
		#if X_ENABLE_PIN == Z_ENABLE_PIN
		     && target_units.z == current_units.z
		#endif
	)
		digitalWrite(X_ENABLE_PIN, !ENABLE_ON);
	else
		digitalWrite(X_ENABLE_PIN, ENABLE_ON);
	if ( target_units.y == current_units.y
		#if Y_ENABLE_PIN == X_ENABLE_PIN
		     && target_units.x == current_units.x
		#endif
		#if Y_ENABLE_PIN == Z_ENABLE_PIN
		     && target_units.z == current_units.z
		#endif
	)
		digitalWrite(Y_ENABLE_PIN, !ENABLE_ON);
	else
		digitalWrite(Y_ENABLE_PIN, ENABLE_ON);
	if ( target_units.z == current_units.z
		#if Z_ENABLE_PIN == X_ENABLE_PIN
			&& target_units.x == current_units.x
		#endif
		#if Z_ENABLE_PIN == Y_ENABLE_PIN
			&& target_units.y == current_units.y
		#endif
	)
		digitalWrite(Z_ENABLE_PIN, !ENABLE_ON);
	else
		digitalWrite(Z_ENABLE_PIN, ENABLE_ON);
}

void disable_steppers()
{
	//disable our steppers
	digitalWrite(X_ENABLE_PIN, !ENABLE_ON);
	digitalWrite(Y_ENABLE_PIN, !ENABLE_ON);
	digitalWrite(Z_ENABLE_PIN, !ENABLE_ON);
}

void delayMicrosecondsInterruptible(unsigned int us)
{

#if F_CPU >= 16000000L
    // for the 16 MHz clock on most Arduino boards

	// for a one-microsecond delay, simply return.  the overhead
	// of the function call yields a delay of approximately 1 1/8 us.
	if (--us == 0)
		return;

	// the following loop takes a quarter of a microsecond (4 cycles)
	// per iteration, so execute it four times for each microsecond of
	// delay requested.
	us <<= 2;

	// account for the time taken in the preceeding commands.
	us -= 2;
#else
    // for the 8 MHz internal clock on the ATmega168

    // for a one- or two-microsecond delay, simply return.  the overhead of
    // the function calls takes more than two microseconds.  can't just
    // subtract two, since us is unsigned; we'd overflow.
	if (--us == 0)
		return;
	if (--us == 0)
		return;

	// the following loop takes half of a microsecond (4 cycles)
	// per iteration, so execute it twice for each microsecond of
	// delay requested.
	us <<= 1;
    
    // partially compensate for the time taken by the preceeding commands.
    // we can't subtract any more than this or we'd overflow w/ small delays.
    us--;
#endif

	// busy wait
	__asm__ __volatile__ (
		"1: sbiw %0,1" "\n\t" // 2 cycles
		"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
	);
}