1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
/*
RepRap
------
The Replicating Rapid Prototyper Project
Copyright (C) 2005
Adrian Bowyer & The University of Bath
http://reprap.org
Principal author:
Adrian Bowyer
Department of Mechanical Engineering
Faculty of Engineering and Design
University of Bath
Bath BA2 7AY
U.K.
e-mail: A.Bowyer@bath.ac.uk
RepRap is free; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.
RepRap is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public Licence for more details.
For this purpose the words "software" and "library" in the GNU Library
General Public Licence are taken to mean any and all computer programs
computer files data results documents and other copyright information
available from the RepRap project.
You should have received a copy of the GNU Library General Public
Licence along with RepRap; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA,
or see
http://www.gnu.org/
=====================================================================
RrCSGPolygon: 2D polygons as boolean combinations of half-planes,
together with spatial quad tree and other tools
First version 14 November 2005
*/
package org.reprap.geometry.polygons;
import java.util.ArrayList;
import java.util.List;
import org.reprap.Attributes;
import org.reprap.Preferences;
/**
*
*/
class snakeEnd
{
/**
*
*/
public RrPolygon p;
/**
*
*/
public RrHalfPlane h;
/**
*
*/
public int index;
/**
* @param pl
* @param hs
* @param i
*/
snakeEnd(RrPolygon pl, RrHalfPlane hs, int i)
{
p = pl;
h = hs;
index = i;
}
}
/**
* Polygons as CSG combinations of half spaces with recursive quad-tree
* division of their containing boxes.
*
* TODO: Change the quad tree to a BSP tree?
*/
public class RrCSGPolygon
{
/**
* The polygon
*/
private RrCSG csg;
/**
* Its enclosing box
*/
private RrBox box;
/**
* Quad tree division, respectively: NW, NE, SE, SW
*/
private RrCSGPolygon q1, q2, q3, q4;
/**
* Squared diagonal of the smallest box to go to
*/
private double resolution_2;
/**
* Used by the edge-generation software.
*/
private boolean visit1, visit2;
/**
* Swell factor for division
*/
private double sFactor;
/**
* Number of edges in the box
*/
private int edgeCount;
/**
* Is this box a vertex?
*/
private boolean corner;
/**
* Edge parametric intervals
*/
private RrInterval i1, i2;
/**
* The vertex, if it exists
*/
private Rr2Point vertex;
/**
* the attributes of this polygon
*/
private Attributes att;
/**
* Set one up
* @param p
* @param bx
*/
public RrCSGPolygon(RrCSG p, RrBox bx, Attributes a)
{
if(a == null)
System.err.println("RrCSGPolygon(): null attributes!");
box = new RrBox(bx);
att = a;
q1 = null;
q2 = null;
q3 = null;
q4 = null;
resolution_2 = box.dSquared()*Preferences.tiny();
csg = p;
visit1 = false;
visit2 = false;
sFactor = Preferences.swell();
edgeCount = 0;
corner = false;
vertex = null;
i1 = new RrInterval();
i2 = new RrInterval();
}
/**
* Get children etc
* @return children
*/
public RrCSGPolygon c_1() { return q1; }
public RrCSGPolygon c_2() { return q2; }
public RrCSGPolygon c_3() { return q3; }
public RrCSGPolygon c_4() { return q4; }
public RrCSG csg() { return csg; }
public RrBox box() { return box; }
public double resolution2() { return resolution_2; }
public double swell() { return sFactor; }
public int edges() { return edgeCount; }
public boolean corner() { return corner; }
public Rr2Point vertex() { return vertex; }
public RrInterval interval1() { return i1; }
public RrInterval interval2() { return i2; }
public Attributes getAttributes() { return att; }
/**
* Convert to a string - internal recursive call
* @param quad
*/
private String toString_r(String quad)
{
if(csg.operator() == RrCSGOp.UNIVERSE)
quad = quad + "U";
else
quad = quad + Integer.toString(csg.complexity());
if(q1 == null)
{
String result = quad + "\n";
return result;
} else
{
return(q1.toString_r(quad + ":NW-") +
q2.toString_r(quad + ":NE-") +
q3.toString_r(quad + ":SE-") +
q4.toString_r(quad + ":SW-"));
}
}
/**
* Convert to a string
*/
public String toString()
{
return "RrCSGPolygon\n" + toString_r(":-");
}
/**
* Quad-tree division - recursive internal call
* @param res_2
* @param swell
*/
private void divide_r(double res_2, double swell)
{
resolution_2 = res_2;
sFactor = swell;
// Anything as simple as a single corner, evaluate and go home
if(csg.complexity() < 3)
{
evaluate();
return;
}
// Too small a box?
if(box.dSquared() < resolution_2)
{
System.err.println("RrCSGPolygon.divide(): hit resolution limit! Complexity: " +
csg.complexity());
csg = RrCSG.nothing(); // Throw it away! (It is small...)
return;
}
// For comlexities of 4 or less, check if regularization throws
// some away.
if(csg.complexity() < 5)
{
csg = csg.regularise();
if(csg.complexity() < 3)
{
evaluate();
return;
}
}
// Set up the quad-tree division
Rr2Point sw = box.sw();
Rr2Point nw = box.nw();
Rr2Point ne = box.ne();
Rr2Point se = box.se();
Rr2Point cen = box.centre();
double addX = 0.5*(ne.x() - sw.x())*(sFactor - 1);
double addY = 0.5*(ne.y() - sw.y())*(sFactor - 1);
// Prune the set to the four boxes, and put the results in the children
Rr2Point newSW = Rr2Point.mul(Rr2Point.add(sw, nw), 0.5);
Rr2Point newNE = Rr2Point.mul(Rr2Point.add(nw, ne), 0.5);
RrBox s = new RrBox(Rr2Point.add(newSW, new Rr2Point(0, -addY)),
Rr2Point.add(newNE, new Rr2Point(addX, 0)));
q1 = new RrCSGPolygon(csg.prune(s), s, att);
s = new RrBox(Rr2Point.add(cen, new Rr2Point(-addX, -addY)),
ne);
q2 = new RrCSGPolygon(csg.prune(s), s, att);
newSW = Rr2Point.mul(Rr2Point.add(sw, se), 0.5);
newNE = Rr2Point.mul(Rr2Point.add(se, ne), 0.5);
s = new RrBox(Rr2Point.add(newSW, new Rr2Point(-addX, 0)),
Rr2Point.add(newNE, new Rr2Point(0, addY)));
q3 = new RrCSGPolygon(csg.prune(s), s, att);
s = new RrBox(sw,
Rr2Point.add(cen, new Rr2Point(addX, addY)));
q4 = new RrCSGPolygon(csg.prune(s), s, att);
// Recursively divide the children
q1.divide_r(resolution_2, sFactor);
q2.divide_r(resolution_2, sFactor);
q3.divide_r(resolution_2, sFactor);
q4.divide_r(resolution_2, sFactor);
}
/**
* Divide the CSG polygon into a quad tree, each leaf of
* which contains at most two planes.
* Evaluate the leaves, and store lists of intersections with
* the half-planes.
* @param res_2
* @param swell
*/
public void divide(double res_2, double swell)
{
csg = csg.simplify(Math.sqrt(res_2));
csg.clearCrossings();
divide_r(res_2, swell);
csg.sortCrossings(true, this);
}
/**
* Generate the edges (if any) in a leaf quad
*/
public void evaluate()
{
edgeCount = 0;
corner = false;
vertex = null;
switch(csg.operator())
{
case NULL:
case UNIVERSE:
return;
// One half-plane in the box:
case LEAF:
i1 = RrInterval.bigInterval();
i1 = box.wipe(csg.plane().pLine(), i1);
if(i1.empty())
return;
edgeCount = 1;
return;
// Two - maybe a corner, or they may not intersect
case UNION:
case INTERSECTION:
if(csg.complexity() != 2)
{
System.err.println("RrCSGPolygon.evaluate(): complexity: " +
csg.complexity());
return;
}
i1 = RrInterval.bigInterval();
i1 = box.wipe(csg.c_1().plane().pLine(), i1);
i2 = RrInterval.bigInterval();
i2 = box.wipe(csg.c_2().plane().pLine(), i2);
if(csg.operator() == RrCSGOp.INTERSECTION)
{
i2 = csg.c_1().plane().wipe(csg.c_2().plane().pLine(), i2);
i1 = csg.c_2().plane().wipe(csg.c_1().plane().pLine(), i1);
} else
{
i2 = csg.c_1().plane().complement().wipe(
csg.c_2().plane().pLine(), i2);
i1 = csg.c_2().plane().complement().wipe(
csg.c_1().plane().pLine(), i1);
}
if(!i1.empty())
edgeCount++;
if(!i2.empty())
edgeCount++;
try
{
vertex = csg.c_1().plane().cross_point(csg.c_2().plane());
if(box.pointRelative(vertex) == 0)
{
corner = true;
} else
{
corner = false;
vertex = null;
}
} catch (RrParallelLineException ple)
{
corner = false;
vertex = null;
}
// NB if the corner was in another box and this one (because of swell
// overlap) only the first gets recorded.
if(corner)
corner = RrHalfPlane.cross(this);
return;
default:
System.err.println("RrCSGPolygon.evaluate(): dud CSG operator!");
}
}
/**
* Find the quad containing a point
* @param p
* @return quad containing point p
*/
public RrCSGPolygon quad(Rr2Point p)
{
if(q1 == null)
{
if(box.pointRelative(p) != 0)
System.err.println("RrCSGPolygon.quad(): point not in the box.");
} else
{
Rr2Point cen = box.centre();
if(p.x() >= cen.x())
{
if(p.y() >= cen.y())
return(q2.quad(p));
else
return(q3.quad(p));
} else
{
if(p.y() >= cen.y())
return(q1.quad(p));
else
return(q4.quad(p));
}
}
return this;
}
/**
* Find the RrCSG expression that gives the potential at point p.
* Note this does NOT find the closest half-plane unless the point
* is on a surface.
* @param p
* @return CSG object
*/
public RrCSG leaf(Rr2Point p)
{
RrCSGPolygon q = quad(p);
return(q.csg.leaf(p));
}
/**
* Find the potential at point p.
* @param p
* @return potential of point p
*/
public double value(Rr2Point p)
{
RrCSG c = leaf(p);
return c.value(p);
}
/**
* Offset by a distance; grow or shrink the box by the same amount
* If the old polygon was divided, the new one will be too.
* If we shrink out of existence, a standard null object is returned.
* @param d
* @return offset polygon object by distance d
*/
public RrCSGPolygon offset(double d)
{
RrBox b;
if(-d >= 0.5*box.x().length() || -d >= 0.5*box.y().length())
{
b = new RrBox(new Rr2Point(0,0), new Rr2Point(1,1));
return new RrCSGPolygon(RrCSG.nothing(), b, att);
}
Rr2Point p = new Rr2Point(d, d);
b = new RrBox( Rr2Point.sub(box.sw(), p), Rr2Point.add(box.ne(), p) );
RrCSG expression = csg.offset(d);
expression = expression.simplify(Math.sqrt(resolution_2));
RrCSGPolygon result = new RrCSGPolygon(csg.offset(d), b, att);
if(q1 != null)
result.divide(resolution_2, sFactor);
return result;
}
/**
* Walk the tree setting visited flags false
*/
private void clearVisited(boolean v1, boolean v2)
{
if(v1)
visit1 = false;
if(v2)
visit2 = false;
if(q1 != null)
{
q1.clearVisited(v1, v2);
q2.clearVisited(v1, v2);
q3.clearVisited(v1, v2);
q4.clearVisited(v1, v2);
}
}
/**
* Walk the tree to find an unvisited corner
*/
private RrCSGPolygon findCorner(boolean v1, boolean v2)
{
RrCSGPolygon result = null;
if(corner && !(visit1 && v1) && !(visit2 && v2))
return this;
if(q1 != null)
{
result = q1.findCorner(v1, v2);
if(result != null)
return result;
result = q2.findCorner(v1, v2);
if(result != null)
return result;
result = q3.findCorner(v1, v2);
if(result != null)
return result;
result = q4.findCorner(v1, v2);
if(result != null)
return result;
}
return result;
}
/**
* Find the polygon starting at this quad
* @param flag
* @return the polygon
*/
public RrPolygon meg() //(int flag)
{
int flag = 1;
RrPolygon result = new RrPolygon(att);
RrCSGPolygon c = this;
RrHalfPlane now, next;
now = csg.c_1().plane();
if(now.find(c)%2 == 1) // Subtle, or what?
now = csg.c_2().plane();
if(now.find(c)%2 == 1)
{
System.err.println("RrCSGPolygon.meg(): end convergence!");
return result;
}
int nextIndex;
do
{
if(!c.corner)
System.err.println("RrCSGPolygon.meg(): visiting non-corner quad!");
result.add(c.vertex);
c.visit2 = true;
nextIndex = now.find(c) + 1;
if(nextIndex < 0 | nextIndex >= now.size())
System.err.println("RrCSGPolygon.meg(): fallen off the end of the line!");
c = now.getQuad(nextIndex);
next = c.csg.c_1().plane();
if(next == now)
next = c.csg.c_2().plane();
now = next;
} while (c != this);
return result;
}
/**
* Find all the polygons represented by a CSG object
* @param fg
* @param fs
* @return a polygon list as the result
*/
public RrPolygonList megList() //(int fg, int fs)
{
clearVisited(true, true);
RrPolygonList result = new RrPolygonList();
RrPolygon m;
RrCSGPolygon vtx = findCorner(true, true);
while(vtx != null)
{
m = vtx.meg(); //(fg);
if(m.size() > 0)
{
//m.flag(0, fs);
if(m.size() > 2)
result.add(m);
else
System.err.println("megList(): polygon with < 3 sides!");
}
vtx = findCorner(true, true);
}
return result;
}
/**
* Intersect a line with a polygon - recursive internal call
* @param hp
* @param range
*/
private void lineIntersect_r(RrHalfPlane hp, RrInterval range)
{
RrInterval newRange = box.wipe(hp.pLine(), range);
if(newRange.empty())
return;
if(q1 != null)
{
q1.lineIntersect_r(hp, newRange);
q2.lineIntersect_r(hp, newRange);
q3.lineIntersect_r(hp, newRange);
q4.lineIntersect_r(hp, newRange);
} else
{
switch(csg.operator())
{
case NULL:
case UNIVERSE:
break;
case LEAF:
hp.maybeAdd(this, range);
break;
case INTERSECTION:
case UNION:
if(csg.complexity() != 2)
{
System.err.println("intersect_r(): comlexity = " + csg.complexity());
return;
}
hp.maybeAdd(this, range);
break;
default:
System.err.println("intersect_r(): dud CSG operator!");
}
}
}
/**
* Intersect a half-plane line and a polygon, storing the sorted list
* with the half-plane.
* @param hp
* @param range
* @param up
*/
public void lineIntersect(RrHalfPlane hp, RrInterval range, boolean up)
{
hp.removeCrossings();
lineIntersect_r(hp, range);
hp.sort(up, this);
//hp.solidSet(this);
}
/**
* Find the bit of polygon edge between start/originPlane and targetPlane
* @param start
* @param modelEdge
* @param originPlane
* @param targetPlane
* @param flag
* @return polygon edge between start/originaPlane and targetPlane
*/
public snakeEnd megGoToPlane(Rr2Point start, RrHalfPlane modelEdge, RrHalfPlane originPlane,
RrHalfPlane targetPlane) //, int flag)
{
int beforeIndex = -1;
double t = modelEdge.pLine().nearest(start);
for(int i = 0; i < modelEdge.size(); i++)
{
if (modelEdge.getParameter(i) > t)
break;
beforeIndex = i;
}
if(beforeIndex < 0 | beforeIndex >= modelEdge.size() - 1)
{
System.err.println("RrCSGPolygon.megGoToPlane(): can't find parameter in range!");
return null;
}
Rr2Point pt = modelEdge.getPoint(beforeIndex + 1);
boolean backwards = originPlane.value(pt) <= 0;
if(backwards)
beforeIndex++;
RrPolygon rPol = new RrPolygon(att);
RrCSGPolygon startQuad = modelEdge.getQuad(beforeIndex);
RrCSGPolygon c = startQuad;
RrHalfPlane next;
RrHalfPlane now = modelEdge;
int nextIndex;
do
{
if(!c.corner)
{
System.err.println("RrCSGPolygon.megGoToPlane(): visiting non-corner quad!");
return null;
}
if(backwards)
nextIndex = now.find(c) - 1;
else
nextIndex = now.find(c) + 1;
if(nextIndex < 0 | nextIndex >= now.size()) //Hack - why needed?
return null;
pt = now.getPoint(nextIndex);
if(targetPlane.value(pt) >= 0)
{
nextIndex = targetPlane.find(now);
if(nextIndex < 0)
return null;
rPol.add(targetPlane.getPoint(nextIndex));
return new snakeEnd(rPol, targetPlane, nextIndex);
}
if(originPlane.value(pt) <= 0)
return null;
c = now.getQuad(nextIndex);
rPol.add(c.vertex);
next = c.csg.c_1().plane();
if(next == now)
next = c.csg.c_2().plane();
now = next;
} while (c != startQuad);
System.err.println("RrCSGPolygon.megGoToPlane(): gone right round!");
return null;
}
/**
* Take the start of a zig-zag hatch polyline and grow it as far as possible
* @param hatches
* @param thisHatch
* @param thisPt
* @param fg
* @param fs
* @return zigzag hatch polygon
*/
private RrPolygon snakeGrow(List hatches, int thisHatch, int thisPt) //, int fg, int fs)
{
RrPolygon result = new RrPolygon(att);
RrHalfPlane h = (RrHalfPlane)hatches.get(thisHatch);
Rr2Point pt = h.pLine().point(h.getParameter(thisPt));
result.add(pt);
snakeEnd jump;
do
{
h.remove(thisPt);
if(thisPt%2 != 0)
thisPt--;
pt = h.pLine().point(h.getParameter(thisPt));
result.add(pt);
thisHatch++;
if(thisHatch < hatches.size())
jump = megGoToPlane(pt, h.getPlane(thisPt), h,
(RrHalfPlane)hatches.get(thisHatch)); //, fg);
else
jump = null;
h.remove(thisPt);
if(jump != null)
{
result.add(jump.p);
h = jump.h;
thisPt = jump.index;
}
} while(jump != null);
//result.flag(result.size()-1, fs);
return result;
}
/**
* Hatch a csg polygon parallel to line hp with index gap
* @param hp
* @param gap
* @param fg
* @param fs
* @return a polygon list as the result with flag values f
*/
public RrPolygonList hatch(RrHalfPlane hp, double gap) //, int fg, int fs)
{
RrBox big = box.scale(1.1);
double d = Math.sqrt(big.dSquared());
Rr2Point orth = hp.normal();
int quadPointing = (int)(2 + 2*Math.atan2(orth.y(), orth.x())/Math.PI);
Rr2Point org = big.ne();
switch(quadPointing)
{
case 0:
break;
case 1:
org = big.nw();
break;
case 2:
org = big.sw();
break;
case 3:
org = big.se();
break;
default:
System.err.println("RrCSGPolygon.hatch(): The atan2 function doesn't seem to work...");
}
RrHalfPlane hatcher = new
RrHalfPlane(org, Rr2Point.add(org, hp.pLine().direction()));
List hatches = new ArrayList();
double g = 0;
while (g < d)
{
lineIntersect(hatcher, RrInterval.bigInterval(), true);
if(hatcher.size() > 0)
hatches.add(hatcher);
hatcher = hatcher.offset(gap);
g += gap;
}
RrPolygonList snakes = new RrPolygonList();
int segment;
do
{
segment = -1;
for(int i = 0; i < hatches.size(); i++)
{
if(((RrHalfPlane)hatches.get(i)).size() > 0)
{
segment = i;
break;
}
}
if(segment >= 0)
{
snakes.add(snakeGrow(hatches, segment, 0)); //, fg, fs));
}
} while(segment >= 0);
return snakes.nearEnds();
}
}
|