1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/*
* This class controls the movement of the RepRap machine.
* It implements a DDA in four dimensions, so the length of extruded
* filament is treated as a variable, just like X, Y, and Z.
*
* Adrian Bowyer 9 May 2009
*/
#ifndef CARTESIAN_DDA_H
#define CARTESIAN_DDA_H
// Main class for moving the RepRap machine about
class cartesian_dda
{
private:
extruder* ext; // The extruder I'm currently using - keep this up to date...
FloatPoint units; // Factors for converting either mm or inches to steps
// FloatPoint current_position; // Where the machine is
FloatPoint target_position; // Where it's going
FloatPoint delta_position; // The difference between the two
float distance; // How long the path is
LongPoint current_steps; // Similar information as above in steps rather than units
LongPoint target_steps;
LongPoint delta_steps;
LongPoint dda_counter; // DDA error-accumulation variables
long t_scale; // When doing lots of t steps, scale them so the DDA doesn't spend for ever on them
byte x_direction; // Am I going in the + or - direction?
byte y_direction;
byte z_direction;
byte e_direction;
byte f_direction;
bool x_can_step; // Am I not at an endstop? Have I not reached the target? etc.
bool y_can_step;
bool z_can_step;
bool e_can_step;
bool f_can_step;
// Variables for acceleration calculations
long total_steps; // The number of steps to take along the longest movement axis
long timestep; // microseconds
bool nullmove; // this move is zero length
bool real_move; // Flag to know if we've changed something physical
volatile bool live; // Flag for when we're plotting a line
// Internal functions that need not concern the user
// Take a single step
void do_x_step();
void do_y_step();
void do_z_step();
void do_e_step();
// Can this axis step?
bool can_step(byte min_pin, byte max_pin, long current, long target, byte dir);
// Read a limit switch
bool read_switch(byte pin);
// Work out the number of microseconds between steps
long calculate_feedrate_delay(float feedrate);
// Switch the steppers on and off
void enable_steppers();
void disable_steppers();
// Custom short delay function (microseconds)
//void delayMicrosecondsInterruptible(unsigned int us);
public:
cartesian_dda();
// Set where I'm going
void set_target(const FloatPoint& p);
// Start the DDA
void dda_start();
// Do one step of the DDA
void dda_step();
// Are we running at the moment?
bool active();
// True for mm; false for inches
void set_units(bool using_mm);
// Record the selection of a new extruder
void set_extruder(extruder* ex);
};
// Short functions inline to save memory; particularly useful in the Arduino
inline void cartesian_dda::set_extruder(extruder* ex)
{
ext = ex;
}
inline bool cartesian_dda::active()
{
return live;
}
inline void cartesian_dda::do_x_step()
{
digitalWrite(X_STEP_PIN, HIGH);
delayMicroseconds(5);
digitalWrite(X_STEP_PIN, LOW);
}
inline void cartesian_dda::do_y_step()
{
digitalWrite(Y_STEP_PIN, HIGH);
delayMicroseconds(5);
digitalWrite(Y_STEP_PIN, LOW);
}
inline void cartesian_dda::do_z_step()
{
digitalWrite(Z_STEP_PIN, HIGH);
delayMicroseconds(5);
digitalWrite(Z_STEP_PIN, LOW);
}
inline void cartesian_dda::do_e_step()
{
ext->step();
}
inline long cartesian_dda::calculate_feedrate_delay(float feedrate)
{
// Calculate delay between steps in microseconds. Here it is in English:
// (feedrate is in mm/minute, distance is in mm)
// 60000000.0*distance/feedrate = move duration in microseconds
// move duration/total_steps = time between steps for master axis.
return round( (distance*60000000.0) / (feedrate*(float)total_steps) );
}
inline bool cartesian_dda::read_switch(byte pin)
{
//dual read as crude debounce
#if ENDSTOPS_INVERTING == 1
return !digitalRead(pin) && !digitalRead(pin);
#else
return digitalRead(pin) && digitalRead(pin);
#endif
}
#endif
|