1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
<!doctype html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: module skeinforge_tools.skeinforge_utilities.vector3</title>
</head><body bgcolor="#f0f0f8">
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"> <br><big><big><strong><a href="skeinforge_tools.html"><font color="#ffffff">skeinforge_tools</font></a>.<a href="skeinforge_tools.skeinforge_utilities.html"><font color="#ffffff">skeinforge_utilities</font></a>.vector3</strong></big></big> ($Date: 2008/21/04 $)</font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/home/enrique/Desktop/backup/babbleold/script/reprap/pyRepRap/skeinforge_tools/skeinforge_utilities/vector3.py">/home/enrique/Desktop/backup/babbleold/script/reprap/pyRepRap/skeinforge_tools/skeinforge_utilities/vector3.py</a></font></td></tr></table>
<p><tt><a href="#Vector3">Vector3</a> is a three dimensional vector class.<br>
<br>
Below are examples of <a href="#Vector3">Vector3</a> use.<br>
<br>
>>> from vector3 import <a href="#Vector3">Vector3</a><br>
>>> origin = <a href="#Vector3">Vector3</a>()<br>
>>> origin<br>
0.0, 0.0, 0.0<br>
>>> pythagoras = <a href="#Vector3">Vector3</a>( 3, 4, 0 )<br>
>>> pythagoras<br>
3.0, 4.0, 0.0<br>
>>> pythagoras.magnitude()<br>
5.0<br>
>>> pythagoras.magnitudeSquared()<br>
25<br>
>>> triplePythagoras = pythagoras * 3.0<br>
>>> triplePythagoras<br>
9.0, 12.0, 0.0<br>
>>> plane = pythagoras.dropAxis( 2 )<br>
>>> plane<br>
(3+4j)</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#aa55cc">
<td colspan=3 valign=bottom> <br>
<font color="#fffff" face="helvetica, arial"><big><strong>Modules</strong></big></font></td></tr>
<tr><td bgcolor="#aa55cc"><tt> </tt></td><td> </td>
<td width="100%"><table width="100%" summary="list"><tr><td width="25%" valign=top><a href="__init__.html">__init__</a><br>
</td><td width="25%" valign=top><a href="math.html">math</a><br>
</td><td width="25%" valign=top><a href="operator.html">operator</a><br>
</td><td width="25%" valign=top></td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ee77aa">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Classes</strong></big></font></td></tr>
<tr><td bgcolor="#ee77aa"><tt> </tt></td><td> </td>
<td width="100%"><dl>
<dt><font face="helvetica, arial"><a href="skeinforge_tools.skeinforge_utilities.vector3.html#Vector3">Vector3</a>
</font></dt></dl>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ffc8d8">
<td colspan=3 valign=bottom> <br>
<font color="#000000" face="helvetica, arial"><a name="Vector3">class <strong>Vector3</strong></a></font></td></tr>
<tr bgcolor="#ffc8d8"><td rowspan=2><tt> </tt></td>
<td colspan=2><tt>A three dimensional vector class.<br> </tt></td></tr>
<tr><td> </td>
<td width="100%">Methods defined here:<br>
<dl><dt><a name="Vector3-__abs__"><strong>__abs__</strong></a>(self)</dt><dd><tt>Get the magnitude of the <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__add__"><strong>__add__</strong></a>(self, other)</dt><dd><tt>Get the sum of this <a href="#Vector3">Vector3</a> and other one.</tt></dd></dl>
<dl><dt><a name="Vector3-__copy__"><strong>__copy__</strong></a>(self)</dt><dd><tt>Get the copy of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__div__"><strong>__div__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__eq__"><strong>__eq__</strong></a>(self, other)</dt><dd><tt>Determine whether this vector is identical to other one.</tt></dd></dl>
<dl><dt><a name="Vector3-__floordiv__"><strong>__floordiv__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by floor dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__hash__"><strong>__hash__</strong></a>(self)</dt><dd><tt>Determine whether this vector is identical to other one.</tt></dd></dl>
<dl><dt><a name="Vector3-__iadd__"><strong>__iadd__</strong></a>(self, other)</dt><dd><tt>Add other <a href="#Vector3">Vector3</a> to this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__idiv__"><strong>__idiv__</strong></a>(self, other)</dt><dd><tt>Divide each component of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__ifloordiv__"><strong>__ifloordiv__</strong></a>(self, other)</dt><dd><tt>Floor divide each component of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__imul__"><strong>__imul__</strong></a>(self, other)</dt><dd><tt>Multiply each component of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__init__"><strong>__init__</strong></a>(self, x<font color="#909090">=0.0</font>, y<font color="#909090">=0.0</font>, z<font color="#909090">=0.0</font>)</dt></dl>
<dl><dt><a name="Vector3-__isub__"><strong>__isub__</strong></a>(self, other)</dt><dd><tt>Subtract other <a href="#Vector3">Vector3</a> from this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__itruediv__"><strong>__itruediv__</strong></a>(self, other)</dt><dd><tt>True divide each component of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__mul__"><strong>__mul__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by multiplying each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__ne__"><strong>__ne__</strong></a>(self, other)</dt><dd><tt>Determine whether this vector is not identical to other one.</tt></dd></dl>
<dl><dt><a name="Vector3-__neg__"><strong>__neg__</strong></a>(self)</dt></dl>
<dl><dt><a name="Vector3-__nonzero__"><strong>__nonzero__</strong></a>(self)</dt></dl>
<dl><dt><a name="Vector3-__pos__"><strong>__pos__</strong></a> = <a href="#Vector3-__copy__">__copy__</a>(self)</dt></dl>
<dl><dt><a name="Vector3-__rdiv__"><strong>__rdiv__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__repr__"><strong>__repr__</strong></a>(self)</dt><dd><tt>Get the string representation of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-__rfloordiv__"><strong>__rfloordiv__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by floor dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__rmul__"><strong>__rmul__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by multiplying each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__rtruediv__"><strong>__rtruediv__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by true dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-__sub__"><strong>__sub__</strong></a>(self, other)</dt><dd><tt>Get the difference between the <a href="#Vector3">Vector3</a> and other one.</tt></dd></dl>
<dl><dt><a name="Vector3-__truediv__"><strong>__truediv__</strong></a>(self, other)</dt><dd><tt>Get a new <a href="#Vector3">Vector3</a> by true dividing each component of this one.</tt></dd></dl>
<dl><dt><a name="Vector3-copy"><strong>copy</strong></a> = <a href="#Vector3-__copy__">__copy__</a>(self)</dt></dl>
<dl><dt><a name="Vector3-cross"><strong>cross</strong></a>(self, other)</dt><dd><tt>Calculate the cross product of this vector with other one.</tt></dd></dl>
<dl><dt><a name="Vector3-distance"><strong>distance</strong></a>(self, other)</dt><dd><tt>Get the Euclidean distance between this vector and other one.</tt></dd></dl>
<dl><dt><a name="Vector3-distanceSquared"><strong>distanceSquared</strong></a>(self, other)</dt><dd><tt>Get the square of the Euclidean distance between this vector and other one.</tt></dd></dl>
<dl><dt><a name="Vector3-dot"><strong>dot</strong></a>(self, other)</dt><dd><tt>Calculate the dot product of this vector with other one.</tt></dd></dl>
<dl><dt><a name="Vector3-dropAxis"><strong>dropAxis</strong></a>(self, which)</dt><dd><tt>Get a complex by removing one axis of this one.<br>
<br>
Keyword arguments:<br>
which -- the axis to drop (0=X, 1=Y, 2=Z)</tt></dd></dl>
<dl><dt><a name="Vector3-getNormalized"><strong>getNormalized</strong></a>(self, other)</dt><dd><tt>Get the normalized <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-magnitude"><strong>magnitude</strong></a> = <a href="#Vector3-__abs__">__abs__</a>(self)</dt></dl>
<dl><dt><a name="Vector3-magnitudeSquared"><strong>magnitudeSquared</strong></a>(self)</dt><dd><tt>Get the square of the magnitude of the <a href="#Vector3">Vector3</a>.</tt></dd></dl>
<dl><dt><a name="Vector3-normalize"><strong>normalize</strong></a>(self)</dt><dd><tt>Scale each component of this <a href="#Vector3">Vector3</a> so that it has a magnitude of 1. If this <a href="#Vector3">Vector3</a> has a magnitude of 0, this method has no effect.</tt></dd></dl>
<dl><dt><a name="Vector3-reflect"><strong>reflect</strong></a>(self, normal)</dt><dd><tt>Reflect the <a href="#Vector3">Vector3</a> across the normal, which is assumed to be normalized.</tt></dd></dl>
<dl><dt><a name="Vector3-setToVector3"><strong>setToVector3</strong></a>(self, other)</dt><dd><tt>Set this <a href="#Vector3">Vector3</a> to be identical to other one.</tt></dd></dl>
<dl><dt><a name="Vector3-setToXYZ"><strong>setToXYZ</strong></a>(self, x, y, z)</dt><dd><tt>Set the x, y, and z components of this <a href="#Vector3">Vector3</a>.</tt></dd></dl>
</td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
<tr><td bgcolor="#55aa55"><tt> </tt></td><td> </td>
<td width="100%"><strong>__author__</strong> = 'Enrique Perez (perez_enrique@yahoo.com)'<br>
<strong>__credits__</strong> = 'Nophead <http://forums.reprap.org/profile.php?12,28><font color="#c040c0">\n</font>Art of Illusion <http://www.artofillusion.org/>'<br>
<strong>__date__</strong> = '$Date: 2008/21/04 $'<br>
<strong>__license__</strong> = 'GPL 3.0'<br>
<strong>absolute_import</strong> = _Feature((2, 5, 0, 'alpha', 1), (2, 7, 0, 'alpha', 0), 16384)</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#7799ee">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Author</strong></big></font></td></tr>
<tr><td bgcolor="#7799ee"><tt> </tt></td><td> </td>
<td width="100%">Enrique Perez (perez_enrique@yahoo.com)</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#7799ee">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Credits</strong></big></font></td></tr>
<tr><td bgcolor="#7799ee"><tt> </tt></td><td> </td>
<td width="100%">Nophead <<a href="http://forums.reprap.org/profile.php?12,28">http://forums.reprap.org/profile.php?12,28</a>><br>
Art of Illusion <<a href="http://www.artofillusion.org/">http://www.artofillusion.org/</a>></td></tr></table>
</body></html>
|