summaryrefslogtreecommitdiff
path: root/trunk/mendel/firmware/FiveD_GCode/Extruder/extruder_class.pde
blob: ad7ac45c02484cb4923eb29ec3982a9d65bc3de9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

#include "configuration.h"
#include "extruder.h"
#include "temperature.h"

// With thanks to Adam at Makerbot and Tim at BotHacker
// see http://blog.makerbot.com/2009/10/01/open-source-ftw/

PIDcontrol::PIDcontrol(byte hp, byte tp, bool b)
{
   heat_pin = hp;
   temp_pin = tp;
   pGain = TEMP_PID_PGAIN;
   iGain = TEMP_PID_IGAIN;
   dGain = TEMP_PID_DGAIN;
   temp_iState = 0;
   temp_dState = 0;
   temp_iState_min = -TEMP_PID_INTEGRAL_DRIVE_MAX/iGain;
   temp_iState_max = TEMP_PID_INTEGRAL_DRIVE_MAX/iGain;
   iState = 0;
   dState = 0;
   previousTime = millis()/MILLI_CORRECTION;
   output = 0;
   currentTemperature = 0;
   bedTable = b;
   pinMode(heat_pin, OUTPUT);
   pinMode(temp_pin, INPUT); 
}

/* 
 Temperature reading function  
 With thanks to: Ryan Mclaughlin - http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1230859336
 for the MAX6675 code
 */

void PIDcontrol::internalTemperature(short table[][2])
{
#ifdef USE_THERMISTOR
  int raw = analogRead(temp_pin);

  byte i;

  // TODO: This should do a binary chop

  for (i=1; i<NUMTEMPS; i++)
  {
    if (table[i][0] > raw)
    {
      currentTemperature  = table[i-1][1] + 
        (raw - table[i-1][0]) * 
        (table[i][1] - table[i-1][1]) /
        (table[i][0] - table[i-1][0]);

      break;
    }
  }

  // Overflow: Set to last value in the table
  if (i >= NUMTEMPS) currentTemperature = table[i-1][1];
  // Clamp to byte
  //if (celsius > 255) celsius = 255; 
  //else if (celsius < 0) celsius = 0; 

#endif

#ifdef AD595_THERMOCOUPLE
  currentTemperature = ( 5.0 * analogRead(pin* 100.0) / 1024.0; //(int)(((long)500*(long)analogRead(TEMP_PIN))/(long)1024);
#endif  

#ifdef MAX6675_THERMOCOUPLE
  int value = 0;
  byte error_tc;


  digitalWrite(TC_0, 0); // Enable device

  /* Cycle the clock for dummy bit 15 */
  digitalWrite(SCK,1);
  digitalWrite(SCK,0);

  /* Read bits 14-3 from MAX6675 for the Temp
   	 Loop for each bit reading the value 
   */
  for (int i=11; i>=0; i--)
  {
    digitalWrite(SCK,1);  // Set Clock to HIGH
    value += digitalRead(SO) << i;  // Read data and add it to our variable
    digitalWrite(SCK,0);  // Set Clock to LOW
  }

  /* Read the TC Input inp to check for TC Errors */
  digitalWrite(SCK,1); // Set Clock to HIGH
  error_tc = digitalRead(SO); // Read data
  digitalWrite(SCK,0);  // Set Clock to LOW

  digitalWrite(TC_0, 1); //Disable Device

  if(error_tc)
    currentTemperature = 2000;
  else
    currentTemperature = value/4;

#endif

}


void PIDcontrol::pidCalculation(int target)
{
  if(bedTable)
    internalTemperature(bedtemptable);
  else
    internalTemperature(temptable);
  time = millis()/MILLI_CORRECTION;  // Correct for fast clock
  dt = time - previousTime;
  previousTime = time;
  if (dt <= 0) // Don't do it when millis() has rolled over
    return;
    
  error = target - currentTemperature;

  pTerm = pGain * error;

  temp_iState += error;
  temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
  iTerm = iGain * temp_iState;

  dTerm = dGain * (currentTemperature - temp_dState);
  temp_dState = currentTemperature;

  output = pTerm + iTerm - dTerm;
  output = constrain(output, 0, 255);
  
  analogWrite(heat_pin, output);
}

//**********************************************************************************************

extruder::extruder()
{
  pinMode(H1D, OUTPUT);
  pinMode(H1E, OUTPUT);  
  pinMode(H2D, OUTPUT);
  pinMode(H2E, OUTPUT);
  pinMode(FAN_OUTPUT, OUTPUT);
  pinMode(E_STEP_PIN, INPUT);
  pinMode(E_DIR_PIN, INPUT);  
  pinMode(POT, INPUT);
  
#ifdef MAX6675_THERMOCOUPLE
  pinMode(SO, INPUT);
  pinMode(SCK, OUTPUT);
  pinMode(TC_0, OUTPUT); 
  digitalWrite(TC_0,HIGH);  // Disable MAX6675
#endif
  
  disableStep();
 
  extruderPID = &ePID;
  bedPID = &bPID;

  // Defaults

  coilPosition = 0;  
  forward = true;
  pwmValue =  STEP_PWM;
  targetTemperature = 0;
  targetBedTemperature = 0;
  manageCount = 0;
  stp = 0;
  potVal = 0;
  potSum = 0;
  potCount = 0;
  usePot = true;
  
#ifdef PASTE_EXTRUDER
  pinMode(OPTO_PIN, INPUT); 
  valveAlreadyRunning = false;
  valveEndTime = 0;
  valveAtEnd = false;
  seenHighLow = false;
  valveState = false;
  requiredValveState = true;
  kickStartValve();
#endif
}


void extruder::controlTemperature()
{   
  extruderPID->pidCalculation(targetTemperature);
  bedPID->pidCalculation(targetBedTemperature);


  // Simple bang-bang temperature control

//  if(targetTemperature > currentTemperature)
//    digitalWrite(HEATER_OUTPUT, 1);
//  else
//    digitalWrite(HEATER_OUTPUT, 0);

 
}



void extruder::slowManage()
{
  manageCount = 0;
  
  potSum += (potVoltage() >> 2);
  potCount++;
  if(potCount >= 10)
  {
    potVal = (byte)(potSum/10);
    potCount = 0;
    potSum = 0;
  }

  //blink(true);  

  controlTemperature();
}

void extruder::manage()
{
  byte s = digitalRead(E_STEP_PIN);
  if(s != stp)
  {
    stp = s;
    sStep(0);
  }

#ifdef PASTE_EXTRUDER
  valveMonitor();
#endif

  manageCount++;
  if(manageCount > SLOW_CLOCK)
    slowManage();   
}



// Stop everything

void extruder::shutdown()
{
  // Heater off;
  setTemperature(0);
  setBedTemperature(0);
  // Motor off
  disableStep();
  // Close valve
  valveSet(true);
}

void extruder::waitForTemperature()
{

}

void extruder::valveSet(bool closed)
{
#ifdef PASTE_EXTRUDER
  requiredValveState = closed;
  kickStartValve();
#endif
}

void extruder::setDirection(bool direction)
{
  forward = direction;  
}

void extruder::setCooler(byte e_speed)
{
  analogWrite(FAN_OUTPUT, e_speed);   
}

void extruder::setTemperature(int tp)
{
  targetTemperature = tp;
}

int extruder::getTemperature()
{
  return extruderPID->temperature();  
}

void extruder::setBedTemperature(int tp)
{
  targetBedTemperature = tp;
}

int extruder::getBedTemperature()
{
  return bedPID->temperature();  
}


void extruder::sStep(byte dir)
{
#ifndef PASTE_EXTRUDER
  byte pwm;
  
  if(usePot)
    pwm = potVal;
  else
    pwm = pwmValue;

  // This increments or decrements coilPosition then writes the appropriate pattern to the output pins.

  switch(dir)
  {
    case 1:
      coilPosition++;
      break;
      
    case 2:
      coilPosition--;
      break;
      
    default:
      if(digitalRead(E_DIR_PIN))
        coilPosition++;
      else
        coilPosition--;
      break;
  }
  
  coilPosition &= 7;

  // Which of the 8 possible patterns do we want?
  // The pwm = (pwm >> 1) + (pwm >> 3); lines
  // ensure (roughly) equal power on the half-steps

#ifdef FULL_STEP
  switch((coilPosition&3) << 1)
#else
  switch(coilPosition)
#endif 
  {
  case 7:
    pwm = (pwm >> 1) + (pwm >> 3);
    digitalWrite(H1D, 1);    
    digitalWrite(H2D, 1);
    analogWrite(H1E, pwm);
    analogWrite(H2E, pwm);    
    break;

  case 6:
    digitalWrite(H1D, 1);    
    digitalWrite(H2D, 1);
    analogWrite(H1E, pwm);
    analogWrite(H2E, 0);   
    break; 

  case 5:
    pwm = (pwm >> 1) + (pwm >> 3);
    digitalWrite(H1D, 1);
    digitalWrite(H2D, 0);
    analogWrite(H1E, pwm);
    analogWrite(H2E, pwm); 
    break;

  case 4:
    digitalWrite(H1D, 1);
    digitalWrite(H2D, 0);
    analogWrite(H1E, 0);
    analogWrite(H2E, pwm); 
    break;

  case 3:
    pwm = (pwm >> 1) + (pwm >> 3);
    digitalWrite(H1D, 0);
    digitalWrite(H2D, 0);
    analogWrite(H1E, pwm);
    analogWrite(H2E, pwm); 
    break; 

  case 2:
    digitalWrite(H1D, 0);
    digitalWrite(H2D, 0);
    analogWrite(H1E, pwm);
    analogWrite(H2E, 0); 
    break;

  case 1:
    pwm = (pwm >> 1) + (pwm >> 3);
    digitalWrite(H1D, 0);
    digitalWrite(H2D, 1);
    analogWrite(H1E, pwm);
    analogWrite(H2E, pwm); 
    break;

  case 0:
    digitalWrite(H1D, 0);
    digitalWrite(H2D, 1);
    analogWrite(H1E, 0);
    analogWrite(H2E, pwm); 
    break; 

  }
#endif
}


void extruder::enableStep()
{
  // Nothing to do here - step() automatically enables the stepper drivers appropriately.  
}

void extruder::disableStep()
{
  analogWrite(H1E, 0);
  analogWrite(H2E, 0);  
}

int extruder::potVoltage()
{
  return (int)analogRead(POT);  
}

void extruder::setPWM(int p)
{
  pwmValue = p;
  usePot = false;
  sStep(1);
  sStep(2);
}

void extruder::usePotForMotor()
{
  usePot = true;
  sStep(1);
  sStep(2);
}

char* extruder::processCommand(char command[])
{
  reply[0] = 0;
  switch(command[0])
  {
  case WAIT_T:
    waitForTemperature();
    break;

  case VALVE:
    valveSet(command[1] != '1');
    break;

  case DIRECTION:
    // setDirection(command[1] == '1'); // Now handled by hardware.
    break;

  case COOL:
    setCooler(atoi(&command[1]));
    break;

  case SET_T:
    setTemperature(atoi(&command[1]));
    break;

  case GET_T:
    itoa(getTemperature(), reply, 10);
    break;
    
  case SET_BED_T:
    setBedTemperature(atoi(&command[1]));
    break;

  case GET_BED_T:
    itoa(getBedTemperature(), reply, 10);
    break;

  case STEP:
    //sStep(0); // Now handled by hardware.
    break;

  case ENABLE:
    enableStep();
    break;

  case DISABLE:
    disableStep();
    break;

  case PREAD:
    itoa(potVoltage(), reply, 10);
    break;

  case SPWM:
    setPWM(atoi(&command[1]));
    break;

  case UPFM:
    usePotForMotor();
    break;
  
  case SHUT:
    shutdown();
    break;  

  case PING:
    break;

  default:
    return 0; // Flag up dud command
  }
  return reply; 
}

#ifdef PASTE_EXTRUDER

bool extruder::valveTimeCheck(int millisecs)
{
  if(valveAlreadyRunning)
  {
    if(millis() >= valveEndTime)
    {
      valveAlreadyRunning = false;
      return true;
    }
    return false;
  }

  valveEndTime = millis() + millisecs*MILLI_CORRECTION;
  valveAlreadyRunning = true;
  return false;
}

void extruder::valveTurn(bool close)
{
  if(valveAtEnd)
    return;
    
  byte valveRunningState = VALVE_STARTING;
  if(digitalRead(OPTO_PIN))
  {
    seenHighLow = true;
    valveRunningState = VALVE_RUNNING;
  } else
  {
    if(!seenHighLow)
     valveRunningState = VALVE_STARTING;
    else
     valveRunningState = VALVE_STOPPING; 
  }    
   
  switch(valveRunningState)
  {
  case VALVE_STARTING: 
          if(close)
             digitalWrite(H1D, 1);
          else
             digitalWrite(H1D, 0);
          digitalWrite(H1E, HIGH);
          break;
          
  case VALVE_RUNNING:
          return;
  
  case VALVE_STOPPING:
          if(close)
            digitalWrite(H1D, 0);
          else
            digitalWrite(H1D, 1);
            
          if(!valveTimeCheck(10))
            return;
            
          digitalWrite(H1E, LOW);
          valveState = close;
          valveAtEnd = true;
          seenHighLow = false;
          break;
          
  default:
          break;
  }  
}

void extruder::valveMonitor()
{
  if(valveState == requiredValveState)
    return;
  valveAtEnd = false;
  valveTurn(requiredValveState);
} 

void extruder::kickStartValve()
{
  if(digitalRead(OPTO_PIN))
  {
     if(requiredValveState)
       digitalWrite(H1D, 1);
     else
       digitalWrite(H1D, 0);
     digitalWrite(H1E, HIGH);    
  }
} 
#endif