summaryrefslogtreecommitdiff
path: root/54/03927a173943e65f9fe273c383ea5f0977dc7a
blob: 8f9175ad6b1778e24d77f4d691ba44f3d7c4407a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
Return-Path: <Chenxi_Cai@live.com>
Received: from smtp1.linuxfoundation.org (smtp1.linux-foundation.org
	[172.17.192.35])
	by mail.linuxfoundation.org (Postfix) with ESMTPS id 1DE4EBBE
	for <bitcoin-dev@lists.linuxfoundation.org>;
	Thu, 30 Nov 2017 05:52:27 +0000 (UTC)
X-Greylist: whitelisted by SQLgrey-1.7.6
Received: from NAM02-CY1-obe.outbound.protection.outlook.com
	(mail-oln040092004012.outbound.protection.outlook.com [40.92.4.12])
	by smtp1.linuxfoundation.org (Postfix) with ESMTPS id C9420F1
	for <bitcoin-dev@lists.linuxfoundation.org>;
	Thu, 30 Nov 2017 05:52:25 +0000 (UTC)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=live.com; s=selector1; 
	h=From:Date:Subject:Message-ID:Content-Type:MIME-Version;
	bh=YX4S1ZsTkloW1RPwmubguNT6DCIz3t47LKSyTZSsrRs=;
	b=jY5m7W6YEpT656AA2E6On9dxB5LoAfOmbgwDOOaJLgWpJP2FhRN7C9F7WlHVkRt9NkceR/CgNKf1vV3m5dw57JpsuzJRZ3X+OzmUNCL1U1Yq1FXRAXpF1PuL1fcKYjOIaraE3zXQfsZDdNGAiSGiwkHbQXKNm7zOiZ3bwuae3fctmnJ8Ite7DUXM7LanBWJL/Sy+D0+dRsB2lcLgfYeyryKWPrZGCLdKFjpFkR0CC38gRiPbESBedpceeolwuusMMokkL8ExckT9Bxiek6YyeBIDFKLYL1DRIYLpiRULTyhXK3nhYs6v1wW1j/90OqW8svqvSURJpJog4Pk3Um6tcQ==
Received: from SN1NAM02FT024.eop-nam02.prod.protection.outlook.com
	(10.152.72.52) by SN1NAM02HT195.eop-nam02.prod.protection.outlook.com
	(10.152.73.49) with Microsoft SMTP Server (version=TLS1_2,
	cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P384) id 15.20.239.4;
	Thu, 30 Nov 2017 05:52:24 +0000
Received: from CY4PR1201MB0197.namprd12.prod.outlook.com (10.152.72.52) by
	SN1NAM02FT024.mail.protection.outlook.com (10.152.72.127) with
	Microsoft SMTP Server (version=TLS1_2,
	cipher=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P256) id
	15.20.239.4 via Frontend Transport; Thu, 30 Nov 2017 05:52:24 +0000
Received: from CY4PR1201MB0197.namprd12.prod.outlook.com ([10.172.78.142]) by
	CY4PR1201MB0197.namprd12.prod.outlook.com ([10.172.78.142]) with
	mapi id 15.20.0282.006; Thu, 30 Nov 2017 05:52:24 +0000
From: Chenxi Cai <Chenxi_Cai@live.com>
To: William Morriss <wjmelements@gmail.com>, Bitcoin Protocol Discussion
	<bitcoin-dev@lists.linuxfoundation.org>
Thread-Topic: [bitcoin-dev] BIP Idea: Marginal Pricing
Thread-Index: AQHTaXYDAdcte2AYf0yDClJRYfgWrqMsXzJ0
Date: Thu, 30 Nov 2017 05:52:24 +0000
Message-ID: <CY4PR1201MB019720B8D7C7AE10182F893186380@CY4PR1201MB0197.namprd12.prod.outlook.com>
References: <CADpM8jr_RrbPXLx6Up8HMW-fv=noFLjy817dfsFdYTg216Pu7w@mail.gmail.com>
In-Reply-To: <CADpM8jr_RrbPXLx6Up8HMW-fv=noFLjy817dfsFdYTg216Pu7w@mail.gmail.com>
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach: yes
X-MS-TNEF-Correlator: 
x-incomingtopheadermarker: OriginalChecksum:C1EB3F5BA2DFC3570036A3730BEB28A18BABFEB53510AE3E2AE2FD813DBD2502;
	UpperCasedChecksum:B605ADE1C11CA69CA73B3CC7F573DACE72E17424A2932B8AD76B824BA5F6DE71;
	SizeAsReceived:7099; Count:46
x-ms-exchange-messagesentrepresentingtype: 1
x-tmn: [w4RGyeGCCvkNZQq4p+eB8ZMPgNPTT3yo]
x-ms-publictraffictype: Email
x-microsoft-exchange-diagnostics: 1; SN1NAM02HT195;
	6:kAN0oHsLElTN1/cVhlv9vydp/Hq5m5C3FJ0AGv25gcLYWETXEdPsH8IhrA54JgJs8Qg/R1IveQyNGjMW6ZcXOYDRC1qY7EZMhLcCZ0RPTs/0r5RAORVYZkAa2srnlMdaUO4CGqUKKtIXZtBiSTWSnGnJy68ialDhXQdp5pTxf1A79UrxllO59dGJTG5vlIy+r4iRtIQAEMcY7NYYCGnsSlvY7CoRCce7IOkOmwO/2xOsEplmZxAPC5710KeNRuOyUEDTDioE0+oaY5hqQO9nxvcSJZFQLP1ws6XboytNCsrR5/5FZPiNrRh44vCGSqhDUduIMgfsC6ix0StNk52/oPJjvkXu7cxTfWsZFU+NbUw=;
	5:XLoyG0Wf6pwrqeS2oXaxrj/RB7RHvqfr1QBLlJmhAFNNqHfHlD10OOs6ILyk1em7I2jUQikyH8IF6/DEHIWJCe7GGfvIHfAotcHBpfu3a8zQZcrezDvl6+FinwygjFR+d/LJl06r3WrAIpOwxK7PaqeFEz1nI0M1gTKyCtbluh0=;
	24:TC7Gpd09XKQwyDrM2w1OfJtisR3hbSo+uZFO3h3lBEpOmCfIfx5eWpiJOhMMjUgjRmnStegFeXe/6szo6qULz/g1wKkx74HgcoBHWc/whtY=;
	7:QcYHGIetF4S6pNclcEMW8q55n5YvZZq8oP1pj1M/bi0EUIm+VVGJFxT/4ZmRJijdm4TS/x3G7OjjTKLQlj5BeYs+XX3/7x/70RGeVJMjRJdJ8m3oWcE1jBvR1TfDoE4vvOGprUxvYlmEy31TAuaZoTOpE7QSc5X5CM6dZ1OT7nFbU0Ozk6PBO3YyUd+7Vm7iaqrsyC5GqdGqJCw7C7ZcidGvT1jKSrfJZ6Txldf0hY2eQRe4L8wv/7w40i4cMV2j
x-incomingheadercount: 46
x-eopattributedmessage: 0
x-microsoft-antispam: UriScan:; BCL:0; PCL:0;
	RULEID:(201702061074)(5061506573)(5061507331)(1603103135)(2017031320274)(2017031324274)(2017031323274)(2017031322404)(1603101448)(1601125374)(1701031045);
	SRVR:SN1NAM02HT195; 
x-ms-traffictypediagnostic: SN1NAM02HT195:
x-ms-office365-filtering-correlation-id: cab2df59-1da1-489e-327c-08d537b687b4
x-exchange-antispam-report-cfa-test: BCL:0; PCL:0; RULEID:(444000031);
	SRVR:SN1NAM02HT195; BCL:0; PCL:0;
	RULEID:(100000803101)(100110400095); SRVR:SN1NAM02HT195; 
x-forefront-prvs: 05079D8470
x-forefront-antispam-report: SFV:NSPM; SFS:(7070007)(98901004); DIR:OUT;
	SFP:1901; SCL:1; SRVR:SN1NAM02HT195;
	H:CY4PR1201MB0197.namprd12.prod.outlook.com; FPR:; SPF:None;
	LANG:; 
spamdiagnosticoutput: 1:99
spamdiagnosticmetadata: NSPM
Content-Type: multipart/related;
	boundary="_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_";
	type="multipart/alternative"
MIME-Version: 1.0
X-OriginatorOrg: live.com
X-MS-Exchange-CrossTenant-Network-Message-Id: cab2df59-1da1-489e-327c-08d537b687b4
X-MS-Exchange-CrossTenant-originalarrivaltime: 30 Nov 2017 05:52:24.1696 (UTC)
X-MS-Exchange-CrossTenant-fromentityheader: Internet
X-MS-Exchange-CrossTenant-id: 84df9e7f-e9f6-40af-b435-aaaaaaaaaaaa
X-MS-Exchange-Transport-CrossTenantHeadersStamped: SN1NAM02HT195
X-Spam-Status: No, score=-2.0 required=5.0 tests=AC_DIV_BONANZA,BAYES_00,
	DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,FREEMAIL_FROM,HTML_MESSAGE,
	RCVD_IN_DNSWL_NONE autolearn=ham version=3.3.1
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on
	smtp1.linux-foundation.org
X-Mailman-Approved-At: Thu, 30 Nov 2017 11:00:44 +0000
Subject: Re: [bitcoin-dev] BIP Idea: Marginal Pricing
X-BeenThere: bitcoin-dev@lists.linuxfoundation.org
X-Mailman-Version: 2.1.12
Precedence: list
List-Id: Bitcoin Protocol Discussion <bitcoin-dev.lists.linuxfoundation.org>
List-Unsubscribe: <https://lists.linuxfoundation.org/mailman/options/bitcoin-dev>,
	<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=unsubscribe>
List-Archive: <http://lists.linuxfoundation.org/pipermail/bitcoin-dev/>
List-Post: <mailto:bitcoin-dev@lists.linuxfoundation.org>
List-Help: <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=help>
List-Subscribe: <https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev>,
	<mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=subscribe>
X-List-Received-Date: Thu, 30 Nov 2017 05:52:27 -0000

--_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: multipart/alternative;
	boundary="_000_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_"

--_000_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: text/plain; charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable

Hi All,


Auction theory is a well-studied problem in the economics literature. Curre=
ntly what bitcoin has is Generalized first-price auction, where winning bid=
ders pay their full bids. Alternatively, two approaches are potentially via=
ble, which are Generalized second-price auction and Vickrey=96Clarke=96Grov=
es auction. Generalized second-price auction, where winning bidders pay the=
ir next highest bids, reduces (but not eliminate) the need for bidders to s=
trategize by allowing them to bid closer to their reservation price. Vickre=
y=96Clarke=96Groves auction, a more sophisticated system that considers all=
 bids in relation to one another, elicit truthful bids from bidders, but ma=
y not maximize miners' fees as the other two systems will.


Due to one result called Revenue Equivalence, the choice of fee design will=
 not impact miners' fees unless the outcomes of the auction changes (i.e, t=
he highest bidders do not always win). In addition, the sole benefit of sec=
ond-price auction over first-price auction is to spare people's mental trou=
bles from strategizing, rather than actually saving mining fees, because in=
 equilibrium the fees bidders pay remain the same. Therefore, in balance, I=
 do not see substantial material benefits arising from switching to a diffe=
rent fee schedule.


Best,

Chenxi Cai


________________________________
From: bitcoin-dev-bounces@lists.linuxfoundation.org <bitcoin-dev-bounces@li=
sts.linuxfoundation.org> on behalf of William Morriss via bitcoin-dev <bitc=
oin-dev@lists.linuxfoundation.org>
Sent: Wednesday, November 29, 2017 5:47 PM
To: bitcoin-dev@lists.linuxfoundation.org
Subject: [bitcoin-dev] BIP Idea: Marginal Pricing

Comrades,

Long term, tx fees must support hash power by themselves. The following is =
an economic approach to maximize total fee collection, and therefore hashpo=
wer.

Goals
Maximize total transaction fees
Reduce pending transaction time
Reduce individual transaction fees

Challenges
Validators must agree on the maximum block size, else miners can cheat and =
include extra transactions.
Allowing too many transactions per block will increase the cost of the mini=
ng without collecting much income for the network.

Problem
In the transaction market, users are the demand curve, because they will tr=
ansact less when fees are higher, and prefer altcoins. The block size is th=
e supply curve, because it represents miners' willingness to accept transac=
tions.
Currently, the supply curve is inelastic:
[cid:ii_jalpxsnl1_1600a3d9def1eaff]
Increasing the block size will not affect the inelasticity for any fixed bl=
ock size. The downsides of a fixed block size limit are well-known:
- Unpredictable transaction settlement time
- Variable transaction fees depending on network congestion
- Frequent overpay

Proposal
1. Miners implicitly choose the market sat/byte rate with the cheapest-fee =
transaction included in their block. Excess transaction fees are refunded t=
o the inputs.
2. Remove the block size limit, which is no longer necessary.

Benefits
- Dynamic block size limit regulated by profit motive
- Transaction fees maximized for every block
- No overpay; all fees are fair
[cid:ii_jalqir4g2_1600a4c89811347a]
Miners individually will make decisions to maximize their block-reward prof=
it.
Miners are incentivized to ignore low-fee transactions because they would s=
have the profits of their other transactions and increase their hash time.
Users and services are free to bid higher transaction fees in order to reac=
h the next block, since their excess bid will be refunded.

The block size limit was added as a spam-prevention measure, but in order f=
or an attacker to spam the network with low-fee transactions, they would ha=
ve to offset the marginal cost of reducing the price with their own transac=
tion fees. Anti-spam is thus built into the marginal system without the nee=
d for an explicit limit.

Rarely, sections of the backlog would become large enough to be profitable.=
 This means every so many blocks, lower-fee transactions would be included =
en masse after having been ignored long enough. Low-fee transactions thus g=
ain a liveness property not previously enjoyed: low-fee transactions will e=
ventually confirm. Miners targeting these transactions would be at a notewo=
rthy disadvantage because they would be hashing a larger block. I predict t=
hat this scheme would result in two markets: a backlog market and a real-ti=
me market. Users targeting the backlog market would match the price of the =
largest backlog section in order to be included in the next backlog block.

Examples

Scenario 1
Sat/byte        Bytes   Reward
400     500000  200000000
300     700000  210000000
200     1000000 200000000
100     1500000 150000000
50      5000000 250000000
20      10000000        200000000
A miner would create a 5MB block and receive 0.25 BTC

Scenario 2
Sat/byte        Bytes   Reward
400     600000  240000000
300     700000  210000000
200     1000000 200000000
100     1800000 180000000
50      4000000 200000000
20      10000000        200000000
A miner would create a 600KB block and receive 0.24 BTC

Thanks,
William Morriss

--_000_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: text/html; charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable

<html>
<head>
<meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3DWindows-1=
252">
<style type=3D"text/css" style=3D"display:none;"><!-- P {margin-top:0;margi=
n-bottom:0;} --></style>
</head>
<body dir=3D"ltr">
<div id=3D"divtagdefaultwrapper" style=3D"font-size:12pt;color:#000000;font=
-family:Calibri,Helvetica,sans-serif;" dir=3D"ltr">
<p style=3D"margin-top:0;margin-bottom:0">Hi All,</p>
<p style=3D"margin-top:0;margin-bottom:0"><br>
</p>
<p style=3D"margin-top:0;margin-bottom:0">Auction theory is a well-studied =
problem in the&nbsp;economics&nbsp;literature. Currently what bitcoin has i=
s Generalized first-price auction,&nbsp;where winning bidders pay their ful=
l bids. Alternatively, two approaches are potentially
 viable, which are Generalized second-price auction and&nbsp;<span>Vickrey=
=96Clarke=96Groves auction.&nbsp;Generalized second-price auction, where wi=
nning bidders pay their next highest bids,&nbsp;reduces (but not eliminate)=
 the need&nbsp;for bidders to strategize by allowing them
 to bid closer to their reservation price.&nbsp;Vickrey=96Clarke=96Groves a=
uction, a more sophisticated&nbsp;system that considers all bids in relatio=
n to one another, elicit truthful bids from bidders, but may not maximize m=
iners' fees as the other two systems will.&nbsp;</span></p>
<p style=3D"margin-top:0;margin-bottom:0"><br>
</p>
<p style=3D"margin-top:0;margin-bottom:0">Due to&nbsp;one result called&nbs=
p;<span>Revenue Equivalence, the choice of fee&nbsp;design will not impact =
miners' fees&nbsp;unless the outcomes of the auction changes (i.e, the high=
est bidders do not always win). In addition, the sole
 benefit of second-price auction over first-price auction is to spare peopl=
e's mental troubles from strategizing,&nbsp;rather than actually saving min=
ing fees, because in equilibrium the fees bidders pay remain the same. Ther=
efore, in balance, I do not see substantial&nbsp;material&nbsp;benefits
 arising from switching to a different fee schedule.&nbsp;</span></p>
<p style=3D"margin-top:0;margin-bottom:0"><span><br>
</span></p>
<p style=3D"margin-top:0;margin-bottom:0">Best,</p>
<p style=3D"margin-top:0;margin-bottom:0">Chenxi Cai</p>
<br>
<br>
<div style=3D"color: rgb(0, 0, 0);">
<hr style=3D"display:inline-block;width:98%" tabindex=3D"-1">
<div id=3D"divRplyFwdMsg" dir=3D"ltr"><font face=3D"Calibri, sans-serif" st=
yle=3D"font-size:11pt" color=3D"#000000"><b>From:</b> bitcoin-dev-bounces@l=
ists.linuxfoundation.org &lt;bitcoin-dev-bounces@lists.linuxfoundation.org&=
gt; on behalf of William Morriss via bitcoin-dev
 &lt;bitcoin-dev@lists.linuxfoundation.org&gt;<br>
<b>Sent:</b> Wednesday, November 29, 2017 5:47 PM<br>
<b>To:</b> bitcoin-dev@lists.linuxfoundation.org<br>
<b>Subject:</b> [bitcoin-dev] BIP Idea: Marginal Pricing</font>
<div>&nbsp;</div>
</div>
<div>
<div dir=3D"ltr">Comrades,<br>
<div><br>
Long term, tx fees must support hash power by themselves. The following is =
an economic approach to maximize total fee collection, and therefore hashpo=
wer.<br>
<div class=3D"x_gmail_quote">
<div dir=3D"ltr">
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div>
<div><b><br>
</b></div>
<div><b>Goals</b><br>
</div>
Maximize total transaction fees<br>
</div>
Reduce pending transaction time<br>
</div>
Reduce individual transaction fees<br>
</div>
<div><br>
</div>
<div><b>Challenges</b></div>
<div>Validators must agree on the maximum block size, else miners can cheat=
 and include extra transactions.</div>
<div>Allowing too many transactions per block will increase the cost of the=
 mining without collecting much income for the network.</div>
<div><br>
</div>
<b>Problem<br>
</b></div>
In the transaction market, users are the demand curve, because they will tr=
ansact less when fees are higher, and prefer altcoins. The block size is th=
e supply curve, because it represents miners' willingness to accept transac=
tions.<br>
</div>
Currently, the supply curve is inelastic:<br>
</div>
<div><img naturalheight=3D"800" naturalwidth=3D"800" width=3D"458" height=
=3D"458" tabindex=3D"0" style=3D"user-select: none;" src=3D"cid:ii_jalpxsnl=
1_1600a3d9def1eaff"><br>
<img naturalheight=3D"800" naturalwidth=3D"800" width=3D"0" height=3D"0" st=
yle=3D"margin-right: 0px; user-select: none;" tabindex=3D"0" src=3D"cid:ii_=
jaljdnex0_16009957f9065362">Increasing the block size will not affect the i=
nelasticity for any fixed block size. The downsides
 of a fixed block size limit are well-known:<br>
</div>
</div>
</div>
- Unpredictable transaction settlement time<br>
</div>
- Variable transaction fees depending on network congestion<br>
</div>
- Frequent overpay</div>
<div><br>
</div>
<div><b>Proposal</b></div>
<div>1. Miners implicitly choose the market sat/byte rate with the cheapest=
-fee transaction included in their block. Excess transaction fees are refun=
ded to the inputs.</div>
<div>2. Remove the block size limit, which is no longer necessary.<br>
</div>
<div><br>
</div>
<div>
<div><b>Benefits</b></div>
<div>- Dynamic block size limit regulated by profit motive</div>
<div>- Transaction fees maximized for every block<br>
</div>
<div>- No overpay; all fees are fair</div>
<div><img naturalheight=3D"800" naturalwidth=3D"800" width=3D"458" height=
=3D"458" tabindex=3D"0" style=3D"user-select: none;" src=3D"cid:ii_jalqir4g=
2_1600a4c89811347a"><br>
Miners individually will make decisions to maximize their block-reward prof=
it.<br>
</div>
</div>
<div>Miners are incentivized to ignore low-fee transactions because they wo=
uld shave the profits of their other transactions and increase their hash t=
ime.</div>
<div>Users and services are free to bid higher transaction fees in order to=
 reach the next block, since their excess bid will be refunded.</div>
<div><br>
</div>
<div>The block size limit was added as a spam-prevention measure, but in or=
der for an attacker to spam the network with low-fee transactions, they wou=
ld have to offset the marginal cost of reducing the price with their own tr=
ansaction fees. Anti-spam is thus
 built into the marginal system without the need for an explicit limit.<br>
</div>
<div><br>
</div>
<div>Rarely, sections of the backlog would become large enough to be profit=
able. This means every so many blocks, lower-fee transactions would be incl=
uded en masse after having been ignored long enough. Low-fee transactions t=
hus gain a liveness property not
 previously enjoyed: low-fee transactions will eventually confirm. Miners t=
argeting these transactions would be at a noteworthy disadvantage because t=
hey would be hashing a larger block. I predict that this scheme would resul=
t in two markets: a backlog market
 and a real-time market. Users targeting the backlog market would match the=
 price of the largest backlog section in order to be included in the next b=
acklog block.<br>
</div>
<div><br>
</div>
<div><b>Examples</b></div>
<div><b><br>
</b></div>
<div>Scenario 1<br>
</div>
<div><b></b>
<table dir=3D"ltr" cellspacing=3D"0" cellpadding=3D"0" border=3D"1" style=
=3D"table-layout:fixed; font-size:10pt; font-family:arial,sans,sans-serif; =
width:0px; border-collapse:collapse; border-color:currentcolor; border-styl=
e:none; border-width:medium">
<colgroup><col width=3D"100"><col width=3D"100"><col width=3D"100"></colgro=
up>
<tbody>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Sat/b=
yte</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Bytes=
</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Rewar=
d</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
400</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
500000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
300</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
700000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
210000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
1000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
100</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
1500000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
150000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
50</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
5000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
250000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
20</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
10000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
</tbody>
</table>
</div>
<div>A miner would create a 5MB block and receive 0.25 BTC<br>
</div>
<div><br>
</div>
<div>Scenario 2</div>
<div>
<table dir=3D"ltr" cellspacing=3D"0" cellpadding=3D"0" border=3D"1" style=
=3D"table-layout:fixed; font-size:10pt; font-family:arial,sans,sans-serif; =
width:0px; border-collapse:collapse; border-color:currentcolor; border-styl=
e:none; border-width:medium">
<colgroup><col width=3D"100"><col width=3D"100"><col width=3D"100"></colgro=
up>
<tbody>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Sat/b=
yte</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Bytes=
</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom">Rewar=
d</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
400</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
600000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
240000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
300</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
700000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
210000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
1000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
100</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
1800000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
180000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
50</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
4000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
<tr style=3D"height:21px">
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
20</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
10000000</td>
<td style=3D"overflow:hidden; padding:2px 3px; vertical-align:bottom; text-=
align:right">
200000000</td>
</tr>
</tbody>
</table>
</div>
<div><b></b></div>
<div>A miner would create a 600KB block and receive 0.24 BTC<br>
</div>
<br>
</div>
Thanks,<br>
</div>
William Morriss<br>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>

--_000_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_--

--_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: image/png; name="fixedblocksize.png"
Content-Description: fixedblocksize.png
Content-Disposition: inline; filename="fixedblocksize.png"; size=18199;
	creation-date="Thu, 30 Nov 2017 00:56:10 GMT";
	modification-date="Thu, 30 Nov 2017 00:56:10 GMT"
Content-ID: <ii_jalpxsnl1_1600a3d9def1eaff>
Content-Transfer-Encoding: base64

iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAABmJLR0QAAACAAID1ziPfAAAACXBI
WXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4QsdFQAk4oFZngAAAB1pVFh0Q29tbWVudAAAAAAAQ3Jl
YXRlZCB3aXRoIEdJTVBkLmUHAAAgAElEQVR42uzdebyWdYH///fhsO+LIqAIiiAi7iguLCpKWloE
8XUhccs0zXFqMmyKctKZhjEdw/llM6W5lOaSS4aJKwmCoqK4kbIJxCICHvad8/sDueUE6AEOxwM8
n4+HD+9z3dd9X9e57hu9X3yuz30VlZaWlgYAAKASVHMIAAAAAQIAAAgQAAAAAQIAAAgQAAAAAQIA
AAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAAAAAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIE
AAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAE
CAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAA
CBAAAAABAgAACBAAAAABAgAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQA
AECAAAAAAgQAAECAAAAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAACAAAEAABAgAACAAAEAABAg
AACAAAEAAAQIAACAAAEAAAQIAACAAAEAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAAAAAECAAAg
QAAAAAECAAAgQAAAAAECAAAIEIcAAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAQKWr7hBUvqKiom1+
bGlpqQMIAMBOywgIAAAgQAAAAAECAAAgQAAAAAECAAAgQAAAAAECAAAIEAAAAAECAAAIEAAAAAEC
AAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAAACBAAAQIAAAAACBAAAQIAAAAACBAAAECAAAAAC
BAAAECAAAAACBAAAECAAAIAAAQAAECAAAIAAAQAAECAAAIAAAQAAECAAAIAAAQAABAgAAIAAAQAA
BAgAAIAAAQAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAAAAQIAACBAAAAAAQIAACBAAAAAAQIA
AAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgABQKUpKSvKDH/wgXbt2
TePGjdO8efOccMIJufnmm7Ny5coqt79f+9rXcuSRR2bdunVePIDdRFFpaWmpw1DJB72oaJsf6+UC
tmT69Ok5+uijM3fu3LRu3TqHHXZYVq9enZdffjkLFizI0UcfnWeffTb169evMvu8zz77ZObMmVm+
fHlq167tRQTYDRgBAdhFXHnllZk7d26+853vZMqUKXnsscfyxBNPZNq0aenVq1defvnl/OQnP3Gg
ABAgAGy/v/71r0mSQYMGpXr16oXl9evXz80335xatWrljTfe+MznWbt2bZ5//vksXbrUQQVAgACw
eY0bN06SfPDBB5vc17lz58yePTvDhg0rLPviF7+YLl26bDL/Yvjw4enZs2eGDBlSWHbOOefkuOOO
y8yZM3Peeedlr732SpMmTdKrV688+eSTZR6/NetubOjQoWnSpEleeeWVTe4bNmxYGjVqlPvvv98L
DSBAAKgKBgwYkCTp27dvbr/99rz//vtl5o01adIkNWvWLPw8duzYvPrqq5sEyKJFi8r8O0lefvnl
vPjiizn++OPzzDPP5OSTT85JJ52Ul156KV/4whfym9/8ZpvW3djKlStTUlKSoUOHbnLfjTfemEWL
FqW4uNgLDSBAAKgKrr322nz/+9/P9OnTc/HFF2e//fZLs2bN8pWvfCW//OUvs2TJku3eRuvWrTNh
woTce++9eeihh/Lyyy+nTp06GTRoUEpKSrZ53SS56KKLUrt27Tz44INZuHBhYfmkSZPy3HPPpVWr
Vvnyl7/shQYQIABUBTVq1MiQIUMyZ86c3H///bnyyivTsWPH/OUvf8kVV1yRdu3aFeaJbKshQ4ak
UaNGhZ8POuignHvuuVmwYEFGjBixzesmSbNmzXLuuedm+fLluffeewvLb7/99iTJJZdckho1anih
AQQIAFVJ06ZN079//wwdOjSjR4/OggULct1112Xu3Ln52te+tl2Ty4888shNlh100EFJknfffXeb
193giiuuSJLcdtttSZI1a9bkjjvuSHFxcS655BIvLoAAAaAqWLFiRX7xi19k3Lhxm9xXv379/OhH
P0qXLl0yb968vPbaa5/6XKtXr97ifZu7FtGGOSQbzy/Z2nU3jpbjjjsur7zySsaPH5/HH388s2fP
Tp8+fbL33nt7oQEECABVwQsvvJB//ud/Tv/+/bd4VfENF0HdEAa1atVKkixfvrzMeuPHj9/idjb3
DVUbvtr3wAMP3OZ1N/btb387SXLnnXfmt7/9bZLkW9/6lhcZQIAAUFX07Nkz7dq1y5QpU/KjH/0o
a9asKdxXWlqau+++O6+88kqaNm2aLl26JEk6dOhQiJcNRowYkRtvvHGL2xk0aFCZCeKvvfZa7r//
/rRu3TonnXTSNq+7sX79+qV58+a588478/jjj6dDhw45+eSTvcgAu4jqDgHALvAf8+rV8+CDD+bk
k0/Oz372s9x5553p1KlTatWqlXfffTeTJk1KzZo1c99996VOnTpJ1o80jBgxIv37988ZZ5yROXPm
ZOTIkWnbtm3ef//9zW5n5syZ6dSpU0488cQsW7Ysw4cPT2lpaYYOHVp43m1Zd2O1atXKpZdemuuu
uy5JcvnllxdGbwDY+RkBAdhFHH744Zk0aVIGDRqU/fbbL2+99VZGjBiRunXr5tJLL83EiRNzyimn
FNbv27dv7rzzzrRt2zaPPPJIZsyYkZ/97GcZNmxY9thjjxx22GGbbOP5559Pz549M3z48IwaNSon
nXRSRo0alT59+mzTusccc0wOO+ywTb7d6qKLLkqS1KlTJwMHDvTiAuxCiko3N0uQHXvQK+lv8ry0
QEU54IADMnny5KxevTrVq1evsHW35MEHH0z//v1z8cUXb/HChQDsnJyCJXTEDFCllJaW5uc//3mS
5Morr3RAAAQIYkasABXvzDPPzOzZs1O/fv289NJLGThw4GZPAwNAgMAmsSJCYNfSpUuXNGzYMMXF
xRW67sZatmyZ0aNHp7i4OJdffnluuOEGBx5gV/ysaA7I5/MBfXfh7QUAwMZ8CxZiCwCASuMULCot
QoyGwK7z53lz/BkHQIDsghZfPW2zyxvc0EaIAAAgQPh8w2RrVUbICBEAAAECWx0y2xsrvi0LAGD3
YxI6lRIrnxYhJqoDAAgQKHeECBEAAAQIlR4iFUGIAADs2swBYYdEiPkhAABsjhEQdniMbE+EGA0B
ABAgUO4IqagQAQBAgEC5Q6QiIsSICADAzs8cECo9QswPAQDYfRkB4XONke2JEKMhAAACBModIeaH
AAAIEKj0EKmICDEiAgAgQKDcEVKRFzIEAECAQKWFiNEQAAABAp9LiAAAIECg3CFSERFiRAQAQIBA
uSPE/BAAAAEClR4iFRUhQgQA4PPjSujslBHiauoAADsnIyDs9DGyPRFiNAQAQIBAuSNEiAAACBCo
9BCpCEIEAGDHMweEXS5CzA8BAKi6jICwS8fI9kSI0RAAAAEC5Y4QIQIAIECg0kOkIggRAICKYQ4I
u1WEmB8CAPD5MgLCbhsj2xMhRkMAAAQIlDtCKipEAAAQIFDuEKmICBEiAADlZw4IIuRj2zM/ZEOE
mB8CAPDpjIDAZmJke0MEAAABAuWKkO0NEadlAQAIENjqENleQgQAQIDAVkWIEAEAECCw04YIAIAA
AcodIhURIUIEABAgQLkjxGgIAIAAgUoPkYqIECMiAMDuxoUIoQIiZHsuYrghRlzEEADYHRgBgQqO
ke2JEKMhAIAAAcodIeaHAAAIEKj0EKmICDEiAgAIEKDcEVIRIbIhRgAABAhQaSFiNAQAECDA5xIi
AAACBCh3iFREhBgRAQAECFDuCDE/BAAQIMBOGSJGQwAAAQJ8LiECACBAgHKHSEVEiBERAECAAOWO
EPNDAAABAlR6iFRUhAgRAKAqqe4QQNWPkAY3tNnuECktLXVQAYDPnREQ2MliZHsixGgIACBAgHJH
iBABAAQIUOkhUhGECADweTAHBHbyCDE/BADYmRgBgV0oRrYnQoyGAAACBCh3hLiaOgAgQIBKD5GK
iBAjIgDAjmIOCOzCEWJ+CABQ1RgBgd0kRrYnQoyGAAACBCh3hJgfAgAIEKDSQ6QiIsSICAAgQIBy
R0hFXsgQAECAAJUWIkZDAAABAnwuIQIAIECAcodIRUSIEREAQIAA5Y4Q80MAAAEC7JQhYjQEABAg
wOcSIgAAAgQod4hURIQYEQEABAhQ7ggxPwQAECBApYdIRUWIEAGA3VN1hwDY1ghpcEOb7Q6R0tJS
BxUAdiNGQIAKiZHtiRAAQIAAlDtCtjdERAgACBCArQ4REQIAfBZzQIAdEiHbMj/EnBAA2PUZAQF2
eIxsbYQAAAIEYJsipKK+uhcAECAA5Q6RrWEUBAAECIAIAQAECCBCAAABAiBCAAABAogQAECAAIgQ
ABAgADvGtnw9rwgBAAECUKkRAgAIEIBKixCjIAAgQABECAAgQAARAgAIEAARAgACBECEAAACBECE
AIAAAdgxXCMEAAQIQJWPEABAgABUWoQYBQEAAQIgQgAAAQKIEABAgACIEAAQIAAiBAAQIAAiBAAE
CMCO4RohACBAAKp8hAAAAgSg0iLEKAgACBAAEQIAAgRAhAAAAgRAhACAAAEQIQCAAAEQIQAgQAB2
DNcIAQABAlDlIwQAECAAlRYhRkEAQIAAiBAAECAAIgQAECAAIgQABAiACAEABAiACAEAAQKwY7hG
CAAIEAARAgACBECEAAACBOBziRCjIAAgQABECAAIEAARAgAIEAARAgACBECEAIAAAUCEAIAAAdgx
XCMEAAQIQJWPEABAgABUWoQYBQEAAQIgQgBAgACIEAAQIACIEAAQIAAiBAAECAAiBAAECMCO4Roh
ACBAAKp8hAAAAgSg0iLEKAgACBAAEQIAAgRAhACAAAFAhACAAAEQIQAgQAAQIQAgQAB2DNcIAQAB
AlDlIwQABAgAlRYhRkEAECAAiBAAECAAIgQABAgAIgQABAiACAEAAQKACAFAgDgEADuGa4QAgAAB
qPIRAgACBIBKixCjIAAIEABECAAIEAARAgACBAARAgACBECEAIAAAUCEACBAANgxXCMEAAECQJWP
EAAQIABUWoQYBQFAgAAgQgBAgACIEAAQIACIEAAECAAiBAAECAAiBAABAsCO4RohAAgQAEQIAAgQ
ABECAAIEgM8lQoyCACBAABAhACBAAEQIAAgQAEQIAAIEABECAAIEABECgAABYMdwjRAABAgAVT5C
AECAAFBpEWIUBAABAoAIAUCAACBCAECAACBCABAgAOx8EQIAAgSASmMUBAABAsB2cSoWAAIEABEC
AAIEQIQAgAABoNIjxCgIAAIEABECgAABYNclQgAQIABsF5PSARAgAIgQAAQIAIgQAAQIANttW76a
V4QAIEAAqNQIAQABAkClRYhREAAECAAiBAABAoAIAQABAkCFRAgACBAARAgAAgQAAECAALAJoyAA
CBAARAgAAgQAEQIAAgQAEQKAAAFAhACAAAGgQiPEhQoBECAAiBAABAgAuy4RAoAAAWCbbct8EBEC
gAABQIQAIEAA2HUjBAAECACVxigIAAIEABECgAABQIQAIEAAQIQAIEAAECEACBAAECEACBAARAgA
AgQAABAgALB1Vl373a1a3ygIgAABABECgAABQIQAIEAAQIQAIEAAECEACJAKce2116Z169YpKSlJ
knz961/PMccck9LSUq8mwE5OhAAIkErxb//2bzn11FOzevXqT11vxYoVGTp0aFavXp169eolSV58
8cW8/PLLWbt27eeyTwBs2daOgogQAAFSKR577LE8/fTTmT9//qeu9+ijj+ajjz7KwIEDU6NGjSqx
TwBUfIQAIECqhN/+9rdJkgsvvNArB7ALR4hREAABUrB06dJcd9116dSpU+rWrZuWLVumf//+GT9+
/CbrPvvsszn11FPTqlWr1KlTJx06dMjgwYOzdOnSJMm5556boqKivPrqq0mSli1bpqioKO3bt9/k
lKoZM2bkySefzLHHHpuDDjpok23Nnj07AwcOTPPmzdO0adOccsopefLJJwv3Dx06NE2aNMkrr7yy
yWOHDRuWRo0a5f777y/XPs2fPz+XXXZZOnfunIYNG6Zbt2654447zEMBECEAfIbqW/uAs846K8OG
DcsRRxyRCy64IPPmzcsjjzySYcOGZfTo0Tn88MOTJPfcc08GDBiQunXrpnfv3tl///0zduzYXH/9
9ZkzZ05+/etfp1+/fmnatGnuu+++zJs3LxdccEHq1auXAw44IMXFxWW2e9ddd6W0tDQXXXTRZver
R48eWbFiRXr16pWVK1fmySefzBe+8IX87//+b775zW9m5cqVKSkpydChQ3PXXXeVeeyNN96YRYsW
pbi4+DP3acqUKenRo0fmzZuXc845J1/5ylcyYsSIXHjhhRk3blyGDh3qXQXwKRFS89qbtipC/OUO
wK6lqHQr/ss+d+7c7LXXXmnfvn3efffdwt9O3XHHHbnooovy85//PN/97vq/4Tr99NPzxBNP5I9/
/GP69u2bJFmzZk3atm2bJUuW5KOPPio8vkuXLnn11Vcze/bstGjRYpPtlpaWpn379pk1a1bmzJmT
hg0bFu474IADMnny5Bx//PEZNmxYGjdunCR56623cvTRR6d27dqZNGlSkmSfffZJUVFRZs+enUaN
GiVJJk2alPbt26dVq1Z5//33C3NLtrRP/fr1yyOPPJJRo0bluOOOS5KsW7cuZ599dh544IGMGDEi
PXv2/Mz/oW6rxVdP864FPjcNbmjzqXFRXlsTIRv+PwDArmGrTsFq2LBh6tSpk6lTp+aBBx7IsmXL
kiQXXHBBli5dWoiPJPnjH/+Yt99+O0VFRRk0aFC+9rWv5Utf+lIWLlyYhQsXFk7DKo+RI0dm8uTJ
6d+/f5n42NiQIUMK8ZEknTt3zjnnnJOSkpI8/fTTadasWc4999wsX7489957b2G922+/PUlyySWX
fObE9nnz5uWhhx5Kjx49CvGRJNWqVctVV12VJLnvvvu8qwA+g9OxAARIudSuXTt33313GjZsmLPO
OiuNGzfOEUccke985zt55513yqw7fvz49O7dO3379s0tt9ySiRMnZvXq1ZucWlUeGyJhS6dfJcmR
Rx65ybLOnTsnSd59990kyRVXXJEkue2225KsH5G54447UlxcnEsuueQz92PD84wYMSJFRUVl/unW
rVuSZPr06d5VADuACAHYNWz1HJB+/frltNNOy/PPP5/Ro0fn+eefzy9+8YvcfPPNufnmm3PVVVdl
0aJF6dOnTxYsWJBbb701559/furUqZMk6dq1a8aOHVvu7S1evDgPPPBA9t9//3Tv3n3rfrnq63+9
DSMbRx55ZI477riMGTMm48ePz7Rp0zJ79uz069cve++992c+3/Llywu/Q58+fTa5v7i4uHC6GQCf
bmvng2yIEKdjAexGAbJs2bI8+OCD6d27d04//fScfvrpSZLJkyfnoIMOypAhQ3LVVVdl9OjRmTt3
bs4444xcdtllhcevW7cus2fP3qodvP/++7Ns2bJceOGFqVZtywM2r7zySnr06FFm2RtvvJEkZb41
69vf/nbGjBmTO++8M1OnTk2SfOtb3yrXvhx88MFJkkaNGuWaa64pc19paWlGjx6dvfbay7sKYAdG
CAA7t606BWv48OE5//zzc/bZZ5f5mtxGjRqlWrVqhdOrNow4bPy3VGvXrs3VV1+dGTNmFGJkg9q1
aydJFixYsMnjfvvb36aoqCjnn3/+p+7boEGDsnDhwjLx8fvf/z6tWrXKqaeeWljer1+/NG/ePHfe
eWcef/zxdOjQISeffPImz7e5fWrRokV69eqVp556KqNGjSqz/uDBg9OtW7dcf/313lUAWxkhW8Op
WAA7t60aATnjjDNy9NFH569//WsOPPDAdO3aNYsXL84LL7yQlStX5vvf/36S5Nhjj03btm0zbNiw
dO/ePQceeGBGjhyZ9957L3Xr1s2yZcvywQcfFCaUd+3aNS+88EL69u2b+vXrZ/78+Rk7dmw++uij
vPDCC/nCF76Q1q1bf+q+zZgxI506dcqJJ56YZcuWZfjw4VmzZk2GDh2aevXqFdarVatWLr300lx3
3XVJkssvv3yz/zPb0j7deuut6d69e0466aT069cv7dq1y4QJE/Lwww+nXbt2ZSbiA1D+CPH1vAC7
h60aAalRo0aeffbZDB48ODVq1MjDDz+cMWPG5JBDDsnDDz+cK6+8MklSr169DB8+PGeeeWbefvvt
/OEPf0izZs3y2GOPZdCgQWnUqFGZEZSf/OQnOeusszJr1qxMmjQpxx9/fJo0aVK48vmnTT7v1q1b
OnfunNGjR6dnz54ZPnx4Ro0alRNPPDEjR45Mv379NnnMhuerU6dOBg4cuNnn3dI+tW/fPm+//XYu
ueSSvP3227npppsyfvz4XHXVVRkzZkyaN2/uXQWwjRGyNYyEAOyctuo6IJVpzZo1adOmTZYvX55Z
s2YVTomqCA8++GD69++fiy++OL/5zW8q/6C7Dgiwk6qo64B8GtcIAdi1VauqO/bkk09m1qxZGTBg
QIXGR2lpaX7+858nSWHEBoCqw0gIwK6telXdsUcffTRJcuGFF1bI85155pmZPXt26tevn5deeikD
Bw7MYYcd5h0AsAvYUoQYHQGoeqrsCMiPfvSjPPTQQ5u9wOC2aNmyZaZOnZp33nknl19+eW699Vav
PkAVVVGnc/3jRWM/6x8AdrwqOwdklz7o5oAAO6nKmAOysap+jRD/CwXYetUcAgCqqh0RNRXJyAqA
AAFAhOy0oSJYAAECACJEsAAIEABECIIF2BlVdwgA2NkjpKpPVq+KwVJeJtoDAgQAyhkmWyJYdkys
CBZAgACAYBEsgAABgF01WMSKYAEECABUyVgRLDsuWIQKCBAAQLBUuVARLCBAAADBIlhAgAAAu3Kw
CBXBAgIEAKhyoSJYdnywiBUECACAYKmSsSJYECAAAIJFsOzkpk6dmr59+2b8+PGF41VUVJRmzZrl
sMMOy1lnnZULLrggNWrU2C2Ox5VXXpmnn346r7/+emrVqiVAAIDdO1jEyo4Jlt05VH7zm9/k9ddf
z3777ZdOnTolSVavXp333nsvzzzzTJ555pn86le/ymOPPZZWrVrt8sdjzJgx+dvf/paPPvooLVq0
ECAAgFjZGoKlYkNlVwyW+fPnJ0muueaafPOb3yxz3/Tp0zNw4MD89a9/zVe/+tWMGjVqtxkJqSgC
BAAQLIJFsGxGtWrVNlm277775qmnnkrHjh0zduzY/OEPf8h5553nDbA1x9UhAAD49GDZmn8of7Bs
zT9VSY0aNfKDH/wgSfL73/++zH3z58/PZZddls6dO6dhw4bp1q1b7rjjjjLBNWDAgBxzzDF59dVX
c+KJJ6ZevXrZZ599cv3116e0tDT33HNPOnfunLp166ZTp0656667NtmHZ599NqeeempatWqVOnXq
pEOHDhk8eHCWLl1aZjtdunTJ3Llzc8kll6Rly5Zp0KBBunXrltGjR2/ynNOmTcs555yTtm3bpmHD
hundu3fGjRtX4cfPCAgAQAUHS3kYWdn6YCmvyhhd6dKlS5LkpZdeKiybMmVKevTokXnz5uWcc87J
V77ylYwYMSIXXnhhxo0bl6FDhxYeM3ny5Jx44olp1apVvvzlL+fJJ5/M4MGDM3HixNx999054ogj
cuaZZ+ZPf/pTzj///HTo0CHHHntskuSee+7JgAEDUrdu3fTu3Tv7779/xo4dm+uvvz5z5szJr3/9
6zLb6dq1a+bPn59u3bpl3bp1GT58eE4++eRMmDAh++23X5LkjTfeSM+ePVNSUpJevXqldevWefHF
F9O9e/fUrFlTgAAA7C6hIlgqNlYqKk7atGmTJCkpKcnq1atTo0aNXH311Zk9e3ZGjRqV4447Lkmy
bt26nH322bnlllvSr1+/9OzZs/AcZ5xxRn73u9+luLg4Tz31VHr37p277rorP/zhD3P99dcnSW65
5Zb80z/9U+69995CgNx9992Ff/ft2zdJsmbNmrRt2zYPPPBA/u///q/MMahXr16ef/75tG7dOkky
ePDgXH/99bn99ttz3XXXpbS0NFdddVVKSkryu9/9LgMGDCg856WXXprbb79dgAAACBbB8nlavnx5
kvXzRKpVq5Z58+bloYceyoknnliIjw33X3XVVXnggQdy3333lQmQH//4xykuLk6SHHrooes/nFev
nquvvrqwzobl06dPLyz74x//mPfffz/vvvtuBg0alMmTJ2fx4sVZuHBhlixZkqVLl6Z+/fqF9W+5
5ZZCfCRJjx49kiTvvfdekmT27NkZMWJEOnfunHPPPfeTUKhePf/1X/+V3//+91m5cqUAAQCgYoJF
rGy9999/P0nSokWLFBcX5913302SjBgxYosjMBtHRPLJKEqSwvU12rdvn0aNGm2yfPXq1YVl48eP
T//+/TNz5szUqVMn7du3T7NmzQox848OP/zwMj/XqVMnSQpR8be//S1J0rlz5032vVmzZmnXrl3e
eecdAQIAQOXHimBZ77nnnkuSHH/88Uk+GRHp2rVr+vTps8n6xcXFhdOlNtjct2xtbtnGFi1alD59
+mTBggW59dZbc/755xeComvXrhk7duwmj/msrwneUriU9/ECBAAAwbIDlZSU5Kab1v9OF154YZLk
4IMPTpI0atQo11xzTZn1S0tLM3r06Oy1117bve3Ro0dn7ty5OeOMM3LZZZcVlq9bty6zZ8/epufs
2LFjkuTNN99MaeLtENAAACAASURBVGlpmVGQRYsWFU7VEiAAAAiWHWjdunWbLHvzzTdz9tlnZ8GC
BTnttNNy2mmnJVl/KlavXr3y1FNPZdSoUenWrVvhMYMHD86///u/Z9CgQfnP//zP7dqnDaMRG0+m
X7t2bb7//e9nxowZW9zvT9O8efOccsopefrpp3PvvfcW5oGsXbs2gwYNKozuCBAAAHbrYNlRodK0
adMkyZAhQ/KnP/0pyfr5EhMmTMjMmTOTJD179sw999xTOGWqqKgot956a7p3756TTjop/fr1S7t2
7TJhwoQ8/PDDadeuXb773e2/Tsyxxx6btm3bZtiwYenevXsOPPDAjBw5Mu+9917q1q2bZcuW5YMP
PkjDhg3L/ZxFRUX57//+7/To0SNf//rXc/fdd2efffbJiy++mIkTJ6Z27dpZsWKFAAEAQKiUN1S2
5ut3v/GNb+TPf/5z3nrrrUyZMqWwvFmzZunVq1cGDhyYAQMGbDJ3on379nn77bczePDgjBw5Mo8+
+mhatWqVq666Kj/84Q+z5557Jknq16+f2rVrl3l8vXr1cuCBBxauL7JB69at07x58xx11FGF9YYP
H57vfe97GTVqVF577bUceuiheeyxxzJu3LjcdNNNWbt2bWE7tWrVSvXqZT/yt2nTpsxzJusnoL/2
2msZNGhQRo8enVGjRqVr16657bbbctddd2X48OFlJsdvj6LSyrhSC5tU5rZafPU0BxD43DS4oc12
fxAAqGxbGyA72pQpU7Jo0aJNvp1qR2xn4cKFOeKII6rU62EEBAAAKtH++++/S21na1XzFgAAAAQI
AAAgQAAAAAQIAAAgQAAAAAQIAAAgQAAAAAECAAAgQAAAAAECAAAgQAAAAAECAAAIEAAAAAECAAAI
EAAAAAECAAAIEAAAQIAAAAAIEAAAYGdW3SGAqumk330lr8x+fZPlxUXF2a/xvmnfdP9cftRFObFN
t0rZn2kLZ+T6UTdl9N/HZs7SuWndoFUO3rNjzmjfO998/LtJki4tD89zX3/UiwcACBDY2TSu3Wiz
y9eWrs2kj6Zm0kdT85fJz+Tyoy7KkJN/skP3Zdnq5fny/QMypWRaYdnkkvfTvN4eKUrRFh/3g+eu
y4szX1l/+/h/Tu/9T/LCAoAAAaqiBjXrF253aXl49qq3Z5Jk1drVmTDvvfx98awkyS9fvT1fOuDU
9Nj3+B22L2NnvVqIj30b7pN/OfaKlKxYmL0btMi+DffJ/zuoT5Jk/8ZtyjxuzpK5hVGc1evWeFEB
AAECVdXGIwvfP+7KnN7ulMLPa9atyfl/uiJ/mvhEkuTxSU/vkAApWbEwdWvUybSFfy8s69fxzAw8
5P9lyaqlqVlcM3Vr1Mlx+xy9yePq1aibhrU+iaiGNetn1dpVWbV2derXrOcFBgABAuw0f3CrVc8p
+/UsBMiG0ZC9f9E5i1YtXr/sn97Mf7zw33n0vb9k1uI5KU1pJlw6Jvs0bJXS0tI89O6f84e3H87b
8/6WkhULc9AeHXJMqyPzvWO/nWZ1miRJTv5dn0z8aEqZbf/32Fvz32NvTZLcetrPU1RUlMv+8i9J
PpkD0uPuMzK1ZHqZx33xvrOTJD33PSF/PuseLyIACBBgZ7Fm3Zr8ZfLThZ87NG2XJGlUu2EhQL58
/4CMm/NGYZ39Gu+bfRq2yso1KzPwT5fn8Y0enyRjZ43L2Fnj8oe3H8pdX/5luu97XLn2pWGtBpu9
DQAgQGAndeOLv8zv33owSbJq7aq8OXdCYdSjuKg4fQ88I0nZeSPj5ryRWsW1sneDFpm7dF66t14f
FDe+9MtCfDSp3SjnHvy1NK3TJCOmvZCRM8Zk3vIF+cawf87LFz2dczr3y+q1q/PWhxPy2MThSZKT
2nTLCa27ZtHKxWnfdP8sX7P8kwCpuT5ALjj03KxetzrDJz+bl2e/liS56LBzs1e95tmrXnMvKAAI
EKAqe2nWq5tdXpSi/PuJP0zn5gclSaoVfXJpn8HdvpfvHHNZahTXyLrSdVm+ekUWrVycG178nyRJ
/Rr1Mvr8J7JPw1ZJkquP/XaueOL7ufut+zNryZz8+rW7c/Wx306S3PHGvYUAOaF11ww67p8K2xk5
fUzh9obtf7frt5IkHyz9sBAgZ3Xqm+P/Ya4IALD7cSFC2MkUFxWnfZP98+X2p+X5gY/lii4Xb3a9
bx4xMDWKaxTCoF7Nunn7w79lzcffRtWv45mF+EiSoqKiMs/1+gdvOtgAQIUzAgI7gfv73lbmW7DK
Y3PXEXl/4ScTw/du2HKT+1s33Ltw+x8nkQMAVAQjILAbadNo38Ltvy+atcn9Gy9r16RthW571dqV
XgAAQIBAVVWa0sLtdaWl5XrMutJ1nzx+M485eM8DU1xUnCR58G9/yrSFM8qsf8srvy78fFTLwzb7
XP/4vBvv58a3k6RejbqF2z/+63/mmmd/mp+OvMGLCwC7MadgQRW1eNWSwu0lG90u92NWLy3zrVhJ
0qhWw/xL18vzXy/ekmWrl6fbnV/K2Qf3TZPajfL89NF54e9jkyRtGrXOxYd9fQv7svQftvnJz0tX
LStzX5eWhxduv/bBm3ntgzfTrnHb/Lj71V5gABAgQJUKkJWffOhfuHJxuR6zcMWiwu1FKxdvEiDJ
+quqv/7BW3ly6nMpWbkwvxr32zL371WveW770i9Sr+YnoxclKxZu9vb67Wy0zVVl9/PL7U/Lj7tf
nTvG35s5S+dmr3p75sBmB3hxAWA3VlRaWs5zO6i4g15UtO0fSq+e5gCy3UpLS3P/hEdy/zuP5u15
f8uilYtz0B4dcuzeXXL1sd/e7AR2SJIGN7TZ4n2rrv2uAwRUSTWvvSk+8lYdRkBgN43gszp9NWd1
+qqDAQBUKpPQAQAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABA
gAAAAAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAA
gAABAAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAA
AAAECAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECA
AAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQAAECAAAAAAgQAAECAAAAAAgQAABAgAAAA
AgQAABAgAAAAG6vuEADAru2EX9+Tl2fO2WR5cbWi7N+kUTo0a5orjz0yJ++/b5Xa7w43/ybvlyxK
krxy2Xk5tMWeaTHkl1mwfEWSZMwl5+aovVt4gUGAAABVSZM6tTe7fO260kycX5KJ80sy7L0pufLY
I3PjaSdWmf1uWKtW4XaDWjWr9DG+eviIjJ4+K0ky+MTjclr7/bzxQIAAwO6p4UYf3o/eu0Va1K+X
JFm1dm3e+XB+ZixcnCS55cVxOfPA/XPiflVjJGTj6Khfs0aSpG+nDlm6atWnhtXnYc7ipYVRptVr
13nTgQABgN1X0Ua3/7XHsfnSgfsXfl6zdl3OffDPeWTCpCTJn9+dUmUCpGbxJ1NVa1Rbf/uXZ55S
pY5tyfIVqVezRhpsNFrTsFbNrFqzNqvWrk39Kj5yAwIEAKjcDwLF1dL7gLaFANkwGpIkpaWluW3c
m3nonYl5ffbcrC0tTcc9muYbRx2Scw89KMXVPgmEPX72P1m0cv3IxMqffCe/enl8Hnz7vYyfMzeN
a9fKKe3a5Ppe3bNHvTpltr901er8x/Mv5rmpM/LO3HlpXLt2eu2/b77X7ejN7m/T/7glS1atTvLJ
HJBt3faHS5flv0aNzePvTcn0hYvTumGDdNm7RQYcelDO/P3DSdaPGL1wyblbPH7H/t/vM+WjhWWW
nXrnA0mSk/ZrnaFf6pUTfn1PYf8eObdPvthhfQD+bvw7uejhJ5Ik+zZqkDHfHJA969VNkoyb9UFu
Gv1KXp45JzMXLUmrBvXScc9mufqEo9O97T7euAgQAGDntGbtugx7d0rh5wP3aJIkWbZqdb567yN5
buqMMuuPmTErY2bMyuPvTc1d/U5PjeLiJEnj2rUKH7K/eu8jefy9qYXHLFq5KrePeyuvz56bFy45
txAuMxctzql3PJBJC0oK6y5bvSR3j38nf3znvTSuvekpVk3r1C4ESOOPT8Halm1PnP9RTr3jgcxa
vKSw7qQFJZm0oCR/ePNvhWXbe5rXgXs0zb39z8iXfvdQkuQ7f3ku3dvskyWrVuV7T4xIktSuXj0P
nv2VQnw8Nen9fPmeh7N2XWnhed4vWZT3SxbliYlTM6R3j3zn+C7evAgQAKDqGzLqpdz1+ttJ1s8B
eeODDwujHsXVivK1gw9Mkvx0xJhCfByzT8t8pWO7rFq7Lo9MmJjxcz7MH995L8e2bpmrjjsqyYYJ
4+ufZ0MAHNy8WWoVF2fc7LlJknGz5+aZKdPT+4C2SZLvPfHXQnw0r1c3Zx3SMfVr1sjYv8/OM1Om
Z9nqJZvs/8bbaVCz5jZtu7S0NBc9/EQhPg7da89c0uXQJOtHJV76++zC9jZsY0suPuqQrF67Lo9P
nJqxHz/uG0cdmpYN6qVF/fVBceoBbXPtScfn2udGZ+pHC3PlsGfywZKlhW/z+v/O6JXDWzYvPOe/
P/9iIT6uOu7IHLRns7z/0cIMGTU2paXJj599IRcc0blKzYEBAQIAbNaLM2ZvdnlRUTLk1B45tMWe
+Wj5itw85tUkyfH7tsrT5/+/VP94Psagbsfk6P+9O2/PnZ8hI8fm212PSHG1aqlW9MlMkz3q1smf
v943R7baK0nyT8Oeya9eHp8kmfDh/PQ+oG1mLFycP77zXpKkRf16GfetgWVOkdr49KSNbbydDbe3
dttvfPBhITL2aVg/z198dup+PMn9G0cdkt53PpiR0/7+8XN/+vG8utsxSZI5S5YWAmTAoQflhDZ7
l1nvmu5dM2bGrAyf9H7ueWNCYfk3jjok5x1+cJl1V6xes/5DWrVqaVm/fg5pvke+fminnHlgu9Qo
Lk7LBvXSaKM5JyBAAICdQnG1orRr0jidmjfLNd27Fj60v/nBh1lXuv5v4EdPn5W619282cfPW7Y8
73w4P4fstWeZ5Y+f16/M3+gfstcehdtLPz596p258wrL+nc+cJP5GV8/rFMGPzMqMxct2arfqTzb
fn32h4VlX+3UoRAf649JtXyzy6GFAKko1aoV5c6+p+fg//lt5i9bP/LRoVmT3HTaSZus+8Oex2Xg
Q49n6arVueap55MkdWpUT7d9985J++2bsw/pmGqfVUYgQACAquDhc/qU+RaszZm+0UT0zzJn8dJN
AqTjHk3LfvguqrbJ4+Z/fPpRkqxdt+nX1paWlmbV2rVb/fuVZ9trSz/ZXsPNfEtVnRo75uPRqOkz
C/GRJFM+Wpg3Pvgwx+zTssx6Z3ZslzeuuCB/eW9Kxs6cnZdnzsmEDxfkqcnT8tTkablx9Mt57sKz
03HPpt7QCBAAYOfXvmnjwu0Bhx6UC47ovMV1OzVvtk3b6LTnJ4976J2JuaZ717RoUK+w7PZxb+XD
pct3yO+3caRsPN9jgycmTt2u51+5mXCavKCkcEpZ/Zo1snzNmqxZty5n3/9Yxl56XmEEaOpHCzN8
4tTMWbI0TevUzm/6nJYkWbBseX428qX8Ysy4zF+2Ig+9817+teex3qwIEACg6tnoy5QKp1Z9ahw0
3yPVioqyrrQ0Y2fOzi++eHIa1l4/56C0tDQXPvxEZi5akt4HtEmXvVts8rylKbuNjX/ecOugPZum
Ue1aWbhiZeYsWZqjfnVXzurcMY1q18rLM+fkyUnv/8NzbLr/G25v7bYP3WvP7FG3TuYtW56nJ0/L
9SPG5LKjD8/85ctz9+vv5DevvrnVx7jeRqdx/evTI9Nt371Tt0b1/LRXtyxfvTpn3/9Y4Zu6fnnm
qZmxcFF++PSo/H3Rkgx86PE8NuCrKa5WLbWrF+e7T4zImo9HhV6YPitHtGyeRStX5enJ0wrb2K9J
I29sBAgAUDUt/vjK4f94e0sa1KqZ8w7rlDtffzsT55fkqF/dnbM6d0xRUTJi6ozCqEHN4mr53gnr
r9exaOXKwuOXrlqTOjVqbPTz6sLtJR9vv1b16vnZqd1z+WNPJ0k+XLo8//PSa2X2oUHNmoVvqlqy
anWa1KldZjuLV61K89Td6m3Xr1UzPzu1Ry55dHiS9d/49dMRYzZ7LGp+/DXDn+WYvT85jWrcrA8y
btYHOaBp4/zbySfk239+JuPnrJ93cs4hHXP2IR2zbl1pnpw0LX99f0aenjwt//bc6Py0V7e0bFA/
P+p5bK59bnSS5OEJE/PwhIlltnXCvnunz0EHeGOz06rmEADArm3jD+iLVqws12NuPO3EnLDv+m9y
mlayKP81amyGjBxbiI/2zRrn1jNPTdHH30BVstHzfrRiRZnnKnPfRnM/vnHUoXn8vH7pf3CHHNC0
cWpVL84BTRun/8Ed8spl5xWuSZIkCz9+jo2fq+Tj59qWbZ9/xMG5u98XN/kq2w2/1wblHWnoc9AB
+enJJ6RN44apWVycfRs1SMc9m+aGUS/n7vHvJEma1a2dm05fP+m8WrWi/PLMUwqB858jx+bej78d
6wc9uuaRc/vkSx32T/N6dVNcrSh71quTo/dukZtPPynDvt63TGTBzqaotLQcY7FU7EEv2vZvrlh8
9TQHEPjcNLihzRbvW3Xtdx2gXcy6daW5bdwbuf+t9zLhw/lZtXZtDtqzWXof0Db/cnyX1K6xc59I
MW/p8pSmNB8uXZ7pCxelQ7Mmadu4UX7x4qsZ9OT6b5/67VdPy4DDOnkz7ORqXntTfOStOpyCBQBs
VrVqRbmky2G5pMthu9TvtWbtuvzvK+Nz7XOjU7dG9VzZ9ch03LNpxs6ck5+/8EpuG/fG+g+txcU5
ab99vRFAgAAAbLu1pevy/Pt/z8IVK7Nwxcr869MjN1mnuFpRbvlSr7RqWN8BAwECALDtalWvnnv7
n5EH3n43d77+dl6b/UFKVqxM0zq1s2+jhum6T8t85/guadO4oYMFAgQAYPtVq1aUsw7pmLMO6ehg
QGX/+XMIAAAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAAA
AAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAAB
AAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAE
CAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECAAAAA
CBAA+P/bu/tgq+sCj+Ofcw/g5fGCDzxaajwYD4aiiNdFshSV0HJlSCQjzEgF3ZTd0h1Xx7LaNTOR
ZqddN/OSuY7C+lDCBLqtmQIatGKkkhBgS9cUXORRHu49+wdylhuggBdEeL1mmDmc8/39Dr/vjzv3
vOf3cAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAECAAAgAAB
AAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAA0KiamALYorrmnMx//cUk
ye2Dv5UvHX/xdmNKpVIO/V63bK7fnCSZftGUnHpk/z16v04TemXNprVJkpeveDYdW3WwEwCAA54j
IPC2toe0KT9uV1m1wzGFQiFVh7R+13G7oqry/9+vdbPWdgAAIEDgYNL6kFblx62atdzpuFbNdm3c
u2mzTci0aNrcDgAABAgcVD8MhYptfjAq3mFcYYfL7K5ioVheR2GbdQIAHMhcAwKNoMsdfbJq4+o0
KzbLK1fOyy2zJua/lj6V37+xMJ1adkjfDn1y/cDx6XFo13dcT32pPmN//tXcO39K+blvnX59rjpp
TAqFQkqlUmqevy8P/35anv/z71JXqsuxh3XPJR8bmQt7nZ9iRbHB+nZnfGNtw1atbz2qwd9Xf3Wp
/ygAgACBxlBV2SarNq5OXX1dTqk5O0vefKX82qKVS7Jo5ZI8unBG7j73+/l0j3N2uI5SqZRrf/GN
cnwcUjwkd517Rz7TY0iSZN2m9fnsg5fml6883WC52cvmZPayOfn5H/4zdw29I02LTfdofGNsw64E
iRABAAECvEet374upK5UlyVvvpLeR3w0Zx798TSpKObxxU9m3mvzs7FuY66afm1O6XJi2rc8osHy
m+s352+m/33umf9AkuSw5u1y/1/flQFdTiyP+fbTt5djon+nE3Ju97OzsW5jfvryz/Pb117IQwum
5uTO/XLlSV/ao/HvdRuECAAgQGAf2fZakC/2HZnbB3+r/NyNp301n3v4sjy6cEbeeGtlHlowNZf1
G10eXyqV8vlHrsijC2ckSY6u+nAeGv7jdGt3THnM/771Zr4/59+SJNVdTsq0EfenScWWH9+/O2Vc
Tp00JC8u/31um/3PuaLfJVm1cc1ujS9WFN/TNuzI1sD4y1OxhAgACBAgDe9KtfX7OXb4wXrj2h0u
s9X4AWMbXtBeqMjFx322HBi/fe3FBuNLKZVfS5JioSLtWxzeYMz8119Mfak+STJr2Zy0u23H12Es
X/9GXlrxct54a+Vuje99xEff0zYIEQBgV7kLFrytx6Hdyo9/8+rzOxzzP6v+lOXrViRJjqr6UPm0
pW29+daq7Z6rq68rP25a3HH3d2/3kSRbrrcY9/OvpVQqbfO+y3Z5O15d89puj2+sbXi3EHmnyGh9
61E7jRQA4MDhCAi8bUDnfuXH//Kbu9O/0wk5r/vZ5VvkLltdmzFTry6PObFj3x2u5x9nTsg9n/lB
+ZSn+lJ9fvL2tR1J0ueIXtst8/2z/ymf6fGpnHL3WfnTmlfz8O+n5Z/n3lW+PqPrNqdjjeh1QUYd
99mdbsdHD++RxSuX7tb4xtiG3QmRrcGxsxDZdhwAIEDggHTah6sztNvgTF34WN7avCGfe+SydGrV
IUdXfShvrF+ZRSuXZHP95iRJ04qm+dsBY3e4nkcXzsjAHw/N0K6D06TYJNMX/SJzX52XJOnQsn3+
+tih5Q/1SVJIIV84bkQKhULu/NT3cu4DI5Mk//DEt3Nix76pPrJ/eh7eIxWFitSX6jOn9r9z25nf
KJ/+VSqVMmbaNfnT6ldz5jEfT7+OfXd7/J5uw3shRABAgMBB7/bB38rila/kheULkiS1a/6c2jV/
bjCmRdPmufNTt+djHXpvt3yxUMwRLQ7L715/Kb97/aUGrzVvUpl/HXJbDm3edssH641rtgRBSlm/
+a20aNo8Hz/qrzLquAvz49/en7pSXS7+6RX51ecfTefWHTOy97D8ZP7kLPzfxamuOSfDe346hRTy
5B9n5dk//SZJ0qzYNNecfHkKhcJujd/TbWgMuxoiYgQADgyF0rYnmrNvJv09fOu1D2B731ub38q/
/+7BPLxgan772gtZuWFVOrZsn26HfiT9Oh6XMcePypFtOjdYprrmnMx//cUUC8W8fMWzufmp2/LY
4ify2rrl+XCbLjmx0/H5h78an6Pbfri8zNYv/kuSBZc/k86tOyZJXl+7PCfc9Ym8uWHLdRgndDgu
0y+akk31mzL8Py7JzGW/3uG/u1u7Y/LTz96bD7XpkiRZtWH1bo3fk23YG3blOhA/B++fd9o/G28a
b4KA/VKzm74XH3kFiAARIAeUAXeflReWL0ghhaz66pK99j71pfrcPe++/MdLP8tLK17OprpN+ejh
3XPG0YNy9cmXpbJJ5R6P31fbIEQECIAAObg5BQsawdpN65JsOZ1qY93GNCs22yvvU1GoyKXHfy6X
Hv+5Rh+/r7ZhT2LbdSIAcOBwG15oBKs2/P9ta7f9nhDb0Hgx4ha+AHBgcAQEGsG/DZ1QvqtViybN
bcNeDJGtwbGzENl2HAAgQOCAdPZHPmkbhAgAsAucggV8YDk1CwA+eBwBAQ6IENkaHDsLkb8cCwC8
PxwBAQ6oEHm3wHBUBAAECIAQAYCDhFOwgAM6RLYNjp2FyF+OBQD2HkdAgIMmRlywDgACBECIAMBB
xClYwEEbIluDY2chsu24g40IA0CAALyPIfJBjREhAYAAAfgAhsi2r70fISIkABAgAEJESACAAAFo
vBB5p2gQEwAgQAB2i4gAAAECICYAQIAACAl2bONN400CAAIEEBLsxE037ZtlAECAAELiII4IABAg
gJBATAAgQAAhwXuLiF2JCuEBgAABhASNEgbbrmNn69v6vBABQIAAYkJMNPq/QYgAIEAAESEihAgA
CBAQE2LiwJ8DIQKAAAEhgYgQIgAgQBASiAkhYl8BIEAQE4gI9lmIAIAAQUQgJhAiACBAxARiAv9/
AECAIDR8CAQAECAgJgAAECAgIgAABAiICQAABAhiAgCA/VWhVCqVTMM+nvRCwSQAAOwnfBzetypM
AQAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECAAAAA
CBAAAOADqIkp2PdKpZJJAADgoOQICAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAAB
AgAACBAAAAABAgAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQAAECAAAAA
AgQAABAgAAAAAgQAABAgAAAAAgQAABAgAACAAAEAABAgAACAAAEAABAgAACAAAEAABAgAACAAAFg
f3fxxRfn5JNPTqlUMhkACBAA9q7Zs2fn17/+derq6hp1vV//+tczePDgbNq0ySQDCBAA2Lt+9rOf
5fHHH8+K3GnheAAABmNJREFUFStMBoAAAQAAECAAvE9qa2szatSotG/fPoceemjOPPPMzJgxo/z6
xIkT065du8yZM2e7ZadOnZqqqqo88MADGTlyZAqFQubOnZsk6dSpUwqFQrp3714+zWvFihW5/PLL
06dPn7Rp0yYDBw5MTU1Ng+tQ1q5dm5tvvjm9evVKixYt0qlTpwwfPjzz5s2zswAECAAfdIMGDcpj
jz2WM844I6effnpmz56ds88+O3feeWeSZMOGDVm5cmUmTpy43bK33XZbVq1alWKxmGHDhmXcuHE5
/PDDkySjR4/OuHHjMm7cuBSLxfzhD39I3759U1NTk/79++eqq65KqVTKJZdckq985SvldV544YW5
8cYbU1lZmdGjR+e0007LI488kurq6jz33HN2GMB+oFByCxMAdlO3bt2yaNGinHrqqZk6dWratm2b
JJk/f3769++fysrKLFy4MEly5JFHplAopLa2NlVVVUmShQsXpnv37uncuXOWLFmSpk2bJklOOumk
zJ07N7W1tenYsWP5/YYNG5aHH344Tz31VKqrq5Mk9fX1GTFiRCZPnpwnnngiPXv2TIcOHdK9e/cs
WLAghUIhSVJTU5MvfvGL+e53v5vx48fbeQDvM0dAANhjt9xySzk+kqRPnz656KKLsnLlyjz++OM5
7LDDMnLkyKxfvz733XdfedyPfvSjJMmYMWPK8bEzy5cvz4MPPphBgwaV4yNJKioqykc/7r///rRp
0ybNmzfP4sWLM3ny5Kxbty7JlqMpa9euFR8AAgSAD7p+/fpt91yfPn2SJAsWLEiSjBs3Lkly1113
JUk2b96cmpqaFIvFjBkz5l3fY+t6nnjiiRQKhQZ/Bg4cmCR55ZVXUllZmXvuuSdt2rTJhRdemLZt
2+aEE07INddckxdeeMHOAthPNDEFADTqL5YmW361bD2y0a9fv1RXV2fWrFmZN29eli5dmtra2gwb
NixdunR51/WtX78+STJgwICcf/75271eLBZzwQUXJNlyqtY555yTJ598MjNnzsyTTz6ZO+64IxMm
TMiECRMaXC8CgAAB4ANmzpw5GTRoUIPnnn/++SRJz549y89deeWVmTVrViZNmpTFixcnSa644opd
eo/evXsnSaqqqnLdddc1eK1UKmXmzJnp0KFD1q1blylTpuSss87KkCFDMmTIkCTJokWL0rNnz9xy
yy0CBGA/4BQsAPbYtddemzfffLNBfNx7773p3LlzBg8eXH5+2LBhad++fSZNmpRp06alR48e+eQn
P7nd+iorK5Mkb7zxRjkwOnbsmDPOOCOPPfZYnnrqqQbjb7jhhgwcODDf/OY3M3369HzhC1/IiBEj
GnxDe1VVVSoqKlIsFu0wgP2AIyAA7LE//vGP6dWrV04//fSsW7cu06dPz+bNmzNx4sS0bNmyPO6Q
Qw7JZZddlptvvjlJMnbs2PJdqrY1YMCAPP3007ngggvSqlWrrFixIs8++2x+8IMf5LTTTssnPvGJ
DBs2LF27ds2LL76Yhx56KF27ds348ePTrl279O/fP7/85S9z7LHHZsCAAVm9enWefvrpbNiwIV/7
2tfsMID9gNvwArDbRo8enblz52bq1Km57rrrMmPGjBQKhfTv3z833nhjTjnllO2WWbJkSY455pg0
b948y5YtS7t27bYbs2rVqnz5y1/OtGnTUlFRkaFDh2bSpElp0qRJVqxYkRtuuCG/+tWvsnDhwnTu
3DnnnXderr/++hxxxBFJkjVr1uQ73/lOJk+enKVLl6Zly5bp3bt3rr766h1ePwKAAAHgADVlypQM
Hz48l156aX74wx+aEAABAgB7R6lUSnV1dZ555pk899xz6du3r0kBOEi5BgSAvea8885LbW1tWrVq
lWeeeSajRo0SHwACBAD2jk6dOmXmzJkpFosZO3Zsbr31VpMCcJBzChYAALDP+B4QAABAgAAAAAIE
AABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQ
IAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAA
IEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAOCA938WkT3F
ErsD/AAAAABJRU5ErkJggg==

--_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: image/png; name="fixedblocksize.png"
Content-Description: fixedblocksize.png
Content-Disposition: inline; filename="fixedblocksize.png"; size=18199;
	creation-date="Thu, 30 Nov 2017 00:56:10 GMT";
	modification-date="Thu, 30 Nov 2017 00:56:10 GMT"
Content-ID: <ii_jaljdnex0_16009957f9065362>
Content-Transfer-Encoding: base64

iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAABmJLR0QAAACAAID1ziPfAAAACXBI
WXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4QsdFQAk4oFZngAAAB1pVFh0Q29tbWVudAAAAAAAQ3Jl
YXRlZCB3aXRoIEdJTVBkLmUHAAAgAElEQVR42uzdebyWdYH///fhsO+LIqAIiiAi7iguLCpKWloE
8XUhccs0zXFqMmyKctKZhjEdw/llM6W5lOaSS4aJKwmCoqK4kbIJxCICHvad8/sDueUE6AEOxwM8
n4+HD+9z3dd9X9e57hu9X3yuz30VlZaWlgYAAKASVHMIAAAAAQIAAAgQAAAAAQIAAAgQAAAAAQIA
AAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAAAAAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIE
AAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAE
CAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAA
CBAAAAABAgAACBAAAAABAgAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQA
AECAAAAAAgQAAECAAAAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAACAAAEAABAgAACAAAEAABAg
AACAAAEAAAQIAACAAAEAAAQIAACAAAEAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAAAAAECAAAg
QAAAAAECAAAgQAAAAAECAAAIEIcAAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAQKWr7hBUvqKiom1+
bGlpqQMIAMBOywgIAAAgQAAAAAECAAAgQAAAAAECAAAgQAAAAAECAAAIEAAAAAECAAAIEAAAAAEC
AAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAAACBAAAQIAAAAACBAAAQIAAAAACBAAAECAAAAAC
BAAAECAAAAACBAAAECAAAIAAAQAAECAAAIAAAQAAECAAAIAAAQAAECAAAIAAAQAABAgAAIAAAQAA
BAgAAIAAAQAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAAAAQIAACBAAAAAAQIAACBAAAAAAQIA
AAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgABQKUpKSvKDH/wgXbt2
TePGjdO8efOccMIJufnmm7Ny5coqt79f+9rXcuSRR2bdunVePIDdRFFpaWmpw1DJB72oaJsf6+UC
tmT69Ok5+uijM3fu3LRu3TqHHXZYVq9enZdffjkLFizI0UcfnWeffTb169evMvu8zz77ZObMmVm+
fHlq167tRQTYDRgBAdhFXHnllZk7d26+853vZMqUKXnsscfyxBNPZNq0aenVq1defvnl/OQnP3Gg
ABAgAGy/v/71r0mSQYMGpXr16oXl9evXz80335xatWrljTfe+MznWbt2bZ5//vksXbrUQQVAgACw
eY0bN06SfPDBB5vc17lz58yePTvDhg0rLPviF7+YLl26bDL/Yvjw4enZs2eGDBlSWHbOOefkuOOO
y8yZM3Peeedlr732SpMmTdKrV688+eSTZR6/NetubOjQoWnSpEleeeWVTe4bNmxYGjVqlPvvv98L
DSBAAKgKBgwYkCTp27dvbr/99rz//vtl5o01adIkNWvWLPw8duzYvPrqq5sEyKJFi8r8O0lefvnl
vPjiizn++OPzzDPP5OSTT85JJ52Ul156KV/4whfym9/8ZpvW3djKlStTUlKSoUOHbnLfjTfemEWL
FqW4uNgLDSBAAKgKrr322nz/+9/P9OnTc/HFF2e//fZLs2bN8pWvfCW//OUvs2TJku3eRuvWrTNh
woTce++9eeihh/Lyyy+nTp06GTRoUEpKSrZ53SS56KKLUrt27Tz44INZuHBhYfmkSZPy3HPPpVWr
Vvnyl7/shQYQIABUBTVq1MiQIUMyZ86c3H///bnyyivTsWPH/OUvf8kVV1yRdu3aFeaJbKshQ4ak
UaNGhZ8POuignHvuuVmwYEFGjBixzesmSbNmzXLuuedm+fLluffeewvLb7/99iTJJZdckho1anih
AQQIAFVJ06ZN079//wwdOjSjR4/OggULct1112Xu3Ln52te+tl2Ty4888shNlh100EFJknfffXeb
193giiuuSJLcdtttSZI1a9bkjjvuSHFxcS655BIvLoAAAaAqWLFiRX7xi19k3Lhxm9xXv379/OhH
P0qXLl0yb968vPbaa5/6XKtXr97ifZu7FtGGOSQbzy/Z2nU3jpbjjjsur7zySsaPH5/HH388s2fP
Tp8+fbL33nt7oQEECABVwQsvvJB//ud/Tv/+/bd4VfENF0HdEAa1atVKkixfvrzMeuPHj9/idjb3
DVUbvtr3wAMP3OZ1N/btb387SXLnnXfmt7/9bZLkW9/6lhcZQIAAUFX07Nkz7dq1y5QpU/KjH/0o
a9asKdxXWlqau+++O6+88kqaNm2aLl26JEk6dOhQiJcNRowYkRtvvHGL2xk0aFCZCeKvvfZa7r//
/rRu3TonnXTSNq+7sX79+qV58+a588478/jjj6dDhw45+eSTvcgAu4jqDgHALvAf8+rV8+CDD+bk
k0/Oz372s9x5553p1KlTatWqlXfffTeTJk1KzZo1c99996VOnTpJ1o80jBgxIv37988ZZ5yROXPm
ZOTIkWnbtm3ef//9zW5n5syZ6dSpU0488cQsW7Ysw4cPT2lpaYYOHVp43m1Zd2O1atXKpZdemuuu
uy5JcvnllxdGbwDY+RkBAdhFHH744Zk0aVIGDRqU/fbbL2+99VZGjBiRunXr5tJLL83EiRNzyimn
FNbv27dv7rzzzrRt2zaPPPJIZsyYkZ/97GcZNmxY9thjjxx22GGbbOP5559Pz549M3z48IwaNSon
nXRSRo0alT59+mzTusccc0wOO+ywTb7d6qKLLkqS1KlTJwMHDvTiAuxCiko3N0uQHXvQK+lv8ry0
QEU54IADMnny5KxevTrVq1evsHW35MEHH0z//v1z8cUXb/HChQDsnJyCJXTEDFCllJaW5uc//3mS
5Morr3RAAAQIYkasABXvzDPPzOzZs1O/fv289NJLGThw4GZPAwNAgMAmsSJCYNfSpUuXNGzYMMXF
xRW67sZatmyZ0aNHp7i4OJdffnluuOEGBx5gV/ysaA7I5/MBfXfh7QUAwMZ8CxZiCwCASuMULCot
QoyGwK7z53lz/BkHQIDsghZfPW2zyxvc0EaIAAAgQPh8w2RrVUbICBEAAAECWx0y2xsrvi0LAGD3
YxI6lRIrnxYhJqoDAAgQKHeECBEAAAQIlR4iFUGIAADs2swBYYdEiPkhAABsjhEQdniMbE+EGA0B
ABAgUO4IqagQAQBAgEC5Q6QiIsSICADAzs8cECo9QswPAQDYfRkB4XONke2JEKMhAAACBModIeaH
AAAIEKj0EKmICDEiAgAgQKDcEVKRFzIEAECAQKWFiNEQAAABAp9LiAAAIECg3CFSERFiRAQAQIBA
uSPE/BAAAAEClR4iFRUhQgQA4PPjSujslBHiauoAADsnIyDs9DGyPRFiNAQAQIBAuSNEiAAACBCo
9BCpCEIEAGDHMweEXS5CzA8BAKi6jICwS8fI9kSI0RAAAAEC5Y4QIQIAIECg0kOkIggRAICKYQ4I
u1WEmB8CAPD5MgLCbhsj2xMhRkMAAAQIlDtCKipEAAAQIFDuEKmICBEiAADlZw4IIuRj2zM/ZEOE
mB8CAPDpjIDAZmJke0MEAAABAuWKkO0NEadlAQAIENjqENleQgQAQIDAVkWIEAEAECCw04YIAIAA
AcodIhURIUIEABAgQLkjxGgIAIAAgUoPkYqIECMiAMDuxoUIoQIiZHsuYrghRlzEEADYHRgBgQqO
ke2JEKMhAIAAAcodIeaHAAAIEKj0EKmICDEiAgAIEKDcEVIRIbIhRgAABAhQaSFiNAQAECDA5xIi
AAACBCh3iFREhBgRAQAECFDuCDE/BAAQIMBOGSJGQwAAAQJ8LiECACBAgHKHSEVEiBERAECAAOWO
EPNDAAABAlR6iFRUhAgRAKAqqe4QQNWPkAY3tNnuECktLXVQAYDPnREQ2MliZHsixGgIACBAgHJH
iBABAAQIUOkhUhGECADweTAHBHbyCDE/BADYmRgBgV0oRrYnQoyGAAACBCh3hLiaOgAgQIBKD5GK
iBAjIgDAjmIOCOzCEWJ+CABQ1RgBgd0kRrYnQoyGAAACBCh3hJgfAgAIEKDSQ6QiIsSICAAgQIBy
R0hFXsgQAECAAJUWIkZDAAABAnwuIQIAIECAcodIRUSIEREAQIAA5Y4Q80MAAAEC7JQhYjQEABAg
wOcSIgAAAgQod4hURIQYEQEABAhQ7ggxPwQAECBApYdIRUWIEAGA3VN1hwDY1ghpcEOb7Q6R0tJS
BxUAdiNGQIAKiZHtiRAAQIAAlDtCtjdERAgACBCArQ4REQIAfBZzQIAdEiHbMj/EnBAA2PUZAQF2
eIxsbYQAAAIEYJsipKK+uhcAECAA5Q6RrWEUBAAECIAIAQAECCBCAAABAiBCAAABAogQAECAAIgQ
ABAgADvGtnw9rwgBAAECUKkRAgAIEIBKixCjIAAgQABECAAgQAARAgAIEAARAgACBECEAAACBECE
AIAAAdgxXCMEAAQIQJWPEABAgABUWoQYBQEAAQIgQgAAAQKIEABAgACIEAAQIAAiBAAQIAAiBAAE
CMCO4RohACBAAKp8hAAAAgSg0iLEKAgACBAAEQIAAgRAhAAAAgRAhACAAAEQIQCAAAEQIQAgQAB2
DNcIAQABAlDlIwQAECAAlRYhRkEAQIAAiBAAECAAIgQAECAAIgQABAiACAEABAiACAEAAQKwY7hG
CAAIEAARAgACBECEAAACBOBziRCjIAAgQABECAAIEAARAgAIEAARAgACBECEAIAAAUCEAIAAAdgx
XCMEAAQIQJWPEABAgABUWoQYBQEAAQIgQgBAgACIEAAQIACIEAAQIAAiBAAECAAiBAAECMCO4Roh
ACBAAKp8hAAAAgSg0iLEKAgACBAAEQIAAgRAhACAAAFAhACAAAEQIQAgQAAQIQAgQAB2DNcIAQAB
AlDlIwQABAgAlRYhRkEAECAAiBAAECAAIgQABAgAIgQABAiACAEAAQKACAFAgDgEADuGa4QAgAAB
qPIRAgACBIBKixCjIAAIEABECAAIEAARAgACBAARAgACBECEAIAAAUCEACBAANgxXCMEAAECQJWP
EAAQIABUWoQYBQFAgAAgQgBAgACIEAAQIACIEAAECAAiBAAECAAiBAABAsCO4RohAAgQAEQIAAgQ
ABECAAIEgM8lQoyCACBAABAhACBAAEQIAAgQAEQIAAIEABECAAIEABECgAABYMdwjRAABAgAVT5C
AECAAFBpEWIUBAABAoAIAUCAACBCAECAACBCABAgAOx8EQIAAgSASmMUBAABAsB2cSoWAAIEABEC
AAIEQIQAgAABoNIjxCgIAAIEABECgAABYNclQgAQIABsF5PSARAgAIgQAAQIAIgQAAQIANttW76a
V4QAIEAAqNQIAQABAkClRYhREAAECAAiBAABAoAIAQABAkCFRAgACBAARAgAAgQAAECAALAJoyAA
CBAARAgAAgQAEQIAAgQAEQKAAAFAhACAAAGgQiPEhQoBECAAiBAABAgAuy4RAoAAAWCbbct8EBEC
gAABQIQAIEAA2HUjBAAECACVxigIAAIEABECgAABQIQAIEAAQIQAIEAAECEACBAAECEACBAARAgA
AgQAABAgALB1Vl373a1a3ygIgAABABECgAABQIQAIEAAQIQAIEAAECEACJAKce2116Z169YpKSlJ
knz961/PMccck9LSUq8mwE5OhAAIkErxb//2bzn11FOzevXqT11vxYoVGTp0aFavXp169eolSV58
8cW8/PLLWbt27eeyTwBs2daOgogQAAFSKR577LE8/fTTmT9//qeu9+ijj+ajjz7KwIEDU6NGjSqx
TwBUfIQAIECqhN/+9rdJkgsvvNArB7ALR4hREAABUrB06dJcd9116dSpU+rWrZuWLVumf//+GT9+
/CbrPvvsszn11FPTqlWr1KlTJx06dMjgwYOzdOnSJMm5556boqKivPrqq0mSli1bpqioKO3bt9/k
lKoZM2bkySefzLHHHpuDDjpok23Nnj07AwcOTPPmzdO0adOccsopefLJJwv3Dx06NE2aNMkrr7yy
yWOHDRuWRo0a5f777y/XPs2fPz+XXXZZOnfunIYNG6Zbt2654447zEMBECEAfIbqW/uAs846K8OG
DcsRRxyRCy64IPPmzcsjjzySYcOGZfTo0Tn88MOTJPfcc08GDBiQunXrpnfv3tl///0zduzYXH/9
9ZkzZ05+/etfp1+/fmnatGnuu+++zJs3LxdccEHq1auXAw44IMXFxWW2e9ddd6W0tDQXXXTRZver
R48eWbFiRXr16pWVK1fmySefzBe+8IX87//+b775zW9m5cqVKSkpydChQ3PXXXeVeeyNN96YRYsW
pbi4+DP3acqUKenRo0fmzZuXc845J1/5ylcyYsSIXHjhhRk3blyGDh3qXQXwKRFS89qbtipC/OUO
wK6lqHQr/ss+d+7c7LXXXmnfvn3efffdwt9O3XHHHbnooovy85//PN/97vq/4Tr99NPzxBNP5I9/
/GP69u2bJFmzZk3atm2bJUuW5KOPPio8vkuXLnn11Vcze/bstGjRYpPtlpaWpn379pk1a1bmzJmT
hg0bFu474IADMnny5Bx//PEZNmxYGjdunCR56623cvTRR6d27dqZNGlSkmSfffZJUVFRZs+enUaN
GiVJJk2alPbt26dVq1Z5//33C3NLtrRP/fr1yyOPPJJRo0bluOOOS5KsW7cuZ599dh544IGMGDEi
PXv2/Mz/oW6rxVdP864FPjcNbmjzqXFRXlsTIRv+PwDArmGrTsFq2LBh6tSpk6lTp+aBBx7IsmXL
kiQXXHBBli5dWoiPJPnjH/+Yt99+O0VFRRk0aFC+9rWv5Utf+lIWLlyYhQsXFk7DKo+RI0dm8uTJ
6d+/f5n42NiQIUMK8ZEknTt3zjnnnJOSkpI8/fTTadasWc4999wsX7489957b2G922+/PUlyySWX
fObE9nnz5uWhhx5Kjx49CvGRJNWqVctVV12VJLnvvvu8qwA+g9OxAARIudSuXTt33313GjZsmLPO
OiuNGzfOEUccke985zt55513yqw7fvz49O7dO3379s0tt9ySiRMnZvXq1ZucWlUeGyJhS6dfJcmR
Rx65ybLOnTsnSd59990kyRVXXJEkue2225KsH5G54447UlxcnEsuueQz92PD84wYMSJFRUVl/unW
rVuSZPr06d5VADuACAHYNWz1HJB+/frltNNOy/PPP5/Ro0fn+eefzy9+8YvcfPPNufnmm3PVVVdl
0aJF6dOnTxYsWJBbb701559/furUqZMk6dq1a8aOHVvu7S1evDgPPPBA9t9//3Tv3n3rfrnq63+9
DSMbRx55ZI477riMGTMm48ePz7Rp0zJ79uz069cve++992c+3/Llywu/Q58+fTa5v7i4uHC6GQCf
bmvng2yIEKdjAexGAbJs2bI8+OCD6d27d04//fScfvrpSZLJkyfnoIMOypAhQ3LVVVdl9OjRmTt3
bs4444xcdtllhcevW7cus2fP3qodvP/++7Ns2bJceOGFqVZtywM2r7zySnr06FFm2RtvvJEkZb41
69vf/nbGjBmTO++8M1OnTk2SfOtb3yrXvhx88MFJkkaNGuWaa64pc19paWlGjx6dvfbay7sKYAdG
CAA7t606BWv48OE5//zzc/bZZ5f5mtxGjRqlWrVqhdOrNow4bPy3VGvXrs3VV1+dGTNmFGJkg9q1
aydJFixYsMnjfvvb36aoqCjnn3/+p+7boEGDsnDhwjLx8fvf/z6tWrXKqaeeWljer1+/NG/ePHfe
eWcef/zxdOjQISeffPImz7e5fWrRokV69eqVp556KqNGjSqz/uDBg9OtW7dcf/313lUAWxkhW8Op
WAA7t60aATnjjDNy9NFH569//WsOPPDAdO3aNYsXL84LL7yQlStX5vvf/36S5Nhjj03btm0zbNiw
dO/ePQceeGBGjhyZ9957L3Xr1s2yZcvywQcfFCaUd+3aNS+88EL69u2b+vXrZ/78+Rk7dmw++uij
vPDCC/nCF76Q1q1bf+q+zZgxI506dcqJJ56YZcuWZfjw4VmzZk2GDh2aevXqFdarVatWLr300lx3
3XVJkssvv3yz/zPb0j7deuut6d69e0466aT069cv7dq1y4QJE/Lwww+nXbt2ZSbiA1D+CPH1vAC7
h60aAalRo0aeffbZDB48ODVq1MjDDz+cMWPG5JBDDsnDDz+cK6+8MklSr169DB8+PGeeeWbefvvt
/OEPf0izZs3y2GOPZdCgQWnUqFGZEZSf/OQnOeusszJr1qxMmjQpxx9/fJo0aVK48vmnTT7v1q1b
OnfunNGjR6dnz54ZPnx4Ro0alRNPPDEjR45Mv379NnnMhuerU6dOBg4cuNnn3dI+tW/fPm+//XYu
ueSSvP3227npppsyfvz4XHXVVRkzZkyaN2/uXQWwjRGyNYyEAOyctuo6IJVpzZo1adOmTZYvX55Z
s2YVTomqCA8++GD69++fiy++OL/5zW8q/6C7Dgiwk6qo64B8GtcIAdi1VauqO/bkk09m1qxZGTBg
QIXGR2lpaX7+858nSWHEBoCqw0gIwK6telXdsUcffTRJcuGFF1bI85155pmZPXt26tevn5deeikD
Bw7MYYcd5h0AsAvYUoQYHQGoeqrsCMiPfvSjPPTQQ5u9wOC2aNmyZaZOnZp33nknl19+eW699Vav
PkAVVVGnc/3jRWM/6x8AdrwqOwdklz7o5oAAO6nKmAOysap+jRD/CwXYetUcAgCqqh0RNRXJyAqA
AAFAhOy0oSJYAAECACJEsAAIEABECIIF2BlVdwgA2NkjpKpPVq+KwVJeJtoDAgQAyhkmWyJYdkys
CBZAgACAYBEsgAABgF01WMSKYAEECABUyVgRLDsuWIQKCBAAQLBUuVARLCBAAADBIlhAgAAAu3Kw
CBXBAgIEAKhyoSJYdnywiBUECACAYKmSsSJYECAAAIJFsOzkpk6dmr59+2b8+PGF41VUVJRmzZrl
sMMOy1lnnZULLrggNWrU2C2Ox5VXXpmnn346r7/+emrVqiVAAIDdO1jEyo4Jlt05VH7zm9/k9ddf
z3777ZdOnTolSVavXp333nsvzzzzTJ555pn86le/ymOPPZZWrVrt8sdjzJgx+dvf/paPPvooLVq0
ECAAgFjZGoKlYkNlVwyW+fPnJ0muueaafPOb3yxz3/Tp0zNw4MD89a9/zVe/+tWMGjVqtxkJqSgC
BAAQLIJFsGxGtWrVNlm277775qmnnkrHjh0zduzY/OEPf8h5553nDbA1x9UhAAD49GDZmn8of7Bs
zT9VSY0aNfKDH/wgSfL73/++zH3z58/PZZddls6dO6dhw4bp1q1b7rjjjjLBNWDAgBxzzDF59dVX
c+KJJ6ZevXrZZ599cv3116e0tDT33HNPOnfunLp166ZTp0656667NtmHZ599NqeeempatWqVOnXq
pEOHDhk8eHCWLl1aZjtdunTJ3Llzc8kll6Rly5Zp0KBBunXrltGjR2/ynNOmTcs555yTtm3bpmHD
hundu3fGjRtX4cfPCAgAQAUHS3kYWdn6YCmvyhhd6dKlS5LkpZdeKiybMmVKevTokXnz5uWcc87J
V77ylYwYMSIXXnhhxo0bl6FDhxYeM3ny5Jx44olp1apVvvzlL+fJJ5/M4MGDM3HixNx999054ogj
cuaZZ+ZPf/pTzj///HTo0CHHHntskuSee+7JgAEDUrdu3fTu3Tv7779/xo4dm+uvvz5z5szJr3/9
6zLb6dq1a+bPn59u3bpl3bp1GT58eE4++eRMmDAh++23X5LkjTfeSM+ePVNSUpJevXqldevWefHF
F9O9e/fUrFlTgAAA7C6hIlgqNlYqKk7atGmTJCkpKcnq1atTo0aNXH311Zk9e3ZGjRqV4447Lkmy
bt26nH322bnlllvSr1+/9OzZs/AcZ5xxRn73u9+luLg4Tz31VHr37p277rorP/zhD3P99dcnSW65
5Zb80z/9U+69995CgNx9992Ff/ft2zdJsmbNmrRt2zYPPPBA/u///q/MMahXr16ef/75tG7dOkky
ePDgXH/99bn99ttz3XXXpbS0NFdddVVKSkryu9/9LgMGDCg856WXXprbb79dgAAACBbB8nlavnx5
kvXzRKpVq5Z58+bloYceyoknnliIjw33X3XVVXnggQdy3333lQmQH//4xykuLk6SHHrooes/nFev
nquvvrqwzobl06dPLyz74x//mPfffz/vvvtuBg0alMmTJ2fx4sVZuHBhlixZkqVLl6Z+/fqF9W+5
5ZZCfCRJjx49kiTvvfdekmT27NkZMWJEOnfunHPPPfeTUKhePf/1X/+V3//+91m5cqUAAQCgYoJF
rGy9999/P0nSokWLFBcX5913302SjBgxYosjMBtHRPLJKEqSwvU12rdvn0aNGm2yfPXq1YVl48eP
T//+/TNz5szUqVMn7du3T7NmzQox848OP/zwMj/XqVMnSQpR8be//S1J0rlz5032vVmzZmnXrl3e
eecdAQIAQOXHimBZ77nnnkuSHH/88Uk+GRHp2rVr+vTps8n6xcXFhdOlNtjct2xtbtnGFi1alD59
+mTBggW59dZbc/755xeComvXrhk7duwmj/msrwneUriU9/ECBAAAwbIDlZSU5Kab1v9OF154YZLk
4IMPTpI0atQo11xzTZn1S0tLM3r06Oy1117bve3Ro0dn7ty5OeOMM3LZZZcVlq9bty6zZ8/epufs
2LFjkuTNN99MaeLtENAAACAASURBVGlpmVGQRYsWFU7VEiAAAAiWHWjdunWbLHvzzTdz9tlnZ8GC
BTnttNNy2mmnJVl/KlavXr3y1FNPZdSoUenWrVvhMYMHD86///u/Z9CgQfnP//zP7dqnDaMRG0+m
X7t2bb7//e9nxowZW9zvT9O8efOccsopefrpp3PvvfcW5oGsXbs2gwYNKozuCBAAAHbrYNlRodK0
adMkyZAhQ/KnP/0pyfr5EhMmTMjMmTOTJD179sw999xTOGWqqKgot956a7p3756TTjop/fr1S7t2
7TJhwoQ8/PDDadeuXb773e2/Tsyxxx6btm3bZtiwYenevXsOPPDAjBw5Mu+9917q1q2bZcuW5YMP
PkjDhg3L/ZxFRUX57//+7/To0SNf//rXc/fdd2efffbJiy++mIkTJ6Z27dpZsWKFAAEAQKiUN1S2
5ut3v/GNb+TPf/5z3nrrrUyZMqWwvFmzZunVq1cGDhyYAQMGbDJ3on379nn77bczePDgjBw5Mo8+
+mhatWqVq666Kj/84Q+z5557Jknq16+f2rVrl3l8vXr1cuCBBxauL7JB69at07x58xx11FGF9YYP
H57vfe97GTVqVF577bUceuiheeyxxzJu3LjcdNNNWbt2bWE7tWrVSvXqZT/yt2nTpsxzJusnoL/2
2msZNGhQRo8enVGjRqVr16657bbbctddd2X48OFlJsdvj6LSyrhSC5tU5rZafPU0BxD43DS4oc12
fxAAqGxbGyA72pQpU7Jo0aJNvp1qR2xn4cKFOeKII6rU62EEBAAAKtH++++/S21na1XzFgAAAAQI
AAAgQAAAAAQIAAAgQAAAAAQIAAAgQAAAAAECAAAgQAAAAAECAAAgQAAAAAECAAAIEAAAAAECAAAI
EAAAAAECAAAIEAAAQIAAAAAIEAAAYGdW3SGAqumk330lr8x+fZPlxUXF2a/xvmnfdP9cftRFObFN
t0rZn2kLZ+T6UTdl9N/HZs7SuWndoFUO3rNjzmjfO998/LtJki4tD89zX3/UiwcACBDY2TSu3Wiz
y9eWrs2kj6Zm0kdT85fJz+Tyoy7KkJN/skP3Zdnq5fny/QMypWRaYdnkkvfTvN4eKUrRFh/3g+eu
y4szX1l/+/h/Tu/9T/LCAoAAAaqiBjXrF253aXl49qq3Z5Jk1drVmTDvvfx98awkyS9fvT1fOuDU
9Nj3+B22L2NnvVqIj30b7pN/OfaKlKxYmL0btMi+DffJ/zuoT5Jk/8ZtyjxuzpK5hVGc1evWeFEB
AAECVdXGIwvfP+7KnN7ulMLPa9atyfl/uiJ/mvhEkuTxSU/vkAApWbEwdWvUybSFfy8s69fxzAw8
5P9lyaqlqVlcM3Vr1Mlx+xy9yePq1aibhrU+iaiGNetn1dpVWbV2derXrOcFBgABAuw0f3CrVc8p
+/UsBMiG0ZC9f9E5i1YtXr/sn97Mf7zw33n0vb9k1uI5KU1pJlw6Jvs0bJXS0tI89O6f84e3H87b
8/6WkhULc9AeHXJMqyPzvWO/nWZ1miRJTv5dn0z8aEqZbf/32Fvz32NvTZLcetrPU1RUlMv+8i9J
PpkD0uPuMzK1ZHqZx33xvrOTJD33PSF/PuseLyIACBBgZ7Fm3Zr8ZfLThZ87NG2XJGlUu2EhQL58
/4CMm/NGYZ39Gu+bfRq2yso1KzPwT5fn8Y0enyRjZ43L2Fnj8oe3H8pdX/5luu97XLn2pWGtBpu9
DQAgQGAndeOLv8zv33owSbJq7aq8OXdCYdSjuKg4fQ88I0nZeSPj5ryRWsW1sneDFpm7dF66t14f
FDe+9MtCfDSp3SjnHvy1NK3TJCOmvZCRM8Zk3vIF+cawf87LFz2dczr3y+q1q/PWhxPy2MThSZKT
2nTLCa27ZtHKxWnfdP8sX7P8kwCpuT5ALjj03KxetzrDJz+bl2e/liS56LBzs1e95tmrXnMvKAAI
EKAqe2nWq5tdXpSi/PuJP0zn5gclSaoVfXJpn8HdvpfvHHNZahTXyLrSdVm+ekUWrVycG178nyRJ
/Rr1Mvr8J7JPw1ZJkquP/XaueOL7ufut+zNryZz8+rW7c/Wx306S3PHGvYUAOaF11ww67p8K2xk5
fUzh9obtf7frt5IkHyz9sBAgZ3Xqm+P/Ya4IALD7cSFC2MkUFxWnfZP98+X2p+X5gY/lii4Xb3a9
bx4xMDWKaxTCoF7Nunn7w79lzcffRtWv45mF+EiSoqKiMs/1+gdvOtgAQIUzAgI7gfv73lbmW7DK
Y3PXEXl/4ScTw/du2HKT+1s33Ltw+x8nkQMAVAQjILAbadNo38Ltvy+atcn9Gy9r16RthW571dqV
XgAAQIBAVVWa0sLtdaWl5XrMutJ1nzx+M485eM8DU1xUnCR58G9/yrSFM8qsf8srvy78fFTLwzb7
XP/4vBvv58a3k6RejbqF2z/+63/mmmd/mp+OvMGLCwC7MadgQRW1eNWSwu0lG90u92NWLy3zrVhJ
0qhWw/xL18vzXy/ekmWrl6fbnV/K2Qf3TZPajfL89NF54e9jkyRtGrXOxYd9fQv7svQftvnJz0tX
LStzX5eWhxduv/bBm3ntgzfTrnHb/Lj71V5gABAgQJUKkJWffOhfuHJxuR6zcMWiwu1FKxdvEiDJ
+quqv/7BW3ly6nMpWbkwvxr32zL371WveW770i9Sr+YnoxclKxZu9vb67Wy0zVVl9/PL7U/Lj7tf
nTvG35s5S+dmr3p75sBmB3hxAWA3VlRaWs5zO6i4g15UtO0fSq+e5gCy3UpLS3P/hEdy/zuP5u15
f8uilYtz0B4dcuzeXXL1sd/e7AR2SJIGN7TZ4n2rrv2uAwRUSTWvvSk+8lYdRkBgN43gszp9NWd1
+qqDAQBUKpPQAQAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABA
gAAAAAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAA
gAABAAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAA
AAAECAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECA
AAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQAAECAAAAAAgQAAECAAAAAAgQAABAgAAAA
AgQAABAgAAAAG6vuEADAru2EX9+Tl2fO2WR5cbWi7N+kUTo0a5orjz0yJ++/b5Xa7w43/ybvlyxK
krxy2Xk5tMWeaTHkl1mwfEWSZMwl5+aovVt4gUGAAABVSZM6tTe7fO260kycX5KJ80sy7L0pufLY
I3PjaSdWmf1uWKtW4XaDWjWr9DG+eviIjJ4+K0ky+MTjclr7/bzxQIAAwO6p4UYf3o/eu0Va1K+X
JFm1dm3e+XB+ZixcnCS55cVxOfPA/XPiflVjJGTj6Khfs0aSpG+nDlm6atWnhtXnYc7ipYVRptVr
13nTgQABgN1X0Ua3/7XHsfnSgfsXfl6zdl3OffDPeWTCpCTJn9+dUmUCpGbxJ1NVa1Rbf/uXZ55S
pY5tyfIVqVezRhpsNFrTsFbNrFqzNqvWrk39Kj5yAwIEAKjcDwLF1dL7gLaFANkwGpIkpaWluW3c
m3nonYl5ffbcrC0tTcc9muYbRx2Scw89KMXVPgmEPX72P1m0cv3IxMqffCe/enl8Hnz7vYyfMzeN
a9fKKe3a5Ppe3bNHvTpltr901er8x/Mv5rmpM/LO3HlpXLt2eu2/b77X7ejN7m/T/7glS1atTvLJ
HJBt3faHS5flv0aNzePvTcn0hYvTumGDdNm7RQYcelDO/P3DSdaPGL1wyblbPH7H/t/vM+WjhWWW
nXrnA0mSk/ZrnaFf6pUTfn1PYf8eObdPvthhfQD+bvw7uejhJ5Ik+zZqkDHfHJA969VNkoyb9UFu
Gv1KXp45JzMXLUmrBvXScc9mufqEo9O97T7euAgQAGDntGbtugx7d0rh5wP3aJIkWbZqdb567yN5
buqMMuuPmTErY2bMyuPvTc1d/U5PjeLiJEnj2rUKH7K/eu8jefy9qYXHLFq5KrePeyuvz56bFy45
txAuMxctzql3PJBJC0oK6y5bvSR3j38nf3znvTSuvekpVk3r1C4ESOOPT8Halm1PnP9RTr3jgcxa
vKSw7qQFJZm0oCR/ePNvhWXbe5rXgXs0zb39z8iXfvdQkuQ7f3ku3dvskyWrVuV7T4xIktSuXj0P
nv2VQnw8Nen9fPmeh7N2XWnhed4vWZT3SxbliYlTM6R3j3zn+C7evAgQAKDqGzLqpdz1+ttJ1s8B
eeODDwujHsXVivK1gw9Mkvx0xJhCfByzT8t8pWO7rFq7Lo9MmJjxcz7MH995L8e2bpmrjjsqyYYJ
4+ufZ0MAHNy8WWoVF2fc7LlJknGz5+aZKdPT+4C2SZLvPfHXQnw0r1c3Zx3SMfVr1sjYv8/OM1Om
Z9nqJZvs/8bbaVCz5jZtu7S0NBc9/EQhPg7da89c0uXQJOtHJV76++zC9jZsY0suPuqQrF67Lo9P
nJqxHz/uG0cdmpYN6qVF/fVBceoBbXPtScfn2udGZ+pHC3PlsGfywZKlhW/z+v/O6JXDWzYvPOe/
P/9iIT6uOu7IHLRns7z/0cIMGTU2paXJj599IRcc0blKzYEBAQIAbNaLM2ZvdnlRUTLk1B45tMWe
+Wj5itw85tUkyfH7tsrT5/+/VP94Psagbsfk6P+9O2/PnZ8hI8fm212PSHG1aqlW9MlMkz3q1smf
v943R7baK0nyT8Oeya9eHp8kmfDh/PQ+oG1mLFycP77zXpKkRf16GfetgWVOkdr49KSNbbydDbe3
dttvfPBhITL2aVg/z198dup+PMn9G0cdkt53PpiR0/7+8XN/+vG8utsxSZI5S5YWAmTAoQflhDZ7
l1nvmu5dM2bGrAyf9H7ueWNCYfk3jjok5x1+cJl1V6xes/5DWrVqaVm/fg5pvke+fminnHlgu9Qo
Lk7LBvXSaKM5JyBAAICdQnG1orRr0jidmjfLNd27Fj60v/nBh1lXuv5v4EdPn5W619282cfPW7Y8
73w4P4fstWeZ5Y+f16/M3+gfstcehdtLPz596p258wrL+nc+cJP5GV8/rFMGPzMqMxct2arfqTzb
fn32h4VlX+3UoRAf649JtXyzy6GFAKko1aoV5c6+p+fg//lt5i9bP/LRoVmT3HTaSZus+8Oex2Xg
Q49n6arVueap55MkdWpUT7d9985J++2bsw/pmGqfVUYgQACAquDhc/qU+RaszZm+0UT0zzJn8dJN
AqTjHk3LfvguqrbJ4+Z/fPpRkqxdt+nX1paWlmbV2rVb/fuVZ9trSz/ZXsPNfEtVnRo75uPRqOkz
C/GRJFM+Wpg3Pvgwx+zTssx6Z3ZslzeuuCB/eW9Kxs6cnZdnzsmEDxfkqcnT8tTkablx9Mt57sKz
03HPpt7QCBAAYOfXvmnjwu0Bhx6UC47ovMV1OzVvtk3b6LTnJ4976J2JuaZ717RoUK+w7PZxb+XD
pct3yO+3caRsPN9jgycmTt2u51+5mXCavKCkcEpZ/Zo1snzNmqxZty5n3/9Yxl56XmEEaOpHCzN8
4tTMWbI0TevUzm/6nJYkWbBseX428qX8Ysy4zF+2Ig+9817+teex3qwIEACg6tnoy5QKp1Z9ahw0
3yPVioqyrrQ0Y2fOzi++eHIa1l4/56C0tDQXPvxEZi5akt4HtEmXvVts8rylKbuNjX/ecOugPZum
Ue1aWbhiZeYsWZqjfnVXzurcMY1q18rLM+fkyUnv/8NzbLr/G25v7bYP3WvP7FG3TuYtW56nJ0/L
9SPG5LKjD8/85ctz9+vv5DevvrnVx7jeRqdx/evTI9Nt371Tt0b1/LRXtyxfvTpn3/9Y4Zu6fnnm
qZmxcFF++PSo/H3Rkgx86PE8NuCrKa5WLbWrF+e7T4zImo9HhV6YPitHtGyeRStX5enJ0wrb2K9J
I29sBAgAUDUt/vjK4f94e0sa1KqZ8w7rlDtffzsT55fkqF/dnbM6d0xRUTJi6ozCqEHN4mr53gnr
r9exaOXKwuOXrlqTOjVqbPTz6sLtJR9vv1b16vnZqd1z+WNPJ0k+XLo8//PSa2X2oUHNmoVvqlqy
anWa1KldZjuLV61K89Td6m3Xr1UzPzu1Ry55dHiS9d/49dMRYzZ7LGp+/DXDn+WYvT85jWrcrA8y
btYHOaBp4/zbySfk239+JuPnrJ93cs4hHXP2IR2zbl1pnpw0LX99f0aenjwt//bc6Py0V7e0bFA/
P+p5bK59bnSS5OEJE/PwhIlltnXCvnunz0EHeGOz06rmEADArm3jD+iLVqws12NuPO3EnLDv+m9y
mlayKP81amyGjBxbiI/2zRrn1jNPTdHH30BVstHzfrRiRZnnKnPfRnM/vnHUoXn8vH7pf3CHHNC0
cWpVL84BTRun/8Ed8spl5xWuSZIkCz9+jo2fq+Tj59qWbZ9/xMG5u98XN/kq2w2/1wblHWnoc9AB
+enJJ6RN44apWVycfRs1SMc9m+aGUS/n7vHvJEma1a2dm05fP+m8WrWi/PLMUwqB858jx+bej78d
6wc9uuaRc/vkSx32T/N6dVNcrSh71quTo/dukZtPPynDvt63TGTBzqaotLQcY7FU7EEv2vZvrlh8
9TQHEPjcNLihzRbvW3Xtdx2gXcy6daW5bdwbuf+t9zLhw/lZtXZtDtqzWXof0Db/cnyX1K6xc59I
MW/p8pSmNB8uXZ7pCxelQ7Mmadu4UX7x4qsZ9OT6b5/67VdPy4DDOnkz7ORqXntTfOStOpyCBQBs
VrVqRbmky2G5pMthu9TvtWbtuvzvK+Nz7XOjU7dG9VzZ9ch03LNpxs6ck5+/8EpuG/fG+g+txcU5
ab99vRFAgAAAbLu1pevy/Pt/z8IVK7Nwxcr869MjN1mnuFpRbvlSr7RqWN8BAwECALDtalWvnnv7
n5EH3n43d77+dl6b/UFKVqxM0zq1s2+jhum6T8t85/guadO4oYMFAgQAYPtVq1aUsw7pmLMO6ehg
QGX/+XMIAAAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAAA
AAIEAABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAAB
AAAQIAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAE
CAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECAAAAA
CBAA+P/bu/tgq+sCj+Ofcw/g5fGCDzxaajwYD4aiiNdFshSV0HJlSCQjzEgF3ZTd0h1Xx7LaNTOR
ZqddN/OSuY7C+lDCBLqtmQIatGKkkhBgS9cUXORRHu49+wdylhuggBdEeL1mmDmc8/39Dr/vjzv3
vOf3cAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAQIAAAgAABAAAECAAAgAAB
AAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAA0KiamALYorrmnMx//cUk
ye2Dv5UvHX/xdmNKpVIO/V63bK7fnCSZftGUnHpk/z16v04TemXNprVJkpeveDYdW3WwEwCAA54j
IPC2toe0KT9uV1m1wzGFQiFVh7R+13G7oqry/9+vdbPWdgAAIEDgYNL6kFblx62atdzpuFbNdm3c
u2mzTci0aNrcDgAABAgcVD8MhYptfjAq3mFcYYfL7K5ioVheR2GbdQIAHMhcAwKNoMsdfbJq4+o0
KzbLK1fOyy2zJua/lj6V37+xMJ1adkjfDn1y/cDx6XFo13dcT32pPmN//tXcO39K+blvnX59rjpp
TAqFQkqlUmqevy8P/35anv/z71JXqsuxh3XPJR8bmQt7nZ9iRbHB+nZnfGNtw1atbz2qwd9Xf3Wp
/ygAgACBxlBV2SarNq5OXX1dTqk5O0vefKX82qKVS7Jo5ZI8unBG7j73+/l0j3N2uI5SqZRrf/GN
cnwcUjwkd517Rz7TY0iSZN2m9fnsg5fml6883WC52cvmZPayOfn5H/4zdw29I02LTfdofGNsw64E
iRABAAECvEet374upK5UlyVvvpLeR3w0Zx798TSpKObxxU9m3mvzs7FuY66afm1O6XJi2rc8osHy
m+s352+m/33umf9AkuSw5u1y/1/flQFdTiyP+fbTt5djon+nE3Ju97OzsW5jfvryz/Pb117IQwum
5uTO/XLlSV/ao/HvdRuECAAgQGAf2fZakC/2HZnbB3+r/NyNp301n3v4sjy6cEbeeGtlHlowNZf1
G10eXyqV8vlHrsijC2ckSY6u+nAeGv7jdGt3THnM/771Zr4/59+SJNVdTsq0EfenScWWH9+/O2Vc
Tp00JC8u/31um/3PuaLfJVm1cc1ujS9WFN/TNuzI1sD4y1OxhAgACBAgDe9KtfX7OXb4wXrj2h0u
s9X4AWMbXtBeqMjFx322HBi/fe3FBuNLKZVfS5JioSLtWxzeYMz8119Mfak+STJr2Zy0u23H12Es
X/9GXlrxct54a+Vuje99xEff0zYIEQBgV7kLFrytx6Hdyo9/8+rzOxzzP6v+lOXrViRJjqr6UPm0
pW29+daq7Z6rq68rP25a3HH3d2/3kSRbrrcY9/OvpVQqbfO+y3Z5O15d89puj2+sbXi3EHmnyGh9
61E7jRQA4MDhCAi8bUDnfuXH//Kbu9O/0wk5r/vZ5VvkLltdmzFTry6PObFj3x2u5x9nTsg9n/lB
+ZSn+lJ9fvL2tR1J0ueIXtst8/2z/ymf6fGpnHL3WfnTmlfz8O+n5Z/n3lW+PqPrNqdjjeh1QUYd
99mdbsdHD++RxSuX7tb4xtiG3QmRrcGxsxDZdhwAIEDggHTah6sztNvgTF34WN7avCGfe+SydGrV
IUdXfShvrF+ZRSuXZHP95iRJ04qm+dsBY3e4nkcXzsjAHw/N0K6D06TYJNMX/SJzX52XJOnQsn3+
+tih5Q/1SVJIIV84bkQKhULu/NT3cu4DI5Mk//DEt3Nix76pPrJ/eh7eIxWFitSX6jOn9r9z25nf
KJ/+VSqVMmbaNfnT6ldz5jEfT7+OfXd7/J5uw3shRABAgMBB7/bB38rila/kheULkiS1a/6c2jV/
bjCmRdPmufNTt+djHXpvt3yxUMwRLQ7L715/Kb97/aUGrzVvUpl/HXJbDm3edssH641rtgRBSlm/
+a20aNo8Hz/qrzLquAvz49/en7pSXS7+6RX51ecfTefWHTOy97D8ZP7kLPzfxamuOSfDe346hRTy
5B9n5dk//SZJ0qzYNNecfHkKhcJujd/TbWgMuxoiYgQADgyF0rYnmrNvJv09fOu1D2B731ub38q/
/+7BPLxgan772gtZuWFVOrZsn26HfiT9Oh6XMcePypFtOjdYprrmnMx//cUUC8W8fMWzufmp2/LY
4ify2rrl+XCbLjmx0/H5h78an6Pbfri8zNYv/kuSBZc/k86tOyZJXl+7PCfc9Ym8uWHLdRgndDgu
0y+akk31mzL8Py7JzGW/3uG/u1u7Y/LTz96bD7XpkiRZtWH1bo3fk23YG3blOhA/B++fd9o/G28a
b4KA/VKzm74XH3kFiAARIAeUAXeflReWL0ghhaz66pK99j71pfrcPe++/MdLP8tLK17OprpN+ejh
3XPG0YNy9cmXpbJJ5R6P31fbIEQECIAAObg5BQsawdpN65JsOZ1qY93GNCs22yvvU1GoyKXHfy6X
Hv+5Rh+/r7ZhT2LbdSIAcOBwG15oBKs2/P9ta7f9nhDb0Hgx4ha+AHBgcAQEGsG/DZ1QvqtViybN
bcNeDJGtwbGzENl2HAAgQOCAdPZHPmkbhAgAsAucggV8YDk1CwA+eBwBAQ6IENkaHDsLkb8cCwC8
PxwBAQ6oEHm3wHBUBAAECIAQAYCDhFOwgAM6RLYNjp2FyF+OBQD2HkdAgIMmRlywDgACBECIAMBB
xClYwEEbIluDY2chsu24g40IA0CAALyPIfJBjREhAYAAAfgAhsi2r70fISIkABAgAEJESACAAAFo
vBB5p2gQEwAgQAB2i4gAAAECICYAQIAACAl2bONN400CAAIEEBLsxE037ZtlAECAAELiII4IABAg
gJBATAAgQAAhwXuLiF2JCuEBgAABhASNEgbbrmNn69v6vBABQIAAYkJMNPq/QYgAIEAAESEihAgA
CBAQE2LiwJ8DIQKAAAEhgYgQIgAgQBASiAkhYl8BIEAQE4gI9lmIAIAAQUQgJhAiACBAxARiAv9/
AECAIDR8CAQAECAgJgAAECAgIgAABAiICQAABAhiAgCA/VWhVCqVTMM+nvRCwSQAAOwnfBzetypM
AQAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAECAAAAA
CBAAAOADqIkp2PdKpZJJAADgoOQICAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAAB
AgAACBAAAAABAgAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQAAECAAAAA
AgQAABAgAAAAAgQAABAgAAAAAgQAABAgAACAAAEAABAgAACAAAEAABAgAACAAAEAABAgAACAAAFg
f3fxxRfn5JNPTqlUMhkACBAA9q7Zs2fn17/+derq6hp1vV//+tczePDgbNq0ySQDCBAA2Lt+9rOf
5fHHH8+K3GnheAAABmNJREFUFStMBoAAAQAAECAAvE9qa2szatSotG/fPoceemjOPPPMzJgxo/z6
xIkT065du8yZM2e7ZadOnZqqqqo88MADGTlyZAqFQubOnZsk6dSpUwqFQrp3714+zWvFihW5/PLL
06dPn7Rp0yYDBw5MTU1Ng+tQ1q5dm5tvvjm9evVKixYt0qlTpwwfPjzz5s2zswAECAAfdIMGDcpj
jz2WM844I6effnpmz56ds88+O3feeWeSZMOGDVm5cmUmTpy43bK33XZbVq1alWKxmGHDhmXcuHE5
/PDDkySjR4/OuHHjMm7cuBSLxfzhD39I3759U1NTk/79++eqq65KqVTKJZdckq985SvldV544YW5
8cYbU1lZmdGjR+e0007LI488kurq6jz33HN2GMB+oFByCxMAdlO3bt2yaNGinHrqqZk6dWratm2b
JJk/f3769++fysrKLFy4MEly5JFHplAopLa2NlVVVUmShQsXpnv37uncuXOWLFmSpk2bJklOOumk
zJ07N7W1tenYsWP5/YYNG5aHH344Tz31VKqrq5Mk9fX1GTFiRCZPnpwnnngiPXv2TIcOHdK9e/cs
WLAghUIhSVJTU5MvfvGL+e53v5vx48fbeQDvM0dAANhjt9xySzk+kqRPnz656KKLsnLlyjz++OM5
7LDDMnLkyKxfvz733XdfedyPfvSjJMmYMWPK8bEzy5cvz4MPPphBgwaV4yNJKioqykc/7r///rRp
0ybNmzfP4sWLM3ny5Kxbty7JlqMpa9euFR8AAgSAD7p+/fpt91yfPn2SJAsWLEiSjBs3Lkly1113
JUk2b96cmpqaFIvFjBkz5l3fY+t6nnjiiRQKhQZ/Bg4cmCR55ZVXUllZmXvuuSdt2rTJhRdemLZt
2+aEE07INddckxdeeMHOAthPNDEFADTqL5YmW361bD2y0a9fv1RXV2fWrFmZN29eli5dmtra2gwb
NixdunR51/WtX78+STJgwICcf/75271eLBZzwQUXJNlyqtY555yTJ598MjNnzsyTTz6ZO+64IxMm
TMiECRMaXC8CgAAB4ANmzpw5GTRoUIPnnn/++SRJz549y89deeWVmTVrViZNmpTFixcnSa644opd
eo/evXsnSaqqqnLdddc1eK1UKmXmzJnp0KFD1q1blylTpuSss87KkCFDMmTIkCTJokWL0rNnz9xy
yy0CBGA/4BQsAPbYtddemzfffLNBfNx7773p3LlzBg8eXH5+2LBhad++fSZNmpRp06alR48e+eQn
P7nd+iorK5Mkb7zxRjkwOnbsmDPOOCOPPfZYnnrqqQbjb7jhhgwcODDf/OY3M3369HzhC1/IiBEj
GnxDe1VVVSoqKlIsFu0wgP2AIyAA7LE//vGP6dWrV04//fSsW7cu06dPz+bNmzNx4sS0bNmyPO6Q
Qw7JZZddlptvvjlJMnbs2PJdqrY1YMCAPP3007ngggvSqlWrrFixIs8++2x+8IMf5LTTTssnPvGJ
DBs2LF27ds2LL76Yhx56KF27ds348ePTrl279O/fP7/85S9z7LHHZsCAAVm9enWefvrpbNiwIV/7
2tfsMID9gNvwArDbRo8enblz52bq1Km57rrrMmPGjBQKhfTv3z833nhjTjnllO2WWbJkSY455pg0
b948y5YtS7t27bYbs2rVqnz5y1/OtGnTUlFRkaFDh2bSpElp0qRJVqxYkRtuuCG/+tWvsnDhwnTu
3DnnnXderr/++hxxxBFJkjVr1uQ73/lOJk+enKVLl6Zly5bp3bt3rr766h1ePwKAAAHgADVlypQM
Hz48l156aX74wx+aEAABAgB7R6lUSnV1dZ555pk899xz6du3r0kBOEi5BgSAvea8885LbW1tWrVq
lWeeeSajRo0SHwACBAD2jk6dOmXmzJkpFosZO3Zsbr31VpMCcJBzChYAALDP+B4QAABAgAAAAAIE
AABAgAAAAAIEAABAgAAAAAIEAAAQIAAAAAIEAAAQIAAAAAIEAAAQIAAAgAABAAAQIAAAgAABAAAQ
IAAAgAABAAAECAAAgAABAAAECAAAgAABAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAA
IEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAABAgAACBAAAAABAgAACBAAAOCA938WkT3F
ErsD/AAAAABJRU5ErkJggg==

--_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_
Content-Type: image/png; name="marginal.png"
Content-Description: marginal.png
Content-Disposition: inline; filename="marginal.png"; size=21403;
	creation-date="Thu, 30 Nov 2017 00:56:10 GMT";
	modification-date="Thu, 30 Nov 2017 00:56:10 GMT"
Content-ID: <ii_jalqir4g2_1600a4c89811347a>
Content-Transfer-Encoding: base64

iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAABmJLR0QAQADgANCOgeFCAAAACXBI
WXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4QseABQ7SX9NSwAAAB1pVFh0Q29tbWVudAAAAAAAQ3Jl
YXRlZCB3aXRoIEdJTVBkLmUHAAAgAElEQVR42uzdeZzVdaH/8fcw7MOioAgooCKIirsJGqBmkpYa
yTXXXNO8bf5aDPt17VJ5u9dbWen9ZTfL3HJfM8wFlRRBMUlUQEEEJAFZBAaGbZiZ3x/IgRFQYAaY
GZ7Px8OHZ86cc76H7xzg++Lz+Xy/RVVVVVUBAADYBhrZBQAAgAABAAAECAAAgAABAAAECAAAgAAB
AAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAAABAgAAIEAAAAABAgAAIEAAAAABAgAACBAAAAAB
AgAACBAAAAABAgAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAAAAgQAAECAAAAAAgQAAECAAAAA
AgQAAECAAAAAAgQAABAgAAAAAgQAABAgAAAAAgQAABAgAACAAAEAABAgAACAAAEAABAgAACAAAEA
AAQIAACAAAEAAAQIAACAAAEAAAQIAAAgQAAAAAQIAAAgQAAAAAQIAAAgQAAAAAECAAAgQAAAAAEC
AAAgQAAAAAECAAAgQAAAAAECAAAIEAAAAAECAAAIEAAAAAECAAAIEAAAQIAAAAAIEAAAQIAAAAAI
EAAAQIAAAAACBAAAQIAAAAACBAAAQIAAAAACBAAAECAAAAACBAAAECAAAAACBAAAECAAAIAAAQAA
ECAAAIAAAQAAECAAAIAAAQAABIhdAAAACBAAAECAAAAACBAAAECAAAAACBAAAGCba2wXbHtFRUVb
/Nyqqio7EACAessICAAAIEAAAAABAgAAsMWsAalnPrx+xJoQAADqEyMgAACAAAEAAAQIdUxNTukL
AAACBAAAECBsP0OHDv3I7xsFAQBAgAAAAAiQ+mfo0KEfOwoCAAAChG3GNCwAAAQIAACAAGmYjIIA
ACBAqBXWgQAAIEAAAAAECAAAIEDY6qwDAQBAgFArrAMBAECAUOcYBQEAQIAAAAACxC4AAAAECBs0
4oJBm7QOxDQsAAAECAAAIEBomIyCAAAgQKgVVVVVdgIAAPVOY7ug/hlxwaDkRz+yIwAAqHeMgAAA
AAKEj7cp07CsAwEAQIAAAAA7JGtA6qk160CqqqqMcgAAUG8YAdkBCBQAAAQIAAAgQGiYjIIAACBA
qJERFwzKj370oxw77RU7AwAAAQIAACBAGiCjIAAACBDqFOtAAAAQINTIiAsG5dibH7IjAAAQIGxb
mzINyygIAAACBAAAECAAAAAChGo2dx2IaVgAAAgQaoXT8QIAIEAAAAAESMPkbFgAAAgQtirXAwEA
QIAAAAAIkIbPNCwAAAQIAAAgQGgYPrwOxCl5AQAQINQppmEBACBAAAAAAULDZBQEAAABwhaxDgQA
AAECAAAgQFjDNCwAAAQItcI0LAAABAhbzYfXgQAAgABhmzIKAgCAAKFOsQ4EAAABAgAACBDqtg2t
A9mUaVhGQQAAECAAAIAAAQAAECBslGlYAAAIELYK1wMBAECAUC8YBQEAQIBQK1yUEAAAAQIAAAgQ
6reNrQMxCgIAgAChTrEOBAAAAQIAAAgQ6h/XBAEAQIBQ61wPBAAAAQIAAAgQ+DDTsAAAECDUCqfj
BQBAgFDraroOxCgIAAAChFphFAQAAAECAAAIEAAAAAHCx/qodSAuSggAgAABAAAECA2TxegAAAgQ
6hTTsAAAECBssppeDwQAAAQI25RREAAABAi1wjoQAAAECAAAIECon6wDAQBAgFBnuCghAAACBAAA
ECA0TBajAwAgQKg1tbEOxDQsAAAECAAAIEBomIyCAAAgQKgV1oEAACBAqDWuBwIAgAChTnFNEAAA
BAgAACBAAAAABAgbtSnrQEzDAgBAgAAAAAKEhskpeQEAECDUKaZhAQAgQPhYrgcCAIAAoV4yCgIA
gAChVlgHAgCAAAEAAAQI9UttrgMxDQsAAAFCrTANCwAAAQIAAAgQGiajIAAACBBqrLbXgXz4PwAA
aGwXsK1saoRUVVXZWQAADZQRELbI1pyGtaHREyMqAAANgxEQ6q1NiRCjKQAAdYsREKqpzXUgdSVS
jKYAAAgQGoCGdDYsoQIAsG2YggWbGSofx7QvAAABwlayoVGQEXseIlI2kVgBAHa4Y6UqR0B1+gB1
Uw74t0pY3PxQRlwwaKtvZ0ePFZECAOxojICwXW1KUBlRMe0LABAgIFLqWaSIFQBAgMA2jBSxsumx
IlIAgK12LGINSN08AKyNA+0aH9Rvo3UgdZG1KR/PHx0AwJYwAgJbGHpGUkz7AgAECNSpSBErmx4r
IgUABAiwDWNFpGzaiIpQAYB6/ne+NSB190BrSw9ka/XAeQdeB1JXWZ+yafzRBgB1kxEQqGc2NUKN
qJj2BQACBKhToSJSisQJAAgQoC5Fyo4aKhuKE1ECALXwd6w1IHXjwKa2Dxhr9SDVOhA20Y4WKv74
BIDNZwQEqL1Y3cFGVIySAIAAARpIqNTXSPlwlAgSABAgQAOJlPoQKhubcilMANhRWQNShw5IavOg
rNYPBq0DoZ6ry6Hij2EAdiRGQIAdwsbivS6EiVESAAQIgDCpc2EiSAAQIFDHvTzo3Cx+5fUNfq+4
ZYu02Ktrdv3swOxx8Tkpbt68xttbNuPdTLv2N1n00j+yYs7cNO/cKSW99skBN/yiRlPvatML/T6b
5f+cmSQ54q/3pNV+PX1QPiZM6sr0LWfdAkCAsMMYccGgerkOpHGb1hv9XsXSZVky/s0sGf9m3n92
VA6543cpKi7e4m1VLFuWV8+9LMumz1gbJNPeSdNd2tWZ+EiS4tat1t5uVeLDvZkxUu33hVESABAg
UO0D3mrtwXbbIw5J044dPqiFyix9e1rK3nwrSbLoxZcz97Gn0uFzA7d4W6VjXy3ER/M9OqfrVy/K
qkWladZptzq2T9ZGR3HLFj4ktRgmdXU9iSgBQIDAttJo7cFYl3+9KLscP6DaQdn4y76TeY8/nSRZ
/OqELQqQ8kWlKW7RojCtKUl2Pfkz6fjFQakoW5pGTZvUqV1S1GTt+ylq7I+ArRkkdTVKBAkAAgS2
00FZi726rW2VJk3WO0ibddcDmfvo8CwZ/0aqKirScp+90/nswdlt0GcL07XGfuFLWfb29GrPnfHb
P2bGb/+YJNn3Zz9Kx385NX/rfnhSWZkk6Tvy0TTfo3Ph8W//7Pq88//+kCTZ/cKz0+Pfv5ckee7A
fqlYvCRJcszUf2TmbXdnzrAns2TCm2ncpnXa9eubvYZ8M03b7Vxt+xVLl2X69b/LglEvpWzSW2nc
pk127tcnXS+70A9+O0eJURIABAhsovq6DmRDKletyuJx4zP7vocL97Xtc9jaA/hly/LaxZdn4agx
1Z5X+vIrKX35lcx/6tns9+ufrhctH3XA12Sntil/f8Hq33g7ta3+G3GdtSpN2rapdv+aAHn94m9m
/tPPrX2Pi5dk1t0PZvH4N3L4w7cXgmjF7PfyypmXZNm0dwqPXblsed67/5HMffTJNG7Txoe5DgVJ
XY0SQQKAAIEaev3ib270e53O+ELa9T+q8PW0X/62EB9tDj0wuww8LpXlqzLvsaeyZMKbmfvok2lz
2EHp8uUvpeNpp6SyvDxlb0wuTOfauV/ftO1zWCpKl6Tl3nsmSYpLWhYCpLikZbXtF7dc+3Vxydo1
Go1blWTFB7fXxEdJz+4pato0S16fmCRZ8vrELBj5Ytodc3SS5K0f/7wQH012aZfdTj0pxS1bpvSV
17Jg5AtZuWy5D0MdjxKjJAAIEGjA9vru19P1axcXvi5fVJoZv78tyeqF6wff9fs0+mCtRNevXpSX
P3tGyiZNyTu/uSl7XHh2un39y0mSmXc9UAiQtn0Oy57fuPTDR3QbP7hb9+tG695uVLjZpN3OOejW
36R17/2SJJOu+s/MvO3uJEnZ5Clpd8zRWT5zduY++mSSpOmuu+SIx++tNj1r9gN/yRvf/jc/9HoW
JHU1SgQJAAIEPkLrQ3qn6a67pGpVRcomvZUV785Kkkz71W/T7rh+aX1Ar9UH8xMnFdZqLPr7K3l2
nyM2+Hrl7y9I2eS306pXj23y/g+67YbCe0ySVr32KdyuWLZs9XufNKVwX4dTPrPe2pCOp52cqf99
XVbMnuMDUc+jxCgJAAKEHUJ9XgfS7RuXFs6CVVlenje+c1Xm/PmxVK1alWm/+m0OvPFXSZLlM2dv
8muunDM32YIAqaqoqHbNkaVTpn7sc1p236v6HRu4ZsmqhQurbWNDB4eV5eU+yA0wSOpqlAgSAAQI
ZPUZr3r8+PuZP/xvqVi6LPOfHJHFr7+R1r17pcWeXQuP2+0Ln0vHL248tkp6dt/kba57zY2yN99K
q/33TeWqVfnnjbfm3T/eUSu/rpY91r6fuY8OT9evfTnNOuxSuG/W3Q+mfP4CH4AdJEqMkgAgQGg4
Bzo3P7T6AKeuj4RUrnOg88G0qjWa7NQ2Hb84KO/efGeSZNqvV4+ClPTsvnrtRWVlSl95LT1+/P00
/uDq4VVVVXnjW/+WFe/NSbsBR6XNwb3XPapa5/YG4mCfvVL2xuQkyT/OuDhtDu6dxa9PzKqFizbx
PVd9+ChuvW+V7LN3GrdpnVWli7Ny7rz8/aTT0+HUk9K4dassHvd63v/bKB/eHThI6mqUCBIAAQIf
ad3oWBMiH/WY7ali6dK1t8vK1vt+h1NPKgTI/CdHZMnESWm1X890HHxKZt/7cJZNfSd/P+mL6XDq
iUlRURaOfimlY19dfRDVpHG6rHNdjYrFa1+/Ysn62+py6fmZ+5cnPnjskiwY+ULhdXY68vAseP7F
9d7nqnVep2LpshQ3b77Or2fpercbNWuavb//fzLp+z9JkpTPX1BtdKW4VUmKS0qy8r05heete9pf
drwoMUoCgACh3sZItYOcDYTJ9oiSVaVLCrfLF5Wu9/02hx6YZrt3KixIn379jTngNz/LPj+8Isum
vZNFL/0jy/85M+/85qZqz2uxV9fs+58/rHbgVF669vVXbWhbBx2Qg++8MdOu/U2WvDE5jVu3SusD
90+3b1y6+hS5HwTIuu9zVeniaq+57qLyat9bZxSl81mD03yPzpl194NZ8vobWTFrdpp16phWvXtl
7yGX580hPyoEyKrFS3yIBcn6v1eNkgCwNf+Mr/Kn+nb/i7WmBwv15kCnjo+WfFhVZWVm3Xl/5vzl
iZRNnpKqleVp2aN72h1zdLpcen6KmzfzYWbH+IeGOhAkG/196q8wAAGCAKmNMGkIV1sHUSJGABAg
AqQeR4kwAUEiTAAECAJku4eJKAFhIkgABAgCZLtGiTABQSJKAAQIAmS7h4koAVEiSAAEiAARINs1
SoQJCBJRAiBABIgA2e5hIkpAlAgSAAEiQATIdo0SYQKCRJQACBABwnYPE1ECokSQAAgQAcJ2jRJh
AoJEjAAIEAHCdg8TUQI7ZpT46xZAgAgQ6kyUCBNo+EHir1sAASJAqPNhIkqg4USJv24BBIgAQZQA
2yxI/HULsFpju2DH/IuQevLz3sB9Qzfy2KFDh9phUIcVFRWJEAABUv8svmK6nbCjK9tYgax/13fK
LrS/YCtq/bNudgKAAIEd04Zi4xclf9zkxwIACBCg1qNkY2EiSgCAbcEi9O2x02uwCN0ULLYWoyWw
ZVr/rFtWDv12kqTp0Gs/8rH+ygUwAgJ8TGgYLYFNt3Lotz82QgAECMBmhonREgBAgADbNUo2Fiai
BAAQIMA2CxOjJbCWa4EACBBgO0TJxsJElACAAAHYZmFitAQABAjAdo2SjYWJKAEAAQKwzcLEaAkA
CBCA7RolGwsTUcK25FogAAIE2MHDxGgJAAgQgO0aJR8OEzECANtGI7sA2JHDRHiwrRUVFdkJgAAB
2NFDZGPTtAAAAQIAAAgQAAAAAQLwsUzDAgABAgD10sqh37YTAAQIwEczCgIAAgQAABAgAMCWci0Q
QIAAkMQ0LAAQIAAAgAABAAAQIAA1ZBoWAAgQAKhXXAsEQIAAbDKjIAAgQAAAAAECAGwu1wIBBAgA
1ZiGBQACBAAAECAAAAACBKBGTMMCAAECAPWCa4EACBCAzWYUBAAECADUe07FCwgQAAAAAQKwfZmG
BQACBAAAECAAAAACBKBGTMMCAAECAHWaa4EACBAAAECAANR9pmFR21wLBBAgAAAAAgSgbjAKAgAC
BAAAECAAAAACBKBGTMMCAAECAHWSa4EACBAAAECAANQfpmEBgAABAAAECEDDZBSE2uBq6IAAAQAA
ECAAAIAAAdiBmYYFAAIEAAAQIACwY3IxQgABAlBrTMMCAAECAAAIEICGySgINeFaIIAAAQAAECAA
AIAAAcA0LAAQIAAAgAABgB2Ma4EACBCAWmcaFgAIEAAAQIAAAGu4FgggQADYIqZhAYAAAQAABAhA
w2QUBAAECAAAIEAAYMfgWiCAAAFgqzENCwAECAAAIEAAANcCAQQIADViGhYACBAAAECAADRMRkEA
QIAAAAACBAAaNtcCAQQIAFudaVgAIEAAoM5xKl5AgAAAAAgQgPrFNCwABAgAAIAAAQAABAgANWIa
FgACBADYplwLBBAgAGwzRkEAECAAQJ3hWiCAAAEAABAgAPWTaVgACBAAAAABAgAACBAAasQ0LAAE
CACwTbgWCCBAANjmjIIAIEAAgO3OtUAAAQIAACBAAOo307AAECAAAAACBAAAECAA1IhpWAAIEABg
q3ItEECAALDdGAUBQIAAANuNa4EAAgQAAECAADQMpmEBIEAAAAAECAAAIEAAqBHTsAAQIADAVuFa
IIAAAQAAECAAOw7TsFjDtUAAAQIAACBAABoWoyAACBAAAAABAgAACBAAasQ0LAAECABQq1wLBBAg
AAAAAgRgx2MaFq4FAggQAAAAAQLQMBkFAUCAAAAACBAAAECAAFAjpmEBIEAAgFrhWiCAAAEAABAg
ADsu07AAECAAwFbnYoSAANkOhg4dmi5dumThwoVJknPPPTdHHnlkqqqq/DSBHYZREAAESA386Ec/
ygknnJDy8vKPfNzy5ctz3XXXpby8PCUlJUmSF154IS+99FIqKiq2y3sCAADqWYA88sgjGT58eObP
n/+Rj3v44YezYMGCnHfeeWnSpEmdeE8AAEA9C5BN9cc/rp5ucOGFF/rJATs807AA2CECpKysLD/5
yU+y//77p2XLlunUqVNOP/30jBs3br3HPv300znhhBPSuXPntGjRIj179sxVV12VsrKyJMnZZ5+d
oqKivPzyy0mSTp06paioKD169FhvStWMGTPyxBNPpG/fvtlvv/3W29asWbNy3nnnpUOHDmnXrl0+
/elP54knnih8/7rrrsvOO++cv//97+s9d9iwYWnbtm3uueeeTXpP8+fPz2WXXZbevXunTZs26dev
X26++WbrUAAA4GM03twnnHHGGRk2bFgOPfTQXHDBBZk3b14eeuihDBs2LKNGjcohhxySJLnjjjty
zjnnpGXLlhk4cGD23nvvjBkzJldffXVmz56dG2+8MYMHD067du1y9913Z968ebngggtSUlKSffbZ
J8XFxdW2e+utt6aqqioXXXTRBt/XgAEDsnz58hx//PFZsWJFnnjiiXzmM5/J//7v/+bSSy/NihUr
snDhwlx33XW59dZbqz33F7/4RUpLS1NcXPyx7+ntt9/OgAEDMm/evJx11ln5/Oc/nxEjRuTCCy/M
2LFjc9111/lUAbDFVg79dpoOvdaOABqsoqrN+Gf7OXPmZLfddkuPHj3y5ptvFk4HePPNN+eiiy7K
z3/+83z726uv4nrSSSflsccey/3335/TTjstSbJq1arsueeeWbJkSRYsWFB4/hFHHJGXX345s2bN
SseOHdfbblVVVXr06JGZM2dm9uzZadOmTeF7++yzT6ZMmZKjjz46w4YNy0477ZQkef311/OJT3wi
zZs3z1tvvZUk2WOPPVJUVJRZs2albdu2SZK33norPXr0SOfOnTNt2rTC2pKNvafBgwfnoYceysiR
I3PUUUclSSorK3PmmWfm3nvvzYgRI3LMMcd89E6vwWkUF18x3acWqP6PKCV/zHfKTE3dXlr/rFut
X8H8owLEaDtQ323WFKw2bdqkRYsWmTp1au69994sXbo0SXLBBRekrKysEB9Jcv/992f8+PEpKirK
kCFD8i//8i/53Oc+l0WLFmXRokWFaVib4rnnnsuUKVNy+umnV4uPdV1zzTWF+EiS3r1756yzzsrC
hQszfPjwtG/fPmeffXaWLVuWO++8s/C4m266KUlyySWXfOzC9nnz5uWBBx7IgAEDCvGRJI0aNcrl
l1+eJLn77rt9qgDYalwLBNihAqR58+a57bbb0qZNm5xxxhnZaaedcuihh+Zb3/pWJkyYUO2x48aN
y8CBA3Paaafl+uuvz+TJk1NeXr7e1KpNsSYSNjb9KkkOO+yw9e7r3bt3kuTNN99Mknzta19Lkvzh
D39IsnpE5uabb05xcXEuueSSj30fa15nxIgRKSoqqvZfv379kiTvvPOOTxUAAGzEZq8BGTx4cE48
8cQ8++yzGTVqVJ599tn8+te/zq9+9av86le/yuWXX57S0tIMGjQo77//fm644Yacf/75adGiRZKk
T58+GTNmzCZvb/Hixbn33nuz9957p3///pv3i2u8+pe3ZmTjsMMOy1FHHZXRo0dn3LhxmT59embN
mpXBgwdn9913/9jXW7ZsWeHXMGjQoPW+X1xcXJhuBrCtrDkblmlYADS4AFm6dGnuu+++DBw4MCed
dFJOOumkJMmUKVOy33775Zprrsnll1+eUaNGZc6cOTn55JNz2WWXFZ5fWVmZWbNmbdYbvOeee7J0
6dJceOGFadRo4wM2f//73zNgwIBq97366qtJUu2sWV//+tczevTo3HLLLZk6dWqS5F//9V836b0c
cMABSZK2bdvmyiuvrPa9qqqqjBo1KrvttptPFQAAbMRmTcF6/PHHc/755+fMM8+sdprctm3bplGj
RoXpVWtGHNZdKFdRUZErrrgiM2bMKMTIGs2bN0+SvP/+++s9749//GOKiopy/vnnf+R7GzJkSBYt
WlQtPv70pz+lc+fOOeGEEwr3Dx48OB06dMgtt9ySRx99ND179synPvWp9V5vQ++pY8eOOf744/Pk
k09m5MiR1R5/1VVXpV+/frn66qt9qoBtzjVBAKgvNmsE5OSTT84nPvGJ/O1vf8u+++6bPn36ZPHi
xXn++eezYsWKfO9730uS9O3bN3vuuWeGDRuW/v37Z999981zzz2XSZMmpWXLllm6dGnee++9woLy
Pn365Pnnn89pp52WVq1aZf78+RkzZkwWLFiQ559/Pp/5zGfSpUuXj3xvM2bMyP77759jjz02S5cu
zeOPP55Vq1bluuuuS0lJSeFxzZo1y1e+8pX85Cc/SZJ89atf3eCCvo29pxtuuCH9+/fPcccdl8GD
B6d79+6ZOHFiHnzwwXTv3r3aQnwAAKC6zRoBadKkSZ5++ulcddVVadKkSR588MGMHj06Bx54YB58
8MF84xvfSJKUlJTk8ccfzymnnJLx48fnrrvuSvv27fPII49kyJAhadu2bbURlH//93/PGWeckZkz
Z+att97K0UcfnZ133rlw5fOPWnzer1+/9O7dO6NGjcoxxxyTxx9/PCNHjsyxxx6b5557LoMHD17v
OWter0WLFjnvvPM2+Lobe089evTI+PHjc8kll2T8+PG59tprM27cuFx++eUZPXp0OnTo4FMFQI3U
9ml9AeqSzboOyLa0atWqdOvWLcuWLcvMmTMLU6Jqw3333ZfTTz89F198cX7/+99v+53uOiDAVmIx
+ra3Na4DkrgWCNBwNaqrb+yJJ57IzJkzc84559RqfFRVVeXnP/95khRGbACgPnEtEKA+a1xX39jD
Dz+cJLnwwtr5l7xTTjkls2bNSqtWrfLiiy/mvPPOy8EHH+wTAAAA21CdHQH5t3/7tzzwwAMbvMDg
lujUqVOmTp2aCRMm5Ktf/WpuuOEGP32gwXE2LADqujo7AtKlS5ePPfPV5vjd736X3/3ud37iAACw
HTWyCwAaFqMgAAgQAAAAAQIAdZNrgQACBIB6wzQsAAQIAFBrXAsEECAAAAACBGDHZBoWAAIEAAAQ
IAA0TEZBABAgAACAAAEA6hbXAgEECAD1jmlYAAgQAKDGXAsEECAAAAACBGDHZhoWAAIEAAAQIAAA
AAIEgBoxDQsAAQIAfCTXAgEECAD1llEQAAQIALDFXAsEECAAAAACBIDENCwABAgAACBAAAAABAgA
NWQaFgACBADYINcCAQQIAPWeURAABAgAsNlcCwQQIAAAAAIEgHWZhgWAAAEAAAQIAACAAAGgRkzD
AkCAAADVuBYIIEAAAAAECACbyzSs+s+1QAABAgAAIEAA2BCjIAAIEAAAQIAAAAAIEABqxDQsAAQI
AJDEtUAAAQIAACBAANhypmHVX64FAggQAAAAAQLARzEKAoAAAQAABAgAAIAAAaBGTMMCQIAAwA7O
tUAAAQIAACBAAKgp07DqH9cCAQQIAACAAAFgUxgFAUCAAAAA9VJjuwAahuNu/3z+PuuV9e4vLirO
Xjt1TY92e+erh1+UY7v12ybvZ/qiGbl65LUZ9c8xmV02J11ad84Bu/bKyT0G5tJHV5/F54hOh+SZ
cx/2wwOAHYgREGggdmredoP3V1RV5K0FU/PXKU/llHvOyZCnf7TV38vS8mU59Z5zcteEB/JO6T+z
smJlpiyclrlL56UoG18g+/1nfpLjbv98jrv983ni7Wf8UOsQ07AAqC1GQKCBaN20VeH2EZ0OyW4l
uyZJVlaUZ+K8Sfnn4plJkt+8fFM+t88JGdD16K32XsbMfDlvL5yeJOnaZo98p+/XsnD5ouzeumO6
ttkjX9xvUJJk7526VXve7CVzCqM45ZWr/FBhI1YO/XaaDr3WjgAECLD9rDuy8L2jvpGTun+68PWq
ylU5/89fy58nP13+OsgAACAASURBVJYkefSt4VslQBYuX5SWTVpk+qJ/Fu4b3OuUnHfgF7NkZVma
FjdNyyYtctQen1jveSVNWqZNs7UR1aZpq6ysWJmVFeVp1bTEDxgABAhQb36jN2qcT+91TCFA1oyG
7P7r3ilduXj1fd98LT99/pd5eNJfM3Px7FSlKhO/Mjp7tOmcqqqqPPDmX3LX+Aczft4bWbh8Ufbb
pWeO7HxYvtv362nfYuckyaduH5TJC96utu1fjrkhvxxzQ5LkhhN/nqKiolz21+8kWbsGZMBtJ2fq
wneqPe+zd5+ZJDmm6yfzlzPu8EOsA9ZMw/pO2YV2BgACBNi4VZWr8tcpwwtf92zXPUnStnmbQoCc
es85GTv71cJj9tqpa/Zo0zkrVq3IeX/+ah5d5/lJMmbm2IyZOTZ3jX8gt576m/TvetQmvZc2zVpv
8DZQe4qKilJVVWVHAAIE2DZ+8cJv8qfX70uSrKxYmdfmTCyMehQXFee0fU9OUn3dyNjZr6ZZcbPs
3rpj5pTNS/8uq4PiFy/+phAfOzdvm7MP+Je0a7FzRkx/Ps/NGJ15y97Pl4f9n7x00fCc1XtwyivK
8/rciXlk8uNJkuO69csnu/RJ6YrF6dFu7yxbtWxtgDRdHSAXHHR2yivL8/iUp/PSrH8kSS46+Ozs
VtIhu5V08AMFAAEC1GUvznx5g/cXpSj/cewP0rvDfkmSRkVrT4R3Vb/v5ltHXpYmxU1SWVWZZeXL
U7picX72wv8kSVo1Kcmo8x/LHm06J0mu6Pv1fO2x7+W21+/JzCWzc+M/bssVfb+eJLn51TsLAfLJ
Ln0y5KhvFrbz3DujC7fXbP/bff41SfJe2dxCgJyx/2k5+kNrRdj+TMMCoKachhcauOKi4vTYee+c
2uPEPHveI/naERdv8HGXHnpemhQ3KYRBSdOWGT/3jaz64GxUg3udUoiPZPUUj3Vf65X3XrOzAYCP
ZQQEGqB7TvtDtbNgbYoNXUdk2qK1C8N3b9Npve93abN74faHF5HTcBkFAaAmjIAAG9WtbdfC7X+W
zlzv++ve133nPWt12ysrVvgBAIAAAeqqqqw9403lJp79prKqcu3zN/CcA3bdN8VFxUmS+974c6Yv
mlHt8df//cbC14d3OniDr/Xh1133fa57O0lKmrQs3P7h3/4rVz794/z4uZ/54cKGIn3ot+0EQIAA
28/ilUsKt5esc3uTn1Nett732zZrk+/0+WqSZGn5svS75XO54qmh+enzv8xJd30xt79+b5KkW9su
ufjgczfyXso+tM21X5etXFrte0d0OqRw+x/vvZb/9/If8sAbf/HDrYPWTMMCgM1lDQg0lABZsfag
f9GKxZv0nEXLSwu3S1csrnZa3jW+d9Q38sp7r+eJqc9k4YpF+e3Y6gedu5V0yB8+9+uUNF07erFw
+aIN3l69nXW2ubL6+zy1x4n5Yf8rcvO4OzO7bE52K9k1+7bfxw8XtoBrgQB19s+nKn86bZe/FLb4
IPOK6XYg21xVVVXumfhQ7pnwcMbPeyOlKxZnv116pu/uR+SKvl/f4AJ2Gj4L0Vdr/bNu2206VNOh
137s712AusYICLBJ0XzG/l/IGft/wc6gwNmwANgS1oAAAAACBIC6z2J0AAQIAAAgQACA2uVaIIAA
AWCHYxoWAAIEAKjRad8BBAgAACBAAMA0LAA2lQsRAkADtrFpWK6SDmwvRkAAqBVGQepfmGzOfwC1
xQgIALBJwbIljLQAH2YEBADqsbp+LZDNHWkx2gICBAA2mWlYiBbg45iCBQA0iGjZXKaHgQABAKiz
0SJYQIAAUAetmYb1nbIL7Yxt5OPWgTQdeq2dtB2CRbiAAAEAgbIJBMv2DxfRggABAASLaBEtIEAA
qItMwxItoqXuR4tgQYAAAKJFtNTZYGmI4TJ16tScdtppGTduXOHXVVRUlPbt2+fggw/OGWeckQsu
uCBNmjTZIT4T3/jGNzJ8+PC88soradas2db77FXJ33rzGz5JFl8x3Q4E6o0dYRSk9c+61fmLASJc
tre6erj5gx/8ID/96U+z1157Zf/990+SlJeXZ9KkSZk2bVqS5LDDDssjjzySzp07N/if0xFHHJGX
X345s2bNSseOHbfadoyAAAANnoX421ddXdMyf/78JMmVV16ZSy+9tNr33nnnnZx33nn529/+li98
4QsZOXLkDjMSsrUJEACAGgaLaKnf0dKoUaP17uvatWuefPLJ9OrVK2PGjMldd92VL33pS34wtaCR
XQDA1rJmMTrsKNGyuf9R+9Gyof+2VJMmTfL9738/SfKnP/2p2vfmz5+fyy67LL17906bNm3Sr1+/
3HzzzdUi6JxzzsmRRx6Zl19+Occee2xKSkqyxx575Oqrr05VVVXuuOOO9O7dOy1btsz++++fW2+9
db338PTTT+eEE05I586d06JFi/Ts2TNXXXVVysrKqm3niCOOyJw5c3LJJZekU6dOad26dfr165dR
o0at95rTp0/PWWedlT333DNt2rTJwIEDM3bs2G32czICAgCwHaNlSxht2XaOOOKIJMmLL75YuO/t
t9/OgAEDMm/evJx11ln5/Oc/nxEjRuTCCy/M2LFjc9111xWeM2XKlBx77LHp3LlzTj311DzxxBO5
6qqrMnny5Nx222059NBDc8opp+TPf/5zzj///PTs2TN9+/ZNktxxxx0555xz0rJlywwcODB77713
xowZk6uvvjqzZ8/OjTfeWG07ffr0yfz589OvX79UVlbm8ccfz6c+9alMnDgxe+21V5Lk1VdfzTHH
HJOFCxfm+OOPT5cuXfLCCy+kf//+adq0qQABAKDm4SJYtly3bt2SJAsXLkx5eXmaNGmSK664IrNm
zcrIkSNz1FFHJUkqKytz5pln5vrrr8/gwYNzzDHHFF7j5JNPzu23357i4uI8+eSTGThwYG699db8
4Ac/yNVXX50kuf766/PNb34zd955ZyFAbrvttsL/TzvttCTJqlWrsueee+bee+/N7373u2ojPCUl
JXn22WfTpUuXJMlVV12Vq6++OjfddFN+8pOfpKqqKpdffnkWLlyY22+/Peecc07hNb/yla/kpptu
EiAA1H+uCQL1L1hEy1rLli1LsnqdSKNGjTJv3rw88MADOfbYYwvxseb7l19+ee69997cfffd1QLk
hz/8YYqLi5MkBx100OqD8MaNc8UVVxQes+b+d955p3Df/fffn2nTpuXNN9/MkCFDMmXKlCxevDiL
Fi3KkiVLUlZWllatWhUef/311xfiI0kGDBiQJJk0aVKSZNasWRkxYkR69+6ds88+e20QNG6c//7v
/86f/vSnrFixQoAAACBatpc1p+Pt2LFjiouL8+abbyZJRowYsdH1JetGRLJ2FCVJ4foaPXr0SNu2
bde7v7y8vHDfuHHjcvrpp+fdd99NixYt0qNHj7Rv374QMx92yCGHVPu6RYsWSVKIijfeeCNJ0rt3
7/Xee/v27dO9e/dMmDBBgABQ/xkFAdFSX6PlmWeeSZIcffTRSdaOiPTp0yeDBg1a7/HFxcWF6VJr
bOgsWxu6b12lpaUZNGhQ3n///dxwww05//zzC0HRp0+fjBkzZr3nfNxpgjcWLpv6fAECAMAOGS3b
KlwWLlyYa69dvZ0LL1z9DygHHHBAkqRt27a58sorqz2+qqoqo0aNym677VbjbY8aNSpz5szJySef
nMsuu6xwf2VlZWbNmrVFr9mrV68kyWuvvZaqqqpqoyClpaWFqVoCBAAANjNcmg69dpOvC1JZWbne
fa+99lrOPPPMvP/++znxxBNz4oknJlk9Fev444/Pk08+mZEjR6Zfv36F51x11VX5j//4jwwZMiT/
9V//VaNf35rRiHV/DRUVFfne976XGTNmbPR9f5QOHTrk05/+dIYPH54777yzsA6koqIiQ4YMKYzu
CBAAGgTTsIC6pl27dkmSa665Jn/+85+TrF4vMXHixLz77rtJkmOOOSZ33HFHYcpUUVFRbrjhhvTv
3z/HHXdcBg8enO7du2fixIl58MEH071793z72zW/xkvfvn2z5557ZtiwYenfv3/23XffPPfcc5k0
aVJatmyZpUuX5r333kubNm02+TWLioryy1/+MgMGDMi5556b2267LXvssUdeeOGFTJ48Oc2bN8/y
5cu3+n53IUIAAHZIX/7yl3PggQdm6tSpGTZsWIYNG5bhw4dn+fLlOf7443PLLbfkqaeeys4771zt
eT169Mj48eNzySWXZPz48bn22mszbty4XH755Rk9enQ6dOiQJGnVqlWaN29ebe1FSUlJ9t1338L1
Rdbo0qVLOnTokMMPP7zwuMcffzynnHJKxo8fn7vuuivt27fPI488kiFDhqRt27apqKgobKdZs2Zp
3Lj62EK3bt2qvWayegH6P/7xj3zxi18svO5uu+2WZ599NhdffHH22Wefaovjt4aiqi29Zj1bvtNr
cEXOxVdMtwOBeqshjoC0/lk3V7SGOmhzpmBtLW+//XZKS0vXOzvV1tjOokWLcuihh9aLn40pWABs
M6ZhATuSvffeu0Ftp7aYggUAAAgQABqmNaMgAAgQAAAAAQIAAAgQANgipmEBCBAAAAABAgAACBAA
qBHTsAAECAAAgAABAAAECADUiGlYAAIEAABAgADQMBkFARAgAAAAAgQAABAgAFAjpmEBCBAAAAAB
AgAACBAAqBHTsAAECAAAgAABoGEyCgIgQAAAAAQIAAAgQACgRkzDAhAgAAAAAgQAABAgAFAjpmEB
CBAAAAABAkDDZBQEQIAAAAAIEAAAQIAAQI2YhgUgQAAAAAQIAAAgQACgRkzDAhAgAAAAAgQAABAg
AFAjpmEBCBAAAAABAkDDZBQEQIAAAAAIEAAAQIAAQI2YhgUgQAAAAAQIAAAgQACgRkzDAhAgAAAA
AgSAhskoCIAAAQAAECAAAIAAAYAaMQ0LQIAAAAAIEAAAQIAAQI2YhgUgQAAAAAQIAAAgQACgRkzD
AhAgAAAAAgSAhskoCIAAAQAAECAAAIAAAYAaMQ0LQIAAAAAIEAAAQIAAQI2YhgUgQAAAAAQIAA2T
URAAAQIAACBAAAAAAQIANWIaFoAAAQAASGO7AACoqU/eeEdeenf2evcXNyrK3ju3Tc/27fKNvofl
U3t3rVPvu+evfp9pC0uTJH+/7Es5qOOu6XjNb/L+suVJktGXnJ3Dd+/oBwy1yAgIAA2SaVjb1s4t
mm/w/orKqkyevzDDJr2dE2+9L995bESdet9tmjUr3G7drGmd3sdXPD4in7zxjnzyxjvy2OSpPnTU
W0ZAAIBaOJBfe/D+id07pmOrkiTJyoqKTJg7PzMWLU6SXP/C2Jyy7945dq+6MRKybnS0atokSXLa
/j1TtnLlR4bV9jB7cVlhlKm8otKHDgECAHXNmlGQ75RdaGdsZUXr3P6/A/rmc/vuXfh6VUVlzr7v
L3lo4ltJkr+8+XadCZCmxWsngzRptPr2b075dJ3atwuXLU9J0yZpvc5oTZtmTbNyVUVWVlSkVR0f
uQEBAgBs24ON4kYZuM+ehQBZMxqSJFVVVfnD2NfywITJeWXWnFRUVaXXLu3y5cMPzNkH7ZfiRmsD
YZf//J+Urlg9MrHi37+V3740LveNn5Rxs+dkp+bN8unu3XL18f2zS0mLatsvW1menz77Qp6ZOiMT
5szLTs2b5/i9u+a7/T6xwffb7qfXZ8nK8iRr14Bs6bbnli3Nf48ck0cnvZ13Fi1Olzatc8TuHXPO
QfvllD89mGT1iNHzl5y90f3X93d/ytsLFlW774Rb7k2SHLdXl1z3uePzyRvvKLy/h84elM/2XB2A
t4+bkIsefCxJ0rVt64y+9JzsWtIySTJ25nu5dtTf89K7s/Nu6ZJ0bl2SXru2zxWf/ET677mHDy4C
BACon1ZVVGbYm28Xvt53l52TJEtXlucLdz6UZ6bOqPb40TNmZvSMmXl00tTcOvikNCkuTpLs1LxZ
4SD7C3c+lEcnrV0HUbpiZW4a+3pemTUnz19ydiFc3i1dnBNuvjdvvb+w8Nil5Uty27gJuX/CpOzU
fP0pVu1aNC8EyE4fTMHakm1Pnr8gJ9x8b2YuXlJ47FvvL8xb7y/MXa+9UbivptO89t2lXe48/eR8
7vYHkiTf+usz6d9tjyxZuTLf/WDNTfPGjXPfmZ8vxMeTb03LqXc8mIrKqsLrTFtYmmkLS/PY5Km5
ZuCAfOvoI3x4ESAAsLlMw9r2rhn5Ym59ZXyS1WtAXn1vbmHUo7hRUf7lgH2TJD8eMboQH0fu0Smf
79U9Kysq89DEyRk3e27unzApfbt0yuVHHZ5kzYLx1a+zJgAO6NA+zYqLM3bWnCTJ2Flz8tTb72Tg
PnsmSb772N8K8dGhpGXOOLBXWjVtkjH/nJWn3n4nS8uXrPf+191O66ZNt2jbVVVVuejBxwrxcdBu
u+aSIw5KsnpU4sV/zipsb802Nubiww9MeUVlHp08NWM+eN6XDz8onVqXpGOr1UFxwj57ZuhxR2fo
M6MydcGifGPYU3lvSVnhbF7/7+Tjc0inDoXX/I9nXyjEx+VHHZb9dm2faQsW5ZqRY1JVlfzw6edz
waG969QaGAQIAMAGvTBj1gbvLypKrjlhQA7quGsWLFueX41+OUlydNfOGX7+F9P4g/UYQ/odmU/8
720ZP2d+rnluTL7e59AUN2qURkVrV5rs0rJF/nLuaTms825Jkm8Oeyq/fWlckmTi3PkZuM+embFo
ce6fMClJ0rFVScb+63nVpkitOz1pXetuZ83tzd32q+/NLUTGHm1a5dmLz0zLDxa5f/nwAzPwlvvy
3PR/fvDaH70/r+h3ZJJk9pKyQoCcc9B++WS33as97sr+fTJ6xsw8/ta03PHqxML9Xz78wHzpkAOq
PXZ5+arVB4KNGqVTq1Y5sMMuOfeg/XPKvt3TpLg4nVqXpO06a05AgAAA9UJxo6J033mn7N+hfa7s
36dw0P7ae3NTWbX6X+BHvTMzLX/yqw0+f97SZZkwd34O3G3Xavc/+qXB1f5F/8DddincLvtg+tSE
OfMK953ee9/11mece/D+ueqpkXm3dMlm/Zo2ZduvzJpbuO8L+/csxMfqfdIolx5xUCFAakujRkW5
5bSTcsD//DHzl64e+ejZfudce+Jx6z32B8cclfMeeDRlK8tz5ZPPJklaNGmcfl13z3F7dc2ZB/ZK
o48rIxAgALBhpmFtWw+eNajaWbA25J11FqJ/nNmLy9YLkF67tKt+8F20/qXN5n8w/ShJKirXP21t
VVVVVlZUbPavb1O2XVG1dnttNnCWqhZNts4h2Mh33i3ER5K8vWBRXn1vbo7co1O1x53Sq3te/doF
+euktzPm3Vl56d3ZmTj3/Tw5ZXqenDI9vxj1Up658Mz02rWdDzQCBACo/3q026lw+5yD9ssFh/be
6GP379B+i7ax/65rn/fAhMm5sn+fdGxdUrjvprGvZ27Zsq3y61s3UtZd77FGTS8kuGID4TTl/YWF
KWWtmjbJslWrsqqyMmfe80jGfOVLhRGgqQsW5fHJUzN7SVnatWie3w86MUny/tJl+c/nXsyvR4/N
/KXL88CESfm/x/T1YUWAAAB1zzonUypMrfrIOOiwSxoVFaWyqipj3p2VX3/2U2nTfPWag6qqqlz4
4GN5t3RJBu7TLUfs3nG9161K9W2s+/WaW/vt2i5tmzfLouUrMntJWQ7/7a05o3evtG3eLC+9OztP
vDXtQ6+x/vtfc3tzt33Qbrtml5YtMm/psgyfMj1Xjxidyz5xSOYvW5bbXpmQ37/82mbv45J1pnH9
3+HPpV/X3dOySeP8+Ph+WVZenjPveaRwpq7fnHJCZiwqzQ+Gj8w/S5fkvAcezSPnfCHFjRqleePi
fPuxEVn1wajQ8+/MzKGdOqR0xcoMnzK9sI29dm7rg40AAYAtZRrW1rX4gyuHf/j2xrRu1jRfOnj/
3PLK+EyevzCH//a2nNG7V4qKkhFTZxRGDZoWN8p3P7n6eh2lK1YUnl+2clVaNGmyztflhdtLPth+
s8aN858n9M9XHxmeJJlbtiz/8+I/qr2H1k2bFs5UtWRleXZu0bzadhavXJkOabnZ227VrGn+84QB
ueThx5OsPuPXj0eM3uC+aPrBaYY/zpG7r51GNXbmexk7873s026n/OhTn8zX//JUxs1eve7krAN7
5cwDe6WysipPvDU9f5s2I8OnTM+PnhmVHx/fL51at8q/HdM3Q58ZlSR5cOLkPDhxcrVtfbLr7hm0
3z4+2GwVjewCAKCm1j1AL12+YpOe84sTj80nu64+k9P0haX575Fjcs1zYwrx0aP9TrnhlBNS9MEZ
qBau87oLli+v9lrVvrfO2o8vH35QHv3S4Jx+QM/s0+7/t3fvYVWViR7Hf5sNyE0QEWVrpeQlFI0w
GbyQqeVtzCSRkZTEHCmRzGKeqY6l4NSZbMzGzJOWojBqVprF5CWJ4zFFvBde0iwV1BCtcAAFBIV9
/iB3EIhcvCB8P8/j89heay9a75bLl/ddazdTE2ujOjRvpmDvTtoz6QnLe5JIUs6vxyh7rOxfj1Wb
jx3m661lQX+scCvbK+d1RXVnGgI7d9DfBvRR22bOsjUadZdLU3m5N9fs5N1atu+QJMnNwU5vDS29
6NzKyqB3hz9sCZxZW3dp5a93x/qvvv76bEyghnW6Wy0dHWS0Msjd0V5+bTw0d2h/rQsdWS6ygOvJ
YDZXY54U13fQDbW/q8T5v55gAAGgDq73LEjT2W1VFBPFwNZSSYlZsV/v18cHv9fhn7NUVFyszu5u
GtShnf7Su4fsbG7vxRq/5BXILLN+zivQyZxcdXJzVbtmLnp7x169mFh696mljw3RWJ8u/GO4zmxj
3hI/5tZPLMECAAC3jJWVQeE9fBTew6dBndfl4hK9t2efYv4vRQ421pri311e7s21K+OM3ty2R7Ff
7y/9IdloVH/Pu/iHAAIEAAAAtVdsLtGW9B+Vc7FQORcLNS1pa4V9jFYGvTPsIbV2dmLAQIAAANBQ
cTE6boYm1tZaGfyIVn17RPGp3+qbzLPKvlio5vZ2usvFWf53mPR87x5q28yZwQIBAgAAgLqzsjJo
dDcvje7mxWAAZT83GAIAAAAABAgAADfIlWVYAAACBAAAAAABAgBAw8IsCAAQIAAAAAAIEAAAAAAg
QAAAqBOWYQEAAQIAAACAAAEAAAAAAgQAgDphGRYAECAAAAAACBAAABomZkEAgAABAAAAQIAAAAAA
AAECAECdsAwLAAgQAAAAAAQIAAAAABAgAADUCcuwAIAAAQAAAECAAAAAAAABAgBAnbAMCwAIEAAA
AAAECIBbrVfcEDWd3VZNZ7fV4tTlle5jNpvlOqe9Zb+UH3fX+uOZ5naxHOfMhbO8AGiwmAUBAAIE
QCWaNXG2/N3VzqXSfQwGg1yaNL3mftXhYvfbx2tq25QXAADQqCQlJclkMmngwIHKy8urct/CwkIF
BgaqRYsWWr684i8Ji4qK9O677yogIECurq5q2rSpfH19NXXqVJ06dYoAAVA/NW3iZPm7k63jVfdz
sq3eftfiXCZkHGzseQEAAI3K6tWrdebMGSUlJWn+/PlV7hsfH6+EhARlZWVVCJDTp0/L399fkZGR
2rZtm1xdXXXfffcpMzNT8+bNU6dOnbR+/XoCBEA9/AQ2WJX5ZLaqYj9Dpc+pKaPBaDmGocwxgYaI
ZVgArvr90GjUe++9p5KSkkq3m81mLVy4UPb2FX9ZV1hYqOHDhys1NVUBAQE6ceKEjh8/rq1btyoj
I0Pz5s3TxYsXNXLkSB07dqxBjp81/4SAxqnN212VW3RetkZbnXxmn97YPk//dyJZ3587KpNjK/m0
6qqXA6LUqXn7Ko9TYi7R5C/+qhUHV1se++9+L2tKj3AZDAaZzWbF7V+pz75fr/1nv1WxuVj3uHXU
k/eO0egugTJaGSt80a7u/tfrHAAAqInAwEB98sknSkxM1JAhQyps3717t7755huNHDlSa9asKbdt
8eLF+vrrr+Xl5aVNmzbJxsamXNhMmTJFqampWrJkiZYuXarXXnuNAAHQMLjYOSu36LyKS4rVM26w
0nNOWrYdy07Xsex0rT2aqKWPvKNHOw2p9Bhms1kvbvqbJT6aGJso9pG3NaLTUElS/qUC/WnNn/XV
yW3lnrcjY492ZOzRF8f/V7HD3paN0aZW+9f1HJrObmv5+/m/nuAfBQCgWkaMGKFPPvlECxYsqDRA
Fi5caAmV3wfIokWLJEnR0dHl4qOs+fPn69FHH9WAAQMa5PgRIEAj1fTX60KKzcVKzzkpb3cvPdzu
QVlbGZWUtkX7fjqoouIiTdn4onq2uV8tHd3LPf9yyWU9u/G/tOzgx5IkN3tXffRYrPzb3G/Z5+/b
/mmJCT+Trx7pOFhFxUX69w9f6MBPh/TpkXX6Q+vueqbHxFrtX9dzqCxGCBGUdWUZ1l/ynmQwAFi0
a9dOPj4+Wrt2rU6dOqU777zTsi07O1sffvih3Nzc1KdPn3LPy8nJ0b59+yRJ/fv3v+rx7e3tNWLE
iAY7flwDAjRSZa8FmeAzRilhG/Rav2mK6fuitoz7XI90GCRJOncxW58eWVfuuWazWU8kRFjio53L
XUoa+2m5+PjPxRy9s6f0tzy92vRQ4pjVivKP0Eu9p2rLE5+rc4tOkqQ5O/5HxSXFNd6/rudQVYiU
nRkBAOD38vLyFBoaqpKSEsuMxhXLli1TQUGBQkJCVFRUVG7bmTNnJEkODg5q2bJlox0/ZkCA21jZ
u1JduHT12wGeL8qr9DlXRPlPLn9Bu8FKod3+pLVHEyVJB346XD5AZLZskySjwUotHVqU2+fgz4dV
Yi69OG97xh65zqn8OoxfCs7pu6wfdO5ido3293b3qtM5SKWzHVeLDWZEcAWzIEDDNHPmzCq3R0dH
VxkgYWFhZOvfmAAAEudJREFUevnll7V48WJNnz5dNjY2lovPJSkiIqLCrXq5gQsBAtz2OjXvYPn7
12f267F7hlXY58fc0/olP0uS1NblTsuypbJyLuZKv3t7kCuzDJJkY6z8S0VH17v1w3+O61h2uiK/
eEH/evRdyxfXH3Mzqn0eZy78pJ/yf67R/r8PkNqew5XAqCpEiBAAqL/+LudKH4+JiakyMqoKjGsp
KCiQu7u7goODtWLFCiUkJGjUqFFKTk7WoUOH1K9fP3l7eys5Obnc8zw8PCRJ+fn5Onv2rOW/CRAA
tw3/1t0tf1/49VL5mXw1vONgSwRknM9U+LrnLPvc7+FT6XFeT5mrZSMWyNqq9EtCiblEy39dXiVJ
Xd27VHjOO4NnaUSnP6rn0kE6feGMPvt+vf5nb6zl+oz2rp6WfUO6jNS4bn+66nl4teiktOwTNdr/
epxDdUOE2RAAuHUhcS3TlFvp47Yxb8lsNt/Q/+eIiAitWLFCsbGxGjVqlOLi4iRJkydPrnR/Z2dn
3Xvvvdq/f782bdqkMWPGVLrfiRMnNGHCBD322GN65plnCBAA9ccDd/XSsA4Dte7ol7p4uVBjE56W
yamV2rncqXMF2TqWna7LJZclSTZWNvqLf+VfENceTVTAv4ZpWPuBsjZaa+OxTdp7pvQiuVaOLS0z
K1eWSBlkUFi3EBkMBr3/x7f0yMelX0Bf2fx33e/ho153+Klzi06yMlipxFyiPZnfaM7Df7Ms/zKb
zQpf/7xOnz+jhz0fVHcPnxrvX9tzuBZCBJVhGRZw60KiPuvdu7e6deumpKQknT59WmvWrJHJZFJg
YOBVnzNx4kQ9++yzmjlzpkaNGiVbW9sK+0RHR2vTpk0ymUwECID6558D/1tp2Sd16JcjkqTMC2eV
eeFsuX0cbOz1/h//qXtbeVd4vtFglLuDm779+Tt9+/N35bbZW9vpvaFz1Ny+WekP3kUXSoNAZhVc
vigHG3s92LaPxnUbrX8d+EjF5mKF/jtCW59Yq9ZNPTTGO0jLD67S0f+kqVfcEAV3flQGGbTl1Hbt
Ov21JMnWaKPn/zBJBoOhRvvX9hyqi+tDABASjSckastgMGjSpEmKjIzUxIkTlZ2dralTp1719rqS
FB4eriVLlig1NVX9+/fXBx98oLZtS7+vXLp0SW+99Zbi4+Pl5OSkmJiYBjluBAhwmzM5tdJXT/xb
H3y7Rp8dWacDPx1SdmGuPBxbqkPzu9Xdo5vC7xunO5xbX/UYKWEb9GryHH2Ztlk/5f+iu5zb6H7T
fXqlT5TaNbvLsl/Oxd++qWRfzJGDTek7vMY88IISvt+gnMJc/ZT3s0I+naiNj6/WGwOidfw/6UrJ
2K2TuT9qzs53y33cDq6eemfwLMuSsZruX5tzqGmElA0OQgQAIYHfCw0N1QsvvKANGzbIaDQqPDy8
yv3t7Oy0du1aDRs2TCkpKWrXrp08PT1lMpl05MgRZWVlycnJSQkJCerQoQMBAqB+srO20wSfMZrg
M6baz7mynKrEXCJ3xxaaN/j1az4nY+rBSh93d2yhH589UOFxe9lpw+Mfa+m+lfrku8/1XdYPulR8
SV4tOuqhdn313B+elp21nWV/5yZNa7R/bc7hRoUIEdLwsQwLhAR8fX3l5uYmL6/fboTi7OysWbNm
afr06Zo6daratGlj2ebp6SkPDw/5+fmVO06bNm20a9cuxcbG6oMPPtDBgwd19uxZeXl5aezYsZo2
bZpatWrVYMfRYL7RV+eg4qDX4RZs/JCD66Xr+wE6kXNKkpQV9YNsjbacQzVV9T4hfI42bJUFSNPZ
bVUUE8XggJCoZ27GReioHWZAgEYqt/C3b2Tni/LkZm/LOdTwFwFcqN74MAsCQgIgQADU0qJhcy1L
mBys7TmHWoYI14cAhAQAAgRANQy+ewDncJ0ipGxwVBYiRAhASAAgQADgpoUIsyENC8uw6mdEEBIA
AQIAhAghAkKCiABAgADAzQoRrg8BIQEABAgA3NQIKRsclYUIEXJ7uh2XYRESAAgQACBEmA0BIQGA
AAEAECIgJADgRuGd0G/FoPNO6ECjV9W7qfO5fvuY47i01s8lJIAbi3dCr7+YAQGAW6A614cQIrdH
TMTExKgoJooBBIBqYgbkVgw6MyAArhIcfN7fwpCo5ceLEbMZQH3EDEj9xQwIANQDXB9y60MCAECA
AAAh0gBChJAAABAgAHAbhEh9uj6kLhdbN/SQiImJkWJiWIYFAAQIANz+EVI2OCoLkZpGCLMRAAAC
BABQ6xC58lhMTPUSgZAAABAgANCI1WRG4kpkVBYblseqGSK4vqYpV3+XM8uwAIAAAYD6FxLlwqFW
T4q5emgQIgAAAgQACInr7lqhUVWk4IZgFgQACBAAhET9D4kbGSLMhgAACBAAICQIEQAAAQIAhETD
CRGuD7llWIYFAAQIAEKicUZIVaFBiAAACBAAt0NEEBINMESIEAAAAQLgRocEP3ISItWOFNQYy7AA
gAABCAmAEAEAECAAIUFI4JaFCNeHAAAIEICQAG5qhFQVGlwfUicswwIAAgSEBCEB1CZEAAAgQEBI
EBIAIVL/MQsCAAQICAkA1Q0RAAAIEBASAAAAIEBASAAAKsUyLAAgQAgJQgIAAAAECK4ZCr+uy56j
pYQEAAAACBDcnADhAlEAuL2wDAsAyjOYzWYzw3CTB91gYBAAoBGJiYn57RdJAOodfhy+uawYAgAA
CBAAIEAAAAAAECAAAAAAQIAAAFCPsQwLAAgQAAAAAAQIAAAAAAIEAADUCcuwAIAAAQAAAECAAADQ
MDELAoAAAQAAAAACBAAAAAABAgAA6oRlWAAIEAAAAAAgQAAAAAA0JNYMwc1nNpsZBACAJCk6OppB
ANCoMAMCAAAAgAABAAAAQIAAAIDrJDo6WjNnzmQgABAgAAAAAECAAADQwDALAoAAAQAAAAACBAAA
AAABAgAA6oRlWAAIEAAAAAAgQAAAAAAQIAAAoE5YhgWAAAEAAAAAAgQAgIaJWRAABAgAAAAAECAA
AAAACBAAAFAnLMMCQIAAAAAAAAECAAAAgAABAAB1wjIsAAQIAACo95KSkmQymTRw4EDl5eVVuW9h
YaECAwPVokULLV++3PJ4WlqafH19ZWVlJYPBYPljNBrVvn17jR8/Xunp6Qw2AAIEAICGpDazIKtX
r9aZM2eUlJSk+fPnV7lvfHy8EhISlJWVVS5AFi1apNTUVHl7e2vs2LGWP6NGjZK9vb3i4+N1//33
KyMjgxcJAAECAAAko9Go9957TyUlJZVuN5vNWrhwoezt7StsO3funCQpKipKy5cvt/z56KOPdODA
AYWHh+vcuXN68803GWgABAgAAJACAwOVlpamxMTESrfv3r1b33zzjYYOHXrVYxgMhkofGzVqlCTp
wIEDDDQAAgQAgIakthejjxgxQpK0YMGCSrcvXLjQEio1dfbsWUlS27ZteYEAECAAAEBq166dfHx8
tHbtWp06darctuzsbH344Ydyc3NTnz59qn3MixcvasuWLZoxY4asra317LPPMtAACBAAABqa6Ojo
Gj8nLy9PoaGhKikp0aJFi8ptW7ZsmQoKChQSEqKioqKrHuPJJ58sdxcse3t7Pfjgg2rdurW++uor
+fj48OIAIEAAAEBpgISFhcnW1laLFy/WpUuXJP128bkkRUREVHmr3j59+igsLExhYWEKCQnR3Xff
LUny9PRUz549GWQABAgAAChVUFAgd3d3BQcHKzMzUwkJCZKk5ORkHTp0SP369ZO3t7cKCgqueoyJ
EycqLi5OcXFxWrlypQ4fPqxBgwZpxYoVio+PZ5ABECAAAKC8iIgISVJsbKwkKS4uTpI0efLkGh/L
1tZWr7/+uiRp9uzZV73FLwAQIAAANFK9e/dWt27dlJSUpNOnT2vNmjUymUy1uvuVJHXv3l09e/bU
4cOH9cUXXzDAAAgQAADwG4PBoEmTJuny5cuaOHGisrOz9dRTT8nGxqbWx7wyezJ79mwGGAABAgAA
ygsNDZWjo6M2bNggo9Go8PDwOh0vODhYzZs31+bNm7V3714GGAABAgBAY+Xr6ys3Nzd5eXlZHnN2
dtasWbPUrFkzvfLKK2rTpo1lm6enpzw8POTn52d57J577pGVlZXlrle/Z2dnp2nTpsnV1bXKi9gB
4GoMZrPZzDAAAGoiNDRU33//vXbu3CmDwcCANDD5+flycHBgIADcEMyAAABqbMeOHdq9e7eKi4uv
63FnzpypgQMHWt63ArcG8QGAAAEANAqff/65kpKSlJWVxWAAAAECAAAAAAQIAOAWyczM1Lhx49Sy
ZUs1b95cDz/8sBITEy3b582bJ1dXV+3Zs6fCc9etWycXFxd9/PHHGjNmjAwGg+WuSiaTSQaDQR07
drQs88rKytKkSZPUtWtXOTs7KyAgQHFxcSp7KWNeXp5effVVdenSRQ4ODjKZTAoODta+fft4sQCA
AAEA3O769u2rL7/8Ug899JD69eunHTt2aPDgwXr//fclSYWFhcrOzta8efMqPHfOnDnKzc2V0WhU
UFCQIiMj1aJFC0nS+PHjFRkZqcjISBmNRh0/flw+Pj6Ki4uTn5+fpkyZIrPZrCeffFJTp061HHP0
6NGaMWOG7OzsNH78eD3wwANKSEhQr169lJqaygsGAPUAd8ECANRYhw4ddOzYMfXu3Vvr1q1Ts2bN
JEkHDx6Un5+f7OzsdPToUUnSHXfcIYPBoMzMTLm4uEiSjh49qo4dO6p169ZKT0+3vDFejx49tHfv
XmVmZsrDw8Py8YKCgvTZZ58pOTlZvXr1kiSVlJQoJCREq1at0ubNm9W5c2e1atVKHTt21JEjRyx3
54qLi9OECRP05ptvKioqihcPAG4xZkAAALX2xhtvWOJDkrp27arHH39c2dnZSkpKkpubm8aMGaOC
ggKtXLnSst+SJUskSeHh4dd8V+5ffvlFa9asUd++fS3xIUlWVlaW2Y+PPvpIzs7Osre3V1pamlat
WqX8/HxJpbMpeXl5xAcAECAAgNtd9+7dKzzWtWtXSdKRI0ckSZGRkZKk2NhYSdLly5cVFxdX7Xfl
vnKczZs3y2AwlPsTEBAgSTp58qTs7Oy0bNkyOTs7a/To0WrWrJl8fX31/PPP69ChQ7xYAFBPWDME
AIDr+o3FuvRby5WZje7du6tXr17avn279u3bpxMnTigzM1NBQUHl3pX7aq6827a/v78CAwMrbDca
jRo5cqSk0qVaQ4YM0ZYtW5SSkqItW7bo7bff1ty5czV37txy14sAAAgQAMBtZs+ePerbt2+5x/bv
3y9J6ty5s+WxZ555Rtu3b1d8fLzS0tIkSREREdX6GN7e3pIkFxcXvfTSS+W2mc1mpaSkqFWrVsrP
z9fq1as1aNAgDR06VEOHDpUkHTt2TJ07d9Ybb7xBgABAPcASLABArb344ovKyckpFx8rVqxQ69at
NXDgQMvjQUFBatmypeLj47V+/Xp16tRJAwYMqHA8Ozs7SdK5c+csgeHh4aGHHnpIX375pZKTk8vt
P336dAUEBOi1117Txo0bFRYWppCQkHLv0O7i4iIrKysZjUZeMACoB5gBAQDU2qlTp9SlSxf169dP
+fn52rhxoy5fvqx58+bJ0dHRsl+TJk309NNP69VXX5UkTZ482XKXqrL8/f21bds2jRw5Uk5OTsrK
ytKuXbu0YMECPfDAA+rfv7+CgoLUvn17HT58WJ9++qnat2+vqKgoubq6ys/PT1999ZXuuece+fv7
6/z589q2bZsKCwv1wgsv8IIBQD3AbXgBADU2fvx47d27V+vWrdNLL72kxMREGQwG+fn5acaMGerZ
s2eF56Snp8vT01P29vbKyMiQq6trhX1yc3P11FNPaf369bKystKwYcMUHx8va2trZWVlafr06dq6
dauOHj2q1q1ba/jw4Xr55Zfl7u4uSbpw4YL+8Y9/aNWqVTpx4oQcHR3l7e2t5557rtLrRwAABAgA
oIFavXq1goOD9ec//1mLFy9mQACAAAEA4MYwm83q1auXdu7cqdTUVPn4+DAoANBIcQ0IAOCGGT58
uDIzM+Xk5KSdO3dq3LhxxAcAECAAANwYJpNJKSkpMhqNmjx5smbPns2gAEAjxxIsAAAAADcN7wMC
AAAAgAABAAAAQIAAAAAAAAECAAAAgAABAAAAAAIEAAAAAAECAAAAgAABAAAAAAIEAAAAAAECAAAA
AAQIAAAAAAIEAAAAAAECAAAAAAQIAAAAAAIEAAAAAAgQAAAAAAQIAAAAAAIEAAAAAAgQAAAAAAQI
AAAAABAgAAAAAAgQAAAAAAQIAAAAABAgAAAAAAgQAAAAACBAAAAAABAgAAAAAAgQAAAAACBAAAAA
ABAgAAAAAECAAAAAACBAAAAAAIAAAQAAAECAAAAAACBAAAAAAIAAAQAAAECAAAAAAAABAgAAAIAA
AQAAANDg/T86d7RAou/X+gAAAABJRU5ErkJggg==

--_006_CY4PR1201MB019720B8D7C7AE10182F893186380CY4PR1201MB0197_--