summaryrefslogtreecommitdiff
path: root/0f/4bfb261fa4b2bdf9025a62811d89963bb2058b
blob: 72b37671ea3f6ba0f9b5ed76e36c92f6797b2345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
Return-Path: <bitcoin.ml@thomaskerin.io>
Received: from silver.osuosl.org (smtp3.osuosl.org [140.211.166.136])
 by lists.linuxfoundation.org (Postfix) with ESMTP id 06BF0C0051
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 25 Sep 2020 15:27:53 +0000 (UTC)
Received: from localhost (localhost [127.0.0.1])
 by silver.osuosl.org (Postfix) with ESMTP id 87AFA2E181
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 25 Sep 2020 15:27:52 +0000 (UTC)
X-Virus-Scanned: amavisd-new at osuosl.org
Received: from silver.osuosl.org ([127.0.0.1])
 by localhost (.osuosl.org [127.0.0.1]) (amavisd-new, port 10024)
 with ESMTP id 6k5c6Pi7R1WJ
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 25 Sep 2020 15:27:44 +0000 (UTC)
X-Greylist: delayed 00:09:09 by SQLgrey-1.7.6
Received: from mail.thomaskerin.io (mail.thomaskerin.io [5.196.75.231])
 by silver.osuosl.org (Postfix) with ESMTPS id F197E2047A
 for <bitcoin-dev@lists.linuxfoundation.org>;
 Fri, 25 Sep 2020 15:27:43 +0000 (UTC)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=thomaskerin.io;
 s=2017; t=1601047110;
 h=from:from:reply-to:subject:subject:date:date:message-id:message-id:
 to:to:cc:mime-version:mime-version:content-type:content-type:
 in-reply-to:in-reply-to:references:references;
 bh=dce0gjPjHiyE6PN9437Plnp5zpW2yVsRLNaWuGnSzZo=;
 b=pgc6eabmf8OcdoX9xiLJN8/ACG85KDM/FZ4ERJjVkLMgD2OFreH1WqZEaxur//0LXpOY4p
 2ORyIvOY0csPfFplNDSEFgDyra7hIty4Ed1R9vBR5RjMyFI1GewofYIiIRLCGCPqqF+08m
 q5wsR6zUUqqOHk64+r6sJKi1tQNbfyMVijv74OWYiquudlqo0UMxgf5fQGF7SStaOiY7H2
 iUXKMYlZJr5bhszLrkCu0t/zImslR2pGlPUtdfYRFvtIhnf93/IzR2Ruh5jTp0N1GRYBIW
 hp0SxoXLcndfJczqUgNrZRcyWc+X+Yda5dJWGuTsBWia12RHOrtQgIvOS+0byA==
To: Mike Brooks via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org>
References: <CAPaMHfTSqyDDBfmdM=z-FtLRTUxed2pNmoOFx-t2w0MyZ_mgCg@mail.gmail.com>
From: bitcoin ml <bitcoin.ml@thomaskerin.io>
Message-ID: <dbb83152-bca4-9ac6-a7cc-9f39ece7a2e4@thomaskerin.io>
Date: Fri, 25 Sep 2020 16:18:17 +0100
MIME-Version: 1.0
In-Reply-To: <CAPaMHfTSqyDDBfmdM=z-FtLRTUxed2pNmoOFx-t2w0MyZ_mgCg@mail.gmail.com>
Content-Type: multipart/alternative;
 boundary="------------3FCAF818CF8B3F72DE2CF89D"
Content-Language: en-US
Authentication-Results: ORIGINATING;
 auth=pass smtp.auth=bitcoin.ml@thomaskerin.io
 smtp.mailfrom=bitcoin.ml@thomaskerin.io
X-Mailman-Approved-At: Fri, 25 Sep 2020 15:56:56 +0000
Subject: Re: [bitcoin-dev] Floating-Point Nakamoto Consensus
X-BeenThere: bitcoin-dev@lists.linuxfoundation.org
X-Mailman-Version: 2.1.15
Precedence: list
List-Id: Bitcoin Protocol Discussion <bitcoin-dev.lists.linuxfoundation.org>
List-Unsubscribe: <https://lists.linuxfoundation.org/mailman/options/bitcoin-dev>, 
 <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=unsubscribe>
List-Archive: <http://lists.linuxfoundation.org/pipermail/bitcoin-dev/>
List-Post: <mailto:bitcoin-dev@lists.linuxfoundation.org>
List-Help: <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=help>
List-Subscribe: <https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev>, 
 <mailto:bitcoin-dev-request@lists.linuxfoundation.org?subject=subscribe>
X-List-Received-Date: Fri, 25 Sep 2020 15:27:53 -0000

This is a multi-part message in MIME format.
--------------3FCAF818CF8B3F72DE2CF89D
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit

Hi,

This is a pretty big departure from cumulative POW.

Could you explain to me what you see happening if a node with this patch 
and no history starts to sync, and some random node gives it a block 
with a better fitness test for say height 250,000? No other solution 
will have a better fitness test at that height, so from my understanding 
its going to stop syncing. How about even later - say this proposal is 
activated at block 750,000. At 850,000, someone decides it'd be fun to 
publish a new block 800,000 with a better fitness test. What happens the 
50,000 blocks?

I can imagine the miners not being particularly happy about it - their 
previously 50:50 chance (well, sort of, it's based on resources- 
connectivity, validation overheads, etc) their tied block would succeed, 
vs the situation with this change - blocks that are inherently more or 
less valid than others.

I think these days people are more focused on improving defences at the 
networking layer than in the consensus layer - especially when it 
affects mining incentives. I don't see how people will take this 
seriously - especially when you regard how often consensus changes are 
made to _fix_ something as opposed to add something new.

Best regards,

Thomas

On 9/24/20 8:40 PM, Mike Brooks via bitcoin-dev wrote:
>   Hey Everyone,
>
>  A lot of work has gone into this paper, and the current revision has 
> been well received and there is a lot of excitement on this side to be 
> sharing it with you today. There are so few people that truly 
> understand this topic, but we are all pulling in the same direction to 
> make Bitcoin better and it shows.  It is wildly underrated that future 
> proofing was never really a consideration in the initial design - but 
> here we are a decade later with amazing solutions like SegWit 
> which gives us a real future-proofing framework.  The fact that 
> future-proofing was added to Bitcoin with a softfork gives me 
> goosebumps. I'd just like to take the time to thank the people who 
> worked on SegWit and it is an appreciation that comes up in 
> conversation of how difficult and necessary that process was, and this 
> appreciation may not be vocalized to the great people who worked on 
> it. The fact that Bitcoin keeps improving and is able to respond to 
> new threats is nothing short of amazing - thank you everyone for a 
> great project.
>
> This current proposal really has nothing to do with SegWit - but it is 
> an update that will make the network a little better for the future, 
> and we hope you enjoy the paper.
>
> PDF:
> https://github.com/in-st/Floating-Point-Nakamoto-Consensus/blob/master/Floating-Point%20Nakamoto%20Consensus.pdf
> Pull Request:
> https://github.com/bitcoin/bitcoin/pull/19665/files
>
> ---
>
>
> Floating-Point Nakamoto Consensus
>
>
> Abstract — It has been shown that Nakamoto Consensus is very useful in 
> the formation of long-term global agreement — and has issues with 
> short-term disagreement which can lead to re-organization (“or-org”) 
> of the blockchain.  A malicious miner with knowledge of a specific 
> kind of denial-of-service (DoS) vulnerability can gain an unfair 
> advantage in the current Bitcoin network, and can be used to undermine 
> the security guarantees that developers rely upon.  Floating-Point 
> Nakamoto consensu makes it more expensive to replace an already mined 
> block vs. creation of a new block, and by resolving ambiguity of 
> competition solutions it helps achieve global consumers more quickly.  
> A floating-point fitness test strongly incentivises the correct 
> network behavior, and prevents disagreement from ever forming in the 
> first place.
>
>
>         Introduction
>
> The Bitcoin protocol was created to provide a decentralized consensus 
> on a fully distributed p2p network.  A problem arises when more than 
> one proof-of-work is presented as the next solution block in the 
> blockchain.  Two solutions of the same height are seen as 
> authoritative equals which is the basis of a growing disagreement. A 
> node will adopt the first solution seen, as both solutions propagate 
> across the network a race condition of disagreement is formed. This 
> race condition can be controlled by byzentiene fault injection 
> commonly referred to as an “eclipsing” attack.  When two segments of 
> the network disagree it creates a moment of weakness in which less 
> than 51% of the network’s computational resources are required to keep 
> the network balanced against itself.
>
>
>         Nakamoto Consensus
>
> Nakamoto Consensus is the process of proving computational resources 
> in order to determine eligibility to participate in the decision 
> making process.  If the outcome of an election were based on one node 
> (or one-IP-address-one-vote), then representation could be subverted 
> by anyone able to allocate many IPs. A consensus is only formed when 
> the prevailing decision has the greatest proof-of-work effort invested 
> in it. In order for a Nakamoto Consensus to operate, the network must 
> ensure that incentives are aligned such that the resources needed to 
> subvert a proof-of-work based consensus outweigh the resources gained 
> through its exploitation. In this consensus model, the proof-of-work 
> requirements for the creation of the next valid solution has the exact 
> same cost as replacing the current solution. There is no penalty for 
> dishonesty, and this has worked well in practice because the majority 
> of the nodes on the network are honest and transparent, which is a 
> substantial barrier for a single dishonest node to overcome.
>
>
> A minimal network peer-to-peer structure is required to support 
> Nakamoto Conesus, and for our purposes this is entirely decentralized. 
> Messages are broadcast on a best-effort basis, and nodes can leave and 
> rejoin the network at will, accepting the longest proof-of-work chain 
> as proof of what happened while they were gone.  This design makes no 
> guarantees that the peers connected do not misrepresent the network or 
> so called “dishonest nodes.” Without a central authority or central 
> view - all peers depend on the data provided by neighboring peers - 
> therefore a dishonest node can continue until a peer is able to make 
> contact an honest node.
>
>
>         Security
>
> In this threat model let us assume a malicious miner possesses 
> knowledge of an unpatched DoS vulnerability (“0-day”) which will 
> strictly prevent honest nodes from communicating to new members of the 
> network - a so-called “total eclipse.”  The kind of DoS vulnerability 
> needed to conduct an eclipse does not need to consume all CPU or 
> computaitly ability of target nodes - but rather prevent target nodes 
> from forming new connections that would undermine the eclipsing 
> effect. These kinds of DoS vulnerabilities are somewhat less 
> substional than actually knocking a powerful-mining node offline.  
> This class of attacks are valuable to an adversary because in order 
> for an honest node to prove that a dishonest node is lying - they 
> would need to form a connection to a segment of the network that isn’t 
> entirely suppressed. Let us assume a defense-in-depth strategy and 
> plan on this kind of failure.
>
>
> Let us now consider that the C++ Bitcoind has a finite number of 
> worker threads and a finite number of connections that can be serviced 
> by these workers.  When a rude client occupies all connections - then 
> a pidgin-hole principle comes into play. If a network's maximum 
> capacity for connection handlers ‘k’, is the sum of all available 
> worker threads for all nodes in the network, establishing ‘k+1’ 
> connections by the pidgin-hole principle will prevent any new 
> connections from being formed by honest nodes - thereby creating a 
> perfect eclipse for any new miners joining the network would only be 
> able to form connections with dishonest nodes.
>
>
> Now let’s assume a dishonest node is modified in two ways - it 
> increases the maximum connection handles to hundreds of thousands 
> instead of the current value which is about 10. Then this node is 
> modified to ignore any solution blocks found by honest nodes - thus 
> forcing the dishonest side of the network to keep searching for a 
> competitive-solution to split the network in two sides that disagree 
> about which tip of the chain to use.  Any new solution propagates 
> through nodes one hop at a time. This propagation can be predicted and 
> shaped by dishonest non-voting nodes that are being used to pass 
> messages for honest nodes.
>
>
> At this point an attacker can expedite the transmission of one 
> solution, while slowing another. If ever a competing proof-of-work is 
> broadcasted to the network, the adversary will use their network 
> influence to split knowledge of the proof-of-work as close to ½ as 
> possible. If the network eclipse is perfect then an adversary can 
> leverage an eigen-vector of computational effort to keep the 
> disagreement in balance for as long as it is needed. No mechanism is 
> stopping the attacker from adding additional computation resources or 
> adjusting the eclipsing effect to make sure the system is in balance. 
>   As long as two sides of the network are perfectly in disagreement 
> and generating new blocks - the attacker has intentionally created a 
> hard-fork against the will of the network architects and operators. 
> The disagreement needs to be kept open until the adversary’s 
> transactions have been validated on the honest chain - at which point 
> the attacker will add more nodes to the dishonest chain to make sure 
> it is the ultimate winner - thus replacing out the honest chain with 
> the one generated by dishonest miners.
>
>
> This attack is convenient from the adversary’s perspective,  Bitcoin 
> being a broadcast network advertises the IP addresses of all active 
> nodes - and Shodan and the internet scanning project can find all 
> passive nodes responding on TCP 8333.  This should illuminate all 
> honest nodes on the network, and even honest nodes that are trying to 
> obscure themselves by not announcing their presence.  This means that 
> the attacker doesn’t need to know exactly which node is used by a 
> targeted exchange - if the attacker has subdued all nodes then the 
> targeted exchange must be operating a node within this set of targeted 
> honest nodes.
>
>
> During a split in the blockchain, each side of the network will honor 
> a separate merkel-tree formation and therefore a separate ledger of 
> transactions. An adversary will then broadcast currency deposits to 
> public exchanges, but only on the weaker side, leaving the stronger 
> side with no transaction from the adversary. Any exchange that 
> confirms one of these deposits is relying upon nodes that have been 
> entirely eclipsed so that they cannot see the competing chain - at 
> this point anyone looking to confirm a transaction is vulnerable to a 
> double-spend. With this currency deposited on a chain that will become 
> ephemeral, the attacker can wire out the account balance on a 
> different blockchain - such as Tether which is an erc20 token on the 
> Ethereum network which would be unaffected by this attack.  When the 
> weaker chain collapses, the transaction that the exchange acted upon 
> is no longer codified in Bitcoin blockchain's global ledger, and will 
> be replaced with a version of the that did not contain these deposits.
>
>
> Nakamoto Consensus holds no guarantees that it’s process is 
> deterministic.  In the short term, we can observe that the Nakamoto 
> Consensus is empirically non-deterministic which is evident by 
> re-organizations (re-org) as a method of resolving disagreements 
> within the network.   During a reorganization a blockchain network is 
> at its weakest point, and a 51% attack to take the network becomes 
> unnecessary. An adversary who can eclipse honest hosts on the network 
> can use this as a means of byzantine fault-injection to disrupt the 
> normal flow of messages on the network which creates disagreement 
> between miners.
>
>
> DeFi (Decentralized Finance) and smart-contract obligations depend on 
> network stability and determinism.  Failure to pay contracts, such as 
> what happened on “black thursday” resulted in secured loans 
> accidentally falling into redemption.  The transactions used by a 
> smart contract are intended to be completed quickly and the outcome is 
> irreversible.  However, if the blockchain network has split then a 
> contract may fire and have it’s side-effects execute only to have the 
> transaction on the ledger to be replaced.  Another example is that a 
> hard-fork might cause the payer of a smart contract to default - as 
> the transaction that they broadcasted ended up being on the weaker 
> chain that lost. Some smart contracts, such as collateral backed loans 
> have a redemption clause which would force the borrower on the loan to 
> lose their deposit entirely.
>
>
> With two sides of the network balanced against each other - an 
> attacker has split the blockchain and this hard-fork can last for as 
> long as the attacker is able to exert the computational power to 
> ensure that proof-of-work blocks are regularly found on both sides of 
> the network.  The amount of resources needed to balance the network 
> against itself is far less than a 51% attack - thereby undermining the 
> security guarantees needed for a decentralized untrusted payment 
> network to function.  An adversary with a sufficiently large network 
> of dishonest bots could use this to take a tally of which miners are 
> participating in which side of the network split. This will create an 
> attacker-controlled hard fork of the network with two mutually 
> exclusive merkle trees. Whereby the duration of this split is 
> arbitrary, and the decision in which chain to collapse is up to the 
> individual with the most IP address, not the most computation.
>
>
> In Satoshi Nakamoto’s original paper it was stated that the electorate 
> should be represented by computational effort in the form of a 
> proof-of-work, and only these nodes can participate in the consues 
> process.  However, the electorate can be misled by non-voting nodes 
> which can reshape the network to benefit an individual adversary.
>
>
>         Chain Fitness
>
> Any solution to byzantine fault-injection or the intentional formation 
> of disagreements must be fully decentralized. A blockchain is allowed 
> to split because there is ambiguity in the Nakamoto proof-of-work, 
> which creates the environment for a race-condition to form. To resolve 
> this, Floating-Point Nakamoto Consensus makes it increasingly more 
> expensive to replace the current winning block. This added cost comes 
> from a method of disagreement resolution where not every solution 
> block is the same value, and a more-fit solution is always chosen over 
> a weaker solution. Any adversary attempting to have a weaker chain to 
> win out would have to overcome a kind of relay-race, whereby the 
> winning team’s strength is carried forward and the loser will have to 
> work harder and harder to maintain the disagreement.  In most cases 
> Floating-Point Nakamoto Consensus will prevent a re-org blockchain 
> from ever going past a single block thereby expediting the formation 
> of a global consensus.  Floating-Point Nakamoto Consensus cements the 
> lead of the winner and to greatly incentivize the network to adopt the 
> dominant chain no matter how many valid solutions are advertised, or 
> what order they arrive.
>
>
> The first step in Floating-Point Nakamoto Consensus is that all nodes 
> in the network should continue to conduct traditional Nakamoto 
> Consensus and the formation of new blocks is dictated by the same 
> zero-prefix proof-of-work requirements.  If at any point there are two 
> solution blocks advertised for the same height - then a floating-point 
> fitness value is calculated and the solution with the higher fitness 
> value is the winner which is then propagated to all neighbors. Any 
> time two solutions are advertised then a re-org is inevitable and it 
> is in the best interest of all miners to adopt the most-fit block, 
> failing to do so risks wasting resources on a mining of a block that 
> would be discarded.  To make sure that incentives are aligned, any 
> zero-prefix proof of work could be the next solution, but now in order 
> to replace the current winning solution an adversary would need a 
> zero-prefix block that is also more fit that the current solution - 
> which is much more computationally expensive to produce.
>
> Any changes to the current tip of the blockchain must be avoided as 
> much as possible. To avoid thrashing between two or more competitive 
> solutions, each replacement can only be done if it is more fit, 
> thereby proving that it has an increased expense.  If at any point two 
> solutions of the same height are found it means that eventually some 
> node will have to replace their tip - and it is better to have it done 
> as quickly as possible so that consensus is maintained.
>
>
> In order to have a purely decentralized solution, this kind of 
> agreement must be empirically derived from the existing proof-of-work 
> so that it is universally and identically verifiable by all nodes on 
> the network.  Additionally, this fitness-test evaluation needs to 
> ensure that no two competing solutions can be numerically equivalent.
>
>
> Let us suppose that two or more valid solutions will be proposed for 
> the same block.  To weigh the value of a given solution, let's 
> consider a solution for block 639254, in which the following hash was 
> proposed:
>
>     00000000000000000008e33faa94d30cc73aa4fd819e58ce55970e7db82e10f8
>
>
> There are 19 zeros, and the remaining hash in base 16 starts with 9e3 
> and ends with f8.  This can value can be represented in floating point as:
>
>     19.847052573336114130069196154809453027792121882588614904
>
>
> To simplify further lets give this block a single whole number to 
> represent one complete solution, and use a rounded floating-point 
> value to represent some fraction of additional work exerted by the miner.
>
>    1.847
>
>
> Now let us suppose that a few minutes later another solution is 
> advertised to the network shown in base16 below:
>
>     000000000000000000028285ed9bd2c774136af8e8b90ca1bbb0caa36544fbc2
>
>
> The solution above also has 19 prefixed zeros, and is being broadcast 
> for the same blockheight value of 639254 - and a fitness score of 
> 1.282.  With Nakamoto Consensus both of these solutions would be 
> equivalent and a given node would adopt the one that it received 
> first.  In Floating-Post Nakamoto Consensus, we compare the fitness 
> scores and keep the highest.  In this case no matter what happens - 
> some nodes will have to change their tip and a fitness test makes sure 
> this happens immediately.
>
>
> With both solutions circulating in the network - any node who has 
> received both proof-of-works should know 1.847 is the current highest 
> value, and shouldn’t need to validate any lower-valued solution.  In 
> fact this fitness value has a high degree of confidence that it won’t 
> be unseated by a larger value - being able to produce a proof-of-work 
> with 19 0’s and a decimal component greater than 0.847 is 
> non-trivial.  As time passes any nodes that received a proof-of-work 
> with a value 1.204 - their view of the network should erode as these 
> nodes adopt the 1.847 version of the blockchain.
>
> All nodes are incentivized to support the solution with the highest 
> fitness value - irregardless of which order these proof-of-work were 
> validated. Miners are incentivized to support the dominant chain which 
> helps preserve the global consensus.
>
>
> Let us assume that the underlying cryptographic hash-function used to 
> generate a proof-of-work is an ideal primitive, and therefore a node 
> cannot force the outcome of the non-zero component of their 
> proof-of-work.  Additionally if we assume an ideal cipher then the 
> fitness of all possible solutions is gaussian-random. With these 
> assumptions then on average a new solution would split the keyspace of 
> remaining solutions in half.  Given that the work needed to form a  
> new block remains a constant at 19 blocks for this period - it is 
> cheaper to produce a N+1 block that has any floating point value as 
> this is guaranteed to be adopted by all nodes if it is the first 
> solution.  To leverage a chain replacement on nodes conducting 
> Floating-Point Nakamoto Consensus a malicious miner would have to 
> expend significantly more resources.
>
>
> Each successive n+1 solution variant of the same block-height must 
> therefore on average consume half of the remaining finite keyspace. 
> Resulting in a the n+1 value not only needed to overcome the 19 zero 
> prefix, but also the non-zero fitness test.   It is possible for an 
> adversary to waste their time making a 19 where n+1 was not greater, 
> at which point the entire network will have had a chance to move on 
> with the next solution.  With inductive reasoning, we can see that a 
> demissiniong keyspace increases the amount of work needed to find a 
> solution that also meets this new criteria.
>
>
> Now let us assume a heavily-fragmented network where some nodes have 
> gotten one or both of the solutions.  In the case of nodes that 
> received the proof-of-work solution with a fitness of 1.847, they will 
> be happily mining on this version of the blockchain. The nodes that 
> have gotten both 1.847 and .240 will still be mining for the 1.847 
> domainite version, ensuring a dominant chain.  However, we must assume 
> some parts of the network never got the message about 1.847 proof of 
> work, and instead continued to mine using a value of 1.240 as the 
> previous block.   Now, let’s say this group of isolated miners manages 
> to present a new conflicting proof-of-work solution for 639255:
>
>
>      000000000000000000058d8ebeb076584bb5853c80111bc06b5ada35463091a6
>
>
> The above base16 block has a fitness score of 1.532  The fitness value 
> for the previous block 639254 is added together:
>
>
>      2.772 = 1.240 + 1.532
>
>
> In this specific case, no other solution has been broadcast for block 
> height 639255 - putting the weaker branch in the lead.  If the weaker 
> branch is sufficiently lucky, and finds a solution before the dominant 
> branch then this solution will have a higher overall fitness score, 
> and this solution will propagate as it has the higher value.  This is 
> also important for transactions on the network as they benefit from 
> using the most recently formed block - which will have the highest 
> local fitness score at the time of its discovery.  At this junction, 
> the weaker branch has an opportunity to prevail enterally thus ending 
> the split.
>
>
> Now let us return to the DoS threat model and explore the worst-case 
> scenario created by byzantine fault injection. Let us assume that both 
> the weaker group and the dominant group have produced competing 
> proof-of-work solutions for blocks 639254 and 639255 respectively.  
> Let’s assume that the dominant group that went with the 1.847 fitness 
> score - also produces a solution with a similar fitness value and 
> advertises the following solution to the network:
>
>
> 0000000000000000000455207e375bf1dac0d483a7442239f1ef2c70d050c113
>
> 19.414973649464574877549198290879237036867705594421756179
>
> or
>
> 3.262 = 1.847 + 1.415
>
>
> A total of 3.262 is still dominant over the lesser 2.772 - in order to 
> overcome this - the 2nd winning block needs to make up for all of the 
> losses in the previous block.  In this scenario, in order for the 
> weaker chain to supplant the dominant chain it must overcome a -0.49 
> point deficit. In traditional Nakamoto Consensus the nodes would see 
> both forks as authoritative equals which creates a divide in mining 
> capacity while two groups of miners search for the next block.  In 
> Floating-Point Nakamoto Consensus any nodes receiving both forks, 
> would prefer to mine on the chain with an overall fitness score of 
> +3.262 - making it even harder for the weaker chain to find miners to 
> compete in any future disagreement, thereby eroding support for the 
> weaker chain. This kind of comparison requires an empirical method for 
> determining fitness by miners following the same same system of rules 
> will insure a self-fulfilled outcome.  After all nodes adopt the 
> dominant chain normal Nakamoto Consuess can resume without having to 
> take into consideration block fitness. This example shows how 
> disagreement can be resolved more quickly if the network has a 
> mechanism to resolve ambiguity and de-incentivise dissent.
>
>
>         Soft Fork
>
> Blockchain networks that would like to improve the consensus 
> generation method by adding a fitness test should be able to do so 
> using a “Soft Fork” otherwise known as a compatible software update.  
> By contrast a “Hard-Fork” is a separate incompatible network that does 
> not form the same consensus.  Floating-Point Nakamoto Consensus can be 
> implemented as a soft-fork because both patched, and non-patched nodes 
> can co-exist and non-patched nodes will benefit from a kind of herd 
> immunity in overall network stability.  This is because once a small 
> number of nodes start following the same rules then they will become 
> the deciding factor in which chain is chosen.  Clients that are using 
> only traditional Nakamoto Consensus will still agree with new clients 
> over the total chain length. Miners that adopt the new strategy early, 
> will be less likely to lose out on mining invalid solutions.
>
>
>         Conclusion
>
> Floating-Point Nakamoto consensus allows the network to form a 
> consensus more quickly by avoiding ambiguity allowing for determinism 
> to take hold. Bitcoin has become an essential utility, and attacks 
> against our networks must be avoided and adapting, patching and 
> protecting the network is a constant effort. An organized attack 
> against a cryptocurrency network will undermine the guarantees that 
> blockchain developers are depending on.
>
>
> Any blockchain using Nakamoto Consensus can be modified to use a 
> fitness constraint such as the one used by a Floating-Point Nakamoto 
> Consensus.  An example implementation has been written and submitted 
> as a PR to the bitcoin core which is free to be adapted by other networks.
>
>
>
>
>
>
> A complete implementation of Floating-Point Nakamoto consensus is in 
> the following pull request:
>
> https://github.com/bitcoin/bitcoin/pull/19665/files
>
>
> Paper:
>
> https://github.com/in-st/Floating-Point-Nakamoto-Consensus
>
> https://in.st.capital <https://in.st.capital/>
>
>
>
> _______________________________________________
> bitcoin-dev mailing list
> bitcoin-dev@lists.linuxfoundation.org
> https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

--------------3FCAF818CF8B3F72DE2CF89D
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgICA8bWV0YSBodHRwLWVxdWl2PSJDb250ZW50LVR5cGUiIGNv
bnRlbnQ9InRleHQvaHRtbDsgY2hhcnNldD1VVEYtOCI+CiAgPC9oZWFkPgogIDxib2R5Pgog
ICAgPHA+SGksPC9wPgogICAgPHA+VGhpcyBpcyBhIHByZXR0eSBiaWcgZGVwYXJ0dXJlIGZy
b20gY3VtdWxhdGl2ZSBQT1cuPGJyPgogICAgPC9wPgogICAgPHA+Q291bGQgeW91IGV4cGxh
aW4gdG8gbWUgd2hhdCB5b3Ugc2VlIGhhcHBlbmluZyBpZiBhIG5vZGUgd2l0aAogICAgICB0
aGlzIHBhdGNoIGFuZCBubyBoaXN0b3J5IHN0YXJ0cyB0byBzeW5jLCBhbmQgc29tZSByYW5k
b20gbm9kZQogICAgICBnaXZlcyBpdCBhIGJsb2NrIHdpdGggYSBiZXR0ZXIgZml0bmVzcyB0
ZXN0IGZvciBzYXkgaGVpZ2h0CiAgICAgIDI1MCwwMDA/IE5vIG90aGVyIHNvbHV0aW9uIHdp
bGwgaGF2ZSBhIGJldHRlciBmaXRuZXNzIHRlc3QgYXQgdGhhdAogICAgICBoZWlnaHQsIHNv
IGZyb20gbXkgdW5kZXJzdGFuZGluZyBpdHMgZ29pbmcgdG8gc3RvcCBzeW5jaW5nLiBIb3cK
ICAgICAgYWJvdXQgZXZlbiBsYXRlciAtIHNheSB0aGlzIHByb3Bvc2FsIGlzIGFjdGl2YXRl
ZCBhdCBibG9jawogICAgICA3NTAsMDAwLiBBdCA4NTAsMDAwLCBzb21lb25lIGRlY2lkZXMg
aXQnZCBiZSBmdW4gdG8gcHVibGlzaCBhIG5ldwogICAgICBibG9jayA4MDAsMDAwIHdpdGgg
YSBiZXR0ZXIgZml0bmVzcyB0ZXN0LiBXaGF0IGhhcHBlbnMgdGhlIDUwLDAwMAogICAgICBi
bG9ja3M/PGJyPgogICAgPC9wPgogICAgPHA+SSBjYW4gaW1hZ2luZSB0aGUgbWluZXJzIG5v
dCBiZWluZyBwYXJ0aWN1bGFybHkgaGFwcHkgYWJvdXQgaXQgLQogICAgICB0aGVpciBwcmV2
aW91c2x5IDUwOjUwIGNoYW5jZSAod2VsbCwgc29ydCBvZiwgaXQncyBiYXNlZCBvbgogICAg
ICByZXNvdXJjZXMtIGNvbm5lY3Rpdml0eSwgdmFsaWRhdGlvbiBvdmVyaGVhZHMsIGV0Yykg
dGhlaXIgdGllZAogICAgICBibG9jayB3b3VsZCBzdWNjZWVkLCB2cyB0aGUgc2l0dWF0aW9u
IHdpdGggdGhpcyBjaGFuZ2UgLSBibG9ja3MKICAgICAgdGhhdCBhcmUgaW5oZXJlbnRseSBt
b3JlIG9yIGxlc3MgdmFsaWQgdGhhbiBvdGhlcnMuPGJyPgogICAgPC9wPgogICAgPHA+SSB0
aGluayB0aGVzZSBkYXlzIHBlb3BsZSBhcmUgbW9yZSBmb2N1c2VkIG9uIGltcHJvdmluZyBk
ZWZlbmNlcwogICAgICBhdCB0aGUgbmV0d29ya2luZyBsYXllciB0aGFuIGluIHRoZSBjb25z
ZW5zdXMgbGF5ZXIgLSBlc3BlY2lhbGx5CiAgICAgIHdoZW4gaXQgYWZmZWN0cyBtaW5pbmcg
aW5jZW50aXZlcy4gSSBkb24ndCBzZWUgaG93IHBlb3BsZSB3aWxsCiAgICAgIHRha2UgdGhp
cyBzZXJpb3VzbHkgLSBlc3BlY2lhbGx5IHdoZW4geW91IHJlZ2FyZCBob3cgb2Z0ZW4KICAg
ICAgY29uc2Vuc3VzIGNoYW5nZXMgYXJlIG1hZGUgdG8gX2ZpeF8gc29tZXRoaW5nIGFzIG9w
cG9zZWQgdG8gYWRkCiAgICAgIHNvbWV0aGluZyBuZXcuIDxicj4KICAgIDwvcD4KICAgIDxw
PkJlc3QgcmVnYXJkcyw8L3A+CiAgICA8cD5UaG9tYXM8YnI+CiAgICA8L3A+CiAgICA8ZGl2
IGNsYXNzPSJtb3otY2l0ZS1wcmVmaXgiPk9uIDkvMjQvMjAgODo0MCBQTSwgTWlrZSBCcm9v
a3MgdmlhCiAgICAgIGJpdGNvaW4tZGV2IHdyb3RlOjxicj4KICAgIDwvZGl2PgogICAgPGJs
b2NrcXVvdGUgdHlwZT0iY2l0ZSIKY2l0ZT0ibWlkOkNBUGFNSGZUU3F5RERCZm1kTT16LUZ0
TFJUVXhlZDJwTm1vT0Z4LXQydzBNeVpfbWdDZ0BtYWlsLmdtYWlsLmNvbSI+CiAgICAgIDxt
ZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFy
c2V0PVVURi04Ij4KICAgICAgPGRpdiBkaXI9Imx0ciI+wqAgSGV5IEV2ZXJ5b25lLAogICAg
ICAgIDxkaXY+PGJyPgogICAgICAgIDwvZGl2PgogICAgICAgIDxkaXY+wqBBIGxvdCBvZiB3
b3JrIGhhcyBnb25lIGludG8gdGhpcyBwYXBlciwgYW5kIHRoZSBjdXJyZW50CiAgICAgICAg
ICByZXZpc2lvbiBoYXMgYmVlbiB3ZWxsIHJlY2VpdmVkIGFuZCB0aGVyZSBpcyBhIGxvdCBv
ZgogICAgICAgICAgZXhjaXRlbWVudCBvbiB0aGlzIHNpZGUgdG/CoGJlIHNoYXJpbmcgaXQg
d2l0aCB5b3UgdG9kYXkuIFRoZXJlCiAgICAgICAgICBhcmUgc28gZmV3IHBlb3BsZSB0aGF0
IHRydWx5IHVuZGVyc3RhbmQgdGhpcyB0b3BpYywgYnV0IHdlIGFyZQogICAgICAgICAgYWxs
IHB1bGxpbmcgaW4gdGhlIHNhbWUgZGlyZWN0aW9uIHRvIG1ha2UgQml0Y29pbiBiZXR0ZXIg
YW5kCiAgICAgICAgICBpdCBzaG93cy7CoCBJdCBpcyB3aWxkbHkgdW5kZXJyYXRlZCB0aGF0
IGZ1dHVyZSBwcm9vZmluZyB3YXMKICAgICAgICAgIG5ldmVyIHJlYWxseSBhIGNvbnNpZGVy
YXRpb27CoGluIHRoZSBpbml0aWFswqBkZXNpZ24gLSBidXQgaGVyZQogICAgICAgICAgd2Ug
YXJlIGEgZGVjYWRlIGxhdGVyIHdpdGggYW1hemluZyBzb2x1dGlvbnMgbGlrZSBTZWdXaXQK
ICAgICAgICAgIHdoaWNowqBnaXZlcyB1cyBhIHJlYWwgZnV0dXJlLXByb29maW5nIGZyYW1l
d29yay7CoCBUaGUgZmFjdAogICAgICAgICAgdGhhdCBmdXR1cmUtcHJvb2Zpbmcgd2FzIGFk
ZGVkIHRvIEJpdGNvaW4gd2l0aCBhIHNvZnRmb3JrCiAgICAgICAgICBnaXZlcyBtZSBnb29z
ZWJ1bXBzLsKgSSdkIGp1c3QgbGlrZSB0byB0YWtlIHRoZSB0aW1lIHRvIHRoYW5rCiAgICAg
ICAgICB0aGUgcGVvcGxlIHdobyB3b3JrZWQgb24gU2VnV2l0IGFuZCBpdCBpcyBhbiBhcHBy
ZWNpYXRpb27CoHRoYXQKICAgICAgICAgIGNvbWVzIHVwIGluIGNvbnZlcnNhdGlvbiBvZiBo
b3cgZGlmZmljdWx0IGFuZCBuZWNlc3NhcnkgdGhhdAogICAgICAgICAgcHJvY2VzcyB3YXMs
wqBhbmQgdGhpcyBhcHByZWNpYXRpb24gbWF5IG5vdCBiZSB2b2NhbGl6ZWQgdG8gdGhlCiAg
ICAgICAgICBncmVhdCBwZW9wbGUgd2hvIHdvcmtlZCBvbiBpdC4gVGhlIGZhY3QgdGhhdCBC
aXRjb2luIGtlZXBzCiAgICAgICAgICBpbXByb3ZpbmcgYW5kIGlzIGFibGUgdG8gcmVzcG9u
ZCB0byBuZXcgdGhyZWF0cyBpcyBub3RoaW5nCiAgICAgICAgICBzaG9ydCBvZiBhbWF6aW5n
IC0gdGhhbmsgeW91IGV2ZXJ5b25lIGZvciBhIGdyZWF0IHByb2plY3QuPC9kaXY+CiAgICAg
ICAgPGRpdj48YnI+CiAgICAgICAgPC9kaXY+CiAgICAgICAgPGRpdj5UaGlzIGN1cnJlbnQg
cHJvcG9zYWwgcmVhbGx5IGhhcyBub3RoaW5nIHRvIGRvIHdpdGjCoFNlZ1dpdAogICAgICAg
ICAgLSBidXQgaXQgaXMgYW4gdXBkYXRlIHRoYXQgd2lsbCBtYWtlIHRoZSBuZXR3b3JrIGEg
bGl0dGxlCiAgICAgICAgICBiZXR0ZXIgZm9yIHRoZSBmdXR1cmUsIGFuZCB3ZSBob3BlIHlv
dSBlbmpveSB0aGUgcGFwZXIuwqA8L2Rpdj4KICAgICAgICA8ZGl2Pjxicj4KICAgICAgICA8
L2Rpdj4KICAgICAgICA8ZGl2PlBERjo8YnI+CiAgICAgICAgICA8YQpocmVmPSJodHRwczov
L2dpdGh1Yi5jb20vaW4tc3QvRmxvYXRpbmctUG9pbnQtTmFrYW1vdG8tQ29uc2Vuc3VzL2Js
b2IvbWFzdGVyL0Zsb2F0aW5nLVBvaW50JTIwTmFrYW1vdG8lMjBDb25zZW5zdXMucGRmIgog
ICAgICAgICAgICB0YXJnZXQ9Il9ibGFuayIgbW96LWRvLW5vdC1zZW5kPSJ0cnVlIj5odHRw
czovL2dpdGh1Yi5jb20vaW4tc3QvRmxvYXRpbmctUG9pbnQtTmFrYW1vdG8tQ29uc2Vuc3Vz
L2Jsb2IvbWFzdGVyL0Zsb2F0aW5nLVBvaW50JTIwTmFrYW1vdG8lMjBDb25zZW5zdXMucGRm
PC9hPjwvZGl2PgogICAgICAgIDxkaXY+wqA8L2Rpdj4KICAgICAgICA8ZGl2PlB1bGwgUmVx
dWVzdDo8YnI+CiAgICAgICAgICA8c3BhbgppZD0iZ21haWwtbV8yNzY2MjA5MzUwNDA1NTEz
MTE2Z21haWwtZG9jcy1pbnRlcm5hbC1ndWlkLWUwOGQ0MjAzLTdmZmYtMTE0MC03MDIyLThl
Y2ZlODBlOWZlYSI+PGEKICAgICAgICAgICAgICBocmVmPSJodHRwczovL2dpdGh1Yi5jb20v
Yml0Y29pbi9iaXRjb2luL3B1bGwvMTk2NjUvZmlsZXMiCiAgICAgICAgICAgICAgdGFyZ2V0
PSJfYmxhbmsiIHN0eWxlPSJ0ZXh0LWRlY29yYXRpb24tbGluZTpub25lIgogICAgICAgICAg
ICAgIG1vei1kby1ub3Qtc2VuZD0idHJ1ZSI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0
O2ZvbnQtZmFtaWx5OkFyaWFsO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12
YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt0
ZXh0LWRlY29yYXRpb24tbGluZTp1bmRlcmxpbmU7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7
d2hpdGUtc3BhY2U6cHJlLXdyYXAiPmh0dHBzOi8vZ2l0aHViLmNvbS9iaXRjb2luL2JpdGNv
aW4vcHVsbC8xOTY2NS9maWxlczwvc3Bhbj48L2E+PC9zcGFuPsKgwqA8YnI+CiAgICAgICAg
PC9kaXY+CiAgICAgICAgPGRpdj48YnI+CiAgICAgICAgPC9kaXY+CiAgICAgICAgPGRpdj4t
LS08L2Rpdj4KICAgICAgICA8ZGl2Pjxicj4KICAgICAgICA8L2Rpdj4KICAgICAgICA8ZGl2
PjxzcGFuCmlkPSJnbWFpbC1tXzI3NjYyMDkzNTA0MDU1MTMxMTZnbWFpbC1kb2NzLWludGVy
bmFsLWd1aWQtNzdhMjQzMmItN2ZmZi02MmMzLTA3NTMtZmU5MzY1MmNhNTEyIj48YnI+CiAg
ICAgICAgICAgIDxwIGRpcj0ibHRyIgpzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODt0ZXh0LWFs
aWduOmNlbnRlcjttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5
bGU9ImZvbnQtc2l6ZToxNHB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7
YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3Jt
YWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2Vs
aW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5GbG9hdGluZy1Qb2ludCBOYWthbW90byBDb25z
ZW5zdXM8L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAgIDxwIGRpcj0i
bHRyIgpzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tbGVmdDozNnB0O21hcmdpbi10
b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjlwdDtm
b250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJh
bnNwYXJlbnQ7Zm9udC13ZWlnaHQ6NzAwO2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtm
b250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7
d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkFic3RyYWN0IOKAlCA8L3NwYW4+PHNwYW4gc3R5bGU9
ImZvbnQtc2l6ZTo5cHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNr
Z3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtm
b250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7
d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkl0IGhhcyBiZWVuIHNob3duIHRoYXQgTmFrYW1vdG8g
Q29uc2Vuc3VzIGlzIHZlcnkgdXNlZnVsIGluIHRoZSBmb3JtYXRpb24gb2YgbG9uZy10ZXJt
IGdsb2JhbCBhZ3JlZW1lbnQg4oCUIGFuZCBoYXMgaXNzdWVzIHdpdGggc2hvcnQtdGVybSBk
aXNhZ3JlZW1lbnQgd2hpY2ggY2FuIGxlYWQgdG8gcmUtb3JnYW5pemF0aW9uICjigJxvci1v
cmfigJ0pIG9mIHRoZSBibG9ja2NoYWluLsKgIEEgbWFsaWNpb3VzIG1pbmVyIHdpdGgga25v
d2xlZGdlIG9mIGEgc3BlY2lmaWMga2luZCBvZiBkZW5pYWwtb2Ytc2VydmljZSAoRG9TKSB2
dWxuZXJhYmlsaXR5IGNhbiBnYWluIGFuIHVuZmFpciBhZHZhbnRhZ2UgaW4gdGhlIGN1cnJl
bnQgQml0Y29pbiBuZXR3b3JrLCBhbmQgY2FuIGJlIHVzZWQgdG8gdW5kZXJtaW5lIHRoZSBz
ZWN1cml0eSBndWFyYW50ZWVzIHRoYXQgZGV2ZWxvcGVycyByZWx5IHVwb24uwqAgRmxvYXRp
bmctUG9pbnQgTmFrYW1vdG8gY29uc2Vuc3UgbWFrZXMgaXQgbW9yZSBleHBlbnNpdmUgdG8g
cmVwbGFjZSBhbiBhbHJlYWR5IG1pbmVkIGJsb2NrIHZzLiBjcmVhdGlvbiBvZiBhIG5ldyBi
bG9jaywgYW5kIGJ5IHJlc29sdmluZyBhbWJpZ3VpdHkgb2YgY29tcGV0aXRpb24gc29sdXRp
b25zIGl0IGhlbHBzIGFjaGlldmUgZ2xvYmFsIGNvbnN1bWVycyBtb3JlIHF1aWNrbHkuwqAg
QSBmbG9hdGluZy1wb2ludCBmaXRuZXNzIHRlc3Qgc3Ryb25nbHkgaW5jZW50aXZpc2VzIHRo
ZSBjb3JyZWN0IG5ldHdvcmsgYmVoYXZpb3IsIGFuZCBwcmV2ZW50cyBkaXNhZ3JlZW1lbnQg
ZnJvbSBldmVyIGZvcm1pbmcgaW4gdGhlIGZpcnN0IHBsYWNlLjwvc3Bhbj48L3A+CiAgICAg
ICAgICAgIDxoNCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6
MS4zODttYXJnaW4tdG9wOjE0cHQ7bWFyZ2luLWJvdHRvbTo0cHQiPjxzcGFuIHN0eWxlPSJm
b250LXNpemU6MTJwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMTAyLDEwMiwxMDIp
O2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC13ZWlnaHQ6NDAwO2ZvbnQtdmFy
aWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVy
dGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkludHJvZHVjdGlv
bjwvc3Bhbj48L2g0PgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBz
dHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBw
dCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9y
OnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQt
bnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2Fs
LWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5UaGUgQml0Y29pbiBwcm90
b2NvbCB3YXMgY3JlYXRlZCB0byBwcm92aWRlIGEgZGVjZW50cmFsaXplZCBjb25zZW5zdXMg
b24gYSBmdWxseSBkaXN0cmlidXRlZCBwMnAgbmV0d29yay7CoCBBIHByb2JsZW0gYXJpc2Vz
IHdoZW4gbW9yZSB0aGFuIG9uZSBwcm9vZi1vZi13b3JrIGlzIHByZXNlbnRlZCBhcyB0aGUg
bmV4dCBzb2x1dGlvbiBibG9jayBpbiB0aGUgYmxvY2tjaGFpbi7CoCBUd28gc29sdXRpb25z
IG9mIHRoZSBzYW1lIGhlaWdodCBhcmUgc2VlbiBhcyBhdXRob3JpdGF0aXZlIGVxdWFscyB3
aGljaCBpcyB0aGUgYmFzaXMgb2YgYSBncm93aW5nIGRpc2FncmVlbWVudC4gQSBub2RlIHdp
bGwgYWRvcHQgdGhlIGZpcnN0IHNvbHV0aW9uIHNlZW4sIGFzIGJvdGggc29sdXRpb25zIHBy
b3BhZ2F0ZSBhY3Jvc3MgdGhlIG5ldHdvcmsgYSByYWNlIGNvbmRpdGlvbiBvZiBkaXNhZ3Jl
ZW1lbnQgaXMgZm9ybWVkLiBUaGlzIHJhY2UgY29uZGl0aW9uIGNhbiBiZSBjb250cm9sbGVk
IGJ5IGJ5emVudGllbmUgZmF1bHQgaW5qZWN0aW9uIGNvbW1vbmx5IHJlZmVycmVkIHRvIGFz
IGFuIOKAnGVjbGlwc2luZ+KAnSBhdHRhY2suwqAgV2hlbiB0d28gc2VnbWVudHMgb2YgdGhl
IG5ldHdvcmsgZGlzYWdyZWUgaXQgY3JlYXRlcyBhIG1vbWVudCBvZiB3ZWFrbmVzcyBpbiB3
aGljaCBsZXNzIHRoYW4gNTElIG9mIHRoZSBuZXR3b3Jr4oCZcyBjb21wdXRhdGlvbmFsIHJl
c291cmNlcyBhcmUgcmVxdWlyZWQgdG8ga2VlcCB0aGUgbmV0d29yayBiYWxhbmNlZCBhZ2Fp
bnN0IGl0c2VsZi7CoDwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxoNCBkaXI9Imx0ciIKICAg
ICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjE0cHQ7bWFy
Z2luLWJvdHRvbTo0cHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTJwdDtmb250LWZhbWls
eTpBcmlhbDtjb2xvcjpyZ2IoMTAyLDEwMiwxMDIpO2JhY2tncm91bmQtY29sb3I6dHJhbnNw
YXJlbnQ7Zm9udC13ZWlnaHQ6NDAwO2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250
LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hp
dGUtc3BhY2U6cHJlLXdyYXAiPk5ha2Ftb3RvIENvbnNlbnN1czwvc3Bhbj48L2g0PgogICAg
ICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6
MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZv
bnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFja2dy
b3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9u
dC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3do
aXRlLXNwYWNlOnByZS13cmFwIj5OYWthbW90byBDb25zZW5zdXMgaXMgdGhlIHByb2Nlc3Mg
b2YgcHJvdmluZyBjb21wdXRhdGlvbmFsIHJlc291cmNlcyBpbiBvcmRlciB0byBkZXRlcm1p
bmUgZWxpZ2liaWxpdHkgdG8gcGFydGljaXBhdGUgaW4gdGhlIGRlY2lzaW9uIG1ha2luZyBw
cm9jZXNzLsKgIElmIHRoZSBvdXRjb21lIG9mIGFuIGVsZWN0aW9uIHdlcmUgYmFzZWQgb24g
b25lIG5vZGUgKG9yIG9uZS1JUC1hZGRyZXNzLW9uZS12b3RlKSwgdGhlbiByZXByZXNlbnRh
dGlvbiBjb3VsZCBiZSBzdWJ2ZXJ0ZWQgYnkgYW55b25lIGFibGUgdG8gYWxsb2NhdGUgbWFu
eSBJUHMuIEEgY29uc2Vuc3VzIGlzIG9ubHkgZm9ybWVkIHdoZW4gdGhlIHByZXZhaWxpbmcg
ZGVjaXNpb24gaGFzIHRoZSBncmVhdGVzdCBwcm9vZi1vZi13b3JrIGVmZm9ydCBpbnZlc3Rl
ZCBpbiBpdC4gSW4gb3JkZXIgZm9yIGEgTmFrYW1vdG8gQ29uc2Vuc3VzIHRvIG9wZXJhdGUs
IHRoZSBuZXR3b3JrIG11c3QgZW5zdXJlIHRoYXQgaW5jZW50aXZlcyBhcmUgYWxpZ25lZCBz
dWNoIHRoYXQgdGhlIHJlc291cmNlcyBuZWVkZWQgdG8gc3VidmVydCBhIHByb29mLW9mLXdv
cmsgYmFzZWQgY29uc2Vuc3VzIG91dHdlaWdoIHRoZSByZXNvdXJjZXMgZ2FpbmVkIHRocm91
Z2ggaXRzIGV4cGxvaXRhdGlvbi4gSW4gdGhpcyBjb25zZW5zdXMgbW9kZWwsIHRoZSBwcm9v
Zi1vZi13b3JrIHJlcXVpcmVtZW50cyBmb3IgdGhlIGNyZWF0aW9uIG9mIHRoZSBuZXh0IHZh
bGlkIHNvbHV0aW9uIGhhcyB0aGUgZXhhY3Qgc2FtZSBjb3N0IGFzIHJlcGxhY2luZyB0aGUg
Y3VycmVudCBzb2x1dGlvbi4gVGhlcmUgaXMgbm8gcGVuYWx0eSBmb3IgZGlzaG9uZXN0eSwg
YW5kIHRoaXMgaGFzIHdvcmtlZCB3ZWxsIGluIHByYWN0aWNlIGJlY2F1c2UgdGhlIG1ham9y
aXR5IG9mIHRoZSBub2RlcyBvbiB0aGUgbmV0d29yayBhcmUgaG9uZXN0IGFuZCB0cmFuc3Bh
cmVudCwgd2hpY2ggaXMgYSBzdWJzdGFudGlhbCBiYXJyaWVyIGZvciBhIHNpbmdsZSBkaXNo
b25lc3Qgbm9kZSB0byBvdmVyY29tZS48L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAg
ICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdo
dDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0i
Zm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNr
Z3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtm
b250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7
d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkEgbWluaW1hbCBuZXR3b3JrIHBlZXItdG8tcGVlciBz
dHJ1Y3R1cmUgaXMgcmVxdWlyZWQgdG8gc3VwcG9ydCBOYWthbW90byBDb25lc3VzLCBhbmQg
Zm9yIG91ciBwdXJwb3NlcyB0aGlzIGlzIGVudGlyZWx5IGRlY2VudHJhbGl6ZWQuIE1lc3Nh
Z2VzIGFyZSBicm9hZGNhc3Qgb24gYSBiZXN0LWVmZm9ydCBiYXNpcywgYW5kIG5vZGVzIGNh
biBsZWF2ZSBhbmQgcmVqb2luIHRoZSBuZXR3b3JrIGF0IHdpbGwsIGFjY2VwdGluZyB0aGUg
bG9uZ2VzdCBwcm9vZi1vZi13b3JrIGNoYWluIGFzIHByb29mIG9mIHdoYXQgaGFwcGVuZWQg
d2hpbGUgdGhleSB3ZXJlIGdvbmUuwqAgVGhpcyBkZXNpZ24gbWFrZXMgbm8gZ3VhcmFudGVl
cyB0aGF0IHRoZSBwZWVycyBjb25uZWN0ZWQgZG8gbm90IG1pc3JlcHJlc2VudCB0aGUgbmV0
d29yayBvciBzbyBjYWxsZWQg4oCcZGlzaG9uZXN0IG5vZGVzLuKAnSBXaXRob3V0IGEgY2Vu
dHJhbCBhdXRob3JpdHkgb3IgY2VudHJhbCB2aWV3IC0gYWxsIHBlZXJzIGRlcGVuZCBvbiB0
aGUgZGF0YSBwcm92aWRlZCBieSBuZWlnaGJvcmluZyBwZWVycyAtIHRoZXJlZm9yZSBhIGRp
c2hvbmVzdCBub2RlIGNhbiBjb250aW51ZSB1bnRpbCBhIHBlZXIgaXMgYWJsZSB0byBtYWtl
IGNvbnRhY3QgYW4gaG9uZXN0IG5vZGUuPC9zcGFuPjwvcD4KICAgICAgICAgICAgPGg0IGRp
cj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi10
b3A6MTRwdDttYXJnaW4tYm90dG9tOjRwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMnB0
O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigxMDIsMTAyLDEwMik7YmFja2dyb3VuZC1j
b2xvcjp0cmFuc3BhcmVudDtmb250LXdlaWdodDo0MDA7Zm9udC12YXJpYW50LW51bWVyaWM6
bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpi
YXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+U2VjdXJpdHnCoDwvc3Bhbj48L2g0Pgog
ICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWln
aHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9
ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFj
a2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7
Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5l
O3doaXRlLXNwYWNlOnByZS13cmFwIj5JbiB0aGlzIHRocmVhdCBtb2RlbCBsZXQgdXMgYXNz
dW1lIGEgbWFsaWNpb3VzIG1pbmVyIHBvc3Nlc3NlcyBrbm93bGVkZ2Ugb2YgYW4gdW5wYXRj
aGVkIERvUyB2dWxuZXJhYmlsaXR5ICjigJwwLWRheeKAnSkgd2hpY2ggd2lsbCBzdHJpY3Rs
eSBwcmV2ZW50IGhvbmVzdCBub2RlcyBmcm9tIGNvbW11bmljYXRpbmcgdG8gbmV3IG1lbWJl
cnMgb2YgdGhlIG5ldHdvcmsgLSBhIHNvLWNhbGxlZCDigJx0b3RhbCBlY2xpcHNlLuKAncKg
IFRoZSBraW5kIG9mIERvUyB2dWxuZXJhYmlsaXR5IG5lZWRlZCB0byBjb25kdWN0IGFuIGVj
bGlwc2UgZG9lcyBub3QgbmVlZCB0byBjb25zdW1lIGFsbCBDUFUgb3IgY29tcHV0YWl0bHkg
YWJpbGl0eSBvZiB0YXJnZXQgbm9kZXMgLSBidXQgcmF0aGVyIHByZXZlbnQgdGFyZ2V0IG5v
ZGVzIGZyb20gZm9ybWluZyBuZXcgY29ubmVjdGlvbnMgdGhhdCB3b3VsZCB1bmRlcm1pbmUg
dGhlIGVjbGlwc2luZyBlZmZlY3QuIFRoZXNlIGtpbmRzIG9mIERvUyB2dWxuZXJhYmlsaXRp
ZXMgYXJlIHNvbWV3aGF0IGxlc3Mgc3Vic3Rpb25hbCB0aGFuIGFjdHVhbGx5IGtub2NraW5n
IGEgcG93ZXJmdWwtbWluaW5nIG5vZGUgb2ZmbGluZS7CoCBUaGlzIGNsYXNzIG9mIGF0dGFj
a3MgYXJlIHZhbHVhYmxlIHRvIGFuIGFkdmVyc2FyeSBiZWNhdXNlIGluIG9yZGVyIGZvciBh
biBob25lc3Qgbm9kZSB0byBwcm92ZSB0aGF0IGEgZGlzaG9uZXN0IG5vZGUgaXMgbHlpbmcg
LSB0aGV5IHdvdWxkIG5lZWQgdG8gZm9ybSBhIGNvbm5lY3Rpb24gdG8gYSBzZWdtZW50IG9m
IHRoZSBuZXR3b3JrIHRoYXQgaXNu4oCZdCBlbnRpcmVseSBzdXBwcmVzc2VkLiBMZXQgdXMg
YXNzdW1lIGEgZGVmZW5zZS1pbi1kZXB0aCBzdHJhdGVneSBhbmQgcGxhbiBvbiB0aGlzIGtp
bmQgb2YgZmFpbHVyZS48L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAg
IDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21h
cmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXpl
OjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNv
bG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlh
bnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3Bh
Y2U6cHJlLXdyYXAiPkxldCB1cyBub3cgY29uc2lkZXIgdGhhdCB0aGUgQysrIEJpdGNvaW5k
IGhhcyBhIGZpbml0ZSBudW1iZXIgb2Ygd29ya2VyIHRocmVhZHMgYW5kIGEgZmluaXRlIG51
bWJlciBvZiBjb25uZWN0aW9ucyB0aGF0IGNhbiBiZSBzZXJ2aWNlZCBieSB0aGVzZSB3b3Jr
ZXJzLsKgIFdoZW4gYSBydWRlIGNsaWVudCBvY2N1cGllcyBhbGwgY29ubmVjdGlvbnMgLSB0
aGVuIGEgcGlkZ2luLWhvbGUgcHJpbmNpcGxlIGNvbWVzIGludG8gcGxheS4gSWYgYSBuZXR3
b3JrJ3MgbWF4aW11bSBjYXBhY2l0eSBmb3IgY29ubmVjdGlvbiBoYW5kbGVycyDigJhr4oCZ
LCBpcyB0aGUgc3VtIG9mIGFsbCBhdmFpbGFibGUgd29ya2VyIHRocmVhZHMgZm9yIGFsbCBu
b2RlcyBpbiB0aGUgbmV0d29yaywgZXN0YWJsaXNoaW5nIOKAmGsrMeKAmSBjb25uZWN0aW9u
cyBieSB0aGUgcGlkZ2luLWhvbGUgcHJpbmNpcGxlIHdpbGwgcHJldmVudCBhbnkgbmV3IGNv
bm5lY3Rpb25zIGZyb20gYmVpbmcgZm9ybWVkIGJ5IGhvbmVzdCBub2RlcyAtIHRoZXJlYnkg
Y3JlYXRpbmcgYSBwZXJmZWN0IGVjbGlwc2UgZm9yIGFueSBuZXcgbWluZXJzIGpvaW5pbmcg
dGhlIG5ldHdvcmsgd291bGQgb25seSBiZSBhYmxlIHRvIGZvcm0gY29ubmVjdGlvbnMgd2l0
aCBkaXNob25lc3Qgbm9kZXMuPC9zcGFuPjwvcD4KICAgICAgICAgICAgPGJyPgogICAgICAg
ICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4z
ODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQt
c2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3Vu
ZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12
YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRl
LXNwYWNlOnByZS13cmFwIj5Ob3cgbGV04oCZcyBhc3N1bWUgYSBkaXNob25lc3Qgbm9kZSBp
cyBtb2RpZmllZCBpbiB0d28gd2F5cyAtIGl0IGluY3JlYXNlcyB0aGUgbWF4aW11bSBjb25u
ZWN0aW9uIGhhbmRsZXMgdG8gaHVuZHJlZHMgb2YgdGhvdXNhbmRzIGluc3RlYWQgb2YgdGhl
IGN1cnJlbnQgdmFsdWUgd2hpY2ggaXMgYWJvdXQgMTAuIFRoZW4gdGhpcyBub2RlIGlzIG1v
ZGlmaWVkIHRvIGlnbm9yZSBhbnkgc29sdXRpb24gYmxvY2tzIGZvdW5kIGJ5IGhvbmVzdCBu
b2RlcyAtIHRodXMgZm9yY2luZyB0aGUgZGlzaG9uZXN0IHNpZGUgb2YgdGhlIG5ldHdvcmsg
dG8ga2VlcCBzZWFyY2hpbmcgZm9yIGEgY29tcGV0aXRpdmUtc29sdXRpb24gdG8gc3BsaXQg
dGhlIG5ldHdvcmsgaW4gdHdvIHNpZGVzIHRoYXQgZGlzYWdyZWUgYWJvdXQgd2hpY2ggdGlw
IG9mIHRoZSBjaGFpbiB0byB1c2UuwqAgQW55IG5ldyBzb2x1dGlvbiBwcm9wYWdhdGVzIHRo
cm91Z2ggbm9kZXMgb25lIGhvcCBhdCBhIHRpbWUuIFRoaXMgcHJvcGFnYXRpb24gY2FuIGJl
IHByZWRpY3RlZCBhbmQgc2hhcGVkIGJ5IGRpc2hvbmVzdCBub24tdm90aW5nIG5vZGVzIHRo
YXQgYXJlIGJlaW5nIHVzZWQgdG8gcGFzcyBtZXNzYWdlcyBmb3IgaG9uZXN0IG5vZGVzLjwv
c3Bhbj48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAg
ICAgICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFy
Z2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWls
eTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7
Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5v
cm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+QXQg
dGhpcyBwb2ludCBhbiBhdHRhY2tlciBjYW4gZXhwZWRpdGUgdGhlIHRyYW5zbWlzc2lvbiBv
ZiBvbmUgc29sdXRpb24sIHdoaWxlIHNsb3dpbmcgYW5vdGhlci4gSWYgZXZlciBhIGNvbXBl
dGluZyBwcm9vZi1vZi13b3JrIGlzIGJyb2FkY2FzdGVkIHRvIHRoZSBuZXR3b3JrLCB0aGUg
YWR2ZXJzYXJ5IHdpbGwgdXNlIHRoZWlyIG5ldHdvcmsgaW5mbHVlbmNlIHRvIHNwbGl0IGtu
b3dsZWRnZSBvZiB0aGUgcHJvb2Ytb2Ytd29yayBhcyBjbG9zZSB0byDCvSBhcyBwb3NzaWJs
ZS4gSWYgdGhlIG5ldHdvcmsgZWNsaXBzZSBpcyBwZXJmZWN0IHRoZW4gYW4gYWR2ZXJzYXJ5
IGNhbiBsZXZlcmFnZSBhbiBlaWdlbi12ZWN0b3Igb2YgY29tcHV0YXRpb25hbCBlZmZvcnQg
dG8ga2VlcCB0aGUgZGlzYWdyZWVtZW50IGluIGJhbGFuY2UgZm9yIGFzIGxvbmcgYXMgaXQg
aXMgbmVlZGVkLiBObyBtZWNoYW5pc20gaXMgc3RvcHBpbmcgdGhlIGF0dGFja2VyIGZyb20g
YWRkaW5nIGFkZGl0aW9uYWwgY29tcHV0YXRpb24gcmVzb3VyY2VzIG9yIGFkanVzdGluZyB0
aGUgZWNsaXBzaW5nIGVmZmVjdCB0byBtYWtlIHN1cmUgdGhlIHN5c3RlbSBpcyBpbiBiYWxh
bmNlLiDCoCBBcyBsb25nIGFzIHR3byBzaWRlcyBvZiB0aGUgbmV0d29yayBhcmUgcGVyZmVj
dGx5IGluIGRpc2FncmVlbWVudCBhbmQgZ2VuZXJhdGluZyBuZXcgYmxvY2tzIC0gdGhlIGF0
dGFja2VyIGhhcyBpbnRlbnRpb25hbGx5IGNyZWF0ZWQgYSBoYXJkLWZvcmsgYWdhaW5zdCB0
aGUgd2lsbCBvZiB0aGUgbmV0d29yayBhcmNoaXRlY3RzIGFuZCBvcGVyYXRvcnMuIFRoZSBk
aXNhZ3JlZW1lbnQgbmVlZHMgdG8gYmUga2VwdCBvcGVuIHVudGlsIHRoZSBhZHZlcnNhcnni
gJlzIHRyYW5zYWN0aW9ucyBoYXZlIGJlZW4gdmFsaWRhdGVkIG9uIHRoZSBob25lc3QgY2hh
aW4gLSBhdCB3aGljaCBwb2ludCB0aGUgYXR0YWNrZXIgd2lsbCBhZGQgbW9yZSBub2RlcyB0
byB0aGUgZGlzaG9uZXN0IGNoYWluIHRvIG1ha2Ugc3VyZSBpdCBpcyB0aGUgdWx0aW1hdGUg
d2lubmVyIC0gdGh1cyByZXBsYWNpbmcgb3V0IHRoZSBob25lc3QgY2hhaW4gd2l0aCB0aGUg
b25lIGdlbmVyYXRlZCBieSBkaXNob25lc3QgbWluZXJzLjwvc3Bhbj48L3A+CiAgICAgICAg
ICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9
ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxz
cGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2Io
MCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVy
aWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGln
bjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+VGhpcyBhdHRhY2sgaXMgY29udmVu
aWVudCBmcm9tIHRoZSBhZHZlcnNhcnnigJlzIHBlcnNwZWN0aXZlLMKgIEJpdGNvaW4gYmVp
bmcgYSBicm9hZGNhc3QgbmV0d29yayBhZHZlcnRpc2VzIHRoZSBJUCBhZGRyZXNzZXMgb2Yg
YWxsIGFjdGl2ZSBub2RlcyAtIGFuZCBTaG9kYW4gYW5kIHRoZSBpbnRlcm5ldCBzY2Fubmlu
ZyBwcm9qZWN0IGNhbiBmaW5kIGFsbCBwYXNzaXZlIG5vZGVzIHJlc3BvbmRpbmcgb24gVENQ
IDgzMzMuwqAgVGhpcyBzaG91bGQgaWxsdW1pbmF0ZSBhbGwgaG9uZXN0IG5vZGVzIG9uIHRo
ZSBuZXR3b3JrLCBhbmQgZXZlbiBob25lc3Qgbm9kZXMgdGhhdCBhcmUgdHJ5aW5nIHRvIG9i
c2N1cmUgdGhlbXNlbHZlcyBieSBub3QgYW5ub3VuY2luZyB0aGVpciBwcmVzZW5jZS7CoCBU
aGlzIG1lYW5zIHRoYXQgdGhlIGF0dGFja2VyIGRvZXNu4oCZdCBuZWVkIHRvIGtub3cgZXhh
Y3RseSB3aGljaCBub2RlIGlzIHVzZWQgYnkgYSB0YXJnZXRlZCBleGNoYW5nZSAtIGlmIHRo
ZSBhdHRhY2tlciBoYXMgc3ViZHVlZCBhbGwgbm9kZXMgdGhlbiB0aGUgdGFyZ2V0ZWQgZXhj
aGFuZ2UgbXVzdCBiZSBvcGVyYXRpbmcgYSBub2RlIHdpdGhpbiB0aGlzIHNldCBvZiB0YXJn
ZXRlZCBob25lc3Qgbm9kZXMuPC9zcGFuPjwvcD4KICAgICAgICAgICAgPGJyPgogICAgICAg
ICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4z
ODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQt
c2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3Vu
ZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12
YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRl
LXNwYWNlOnByZS13cmFwIj5EdXJpbmcgYSBzcGxpdCBpbiB0aGUgYmxvY2tjaGFpbiwgZWFj
aCBzaWRlIG9mIHRoZSBuZXR3b3JrIHdpbGwgaG9ub3IgYSBzZXBhcmF0ZSBtZXJrZWwtdHJl
ZSBmb3JtYXRpb24gYW5kIHRoZXJlZm9yZSBhIHNlcGFyYXRlIGxlZGdlciBvZiB0cmFuc2Fj
dGlvbnMuIEFuIGFkdmVyc2FyeSB3aWxsIHRoZW4gYnJvYWRjYXN0IGN1cnJlbmN5IGRlcG9z
aXRzIHRvIHB1YmxpYyBleGNoYW5nZXMsIGJ1dCBvbmx5IG9uIHRoZSB3ZWFrZXIgc2lkZSwg
bGVhdmluZyB0aGUgc3Ryb25nZXIgc2lkZSB3aXRoIG5vIHRyYW5zYWN0aW9uIGZyb20gdGhl
IGFkdmVyc2FyeS4gQW55IGV4Y2hhbmdlIHRoYXQgY29uZmlybXMgb25lIG9mIHRoZXNlIGRl
cG9zaXRzIGlzIHJlbHlpbmcgdXBvbiBub2RlcyB0aGF0IGhhdmUgYmVlbiBlbnRpcmVseSBl
Y2xpcHNlZCBzbyB0aGF0IHRoZXkgY2Fubm90IHNlZSB0aGUgY29tcGV0aW5nIGNoYWluIC0g
YXQgdGhpcyBwb2ludCBhbnlvbmUgbG9va2luZyB0byBjb25maXJtIGEgdHJhbnNhY3Rpb24g
aXMgdnVsbmVyYWJsZSB0byBhIGRvdWJsZS1zcGVuZC4gV2l0aCB0aGlzIGN1cnJlbmN5IGRl
cG9zaXRlZCBvbiBhIGNoYWluIHRoYXQgd2lsbCBiZWNvbWUgZXBoZW1lcmFsLCB0aGUgYXR0
YWNrZXIgY2FuIHdpcmUgb3V0IHRoZSBhY2NvdW50IGJhbGFuY2Ugb24gYSBkaWZmZXJlbnQg
YmxvY2tjaGFpbiAtIHN1Y2ggYXMgVGV0aGVyIHdoaWNoIGlzIGFuIGVyYzIwIHRva2VuIG9u
IHRoZSBFdGhlcmV1bSBuZXR3b3JrIHdoaWNoIHdvdWxkIGJlIHVuYWZmZWN0ZWQgYnkgdGhp
cyBhdHRhY2suwqAgV2hlbiB0aGUgd2Vha2VyIGNoYWluIGNvbGxhcHNlcywgdGhlIHRyYW5z
YWN0aW9uIHRoYXQgdGhlIGV4Y2hhbmdlIGFjdGVkIHVwb24gaXMgbm8gbG9uZ2VyIGNvZGlm
aWVkIGluIEJpdGNvaW4gYmxvY2tjaGFpbidzIGdsb2JhbCBsZWRnZXIsIGFuZCB3aWxsIGJl
IHJlcGxhY2VkIHdpdGggYSB2ZXJzaW9uIG9mIHRoZSB0aGF0IGRpZCBub3QgY29udGFpbiB0
aGVzZSBkZXBvc2l0cy48L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAg
IDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21h
cmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXpl
OjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNv
bG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlh
bnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3Bh
Y2U6cHJlLXdyYXAiPk5ha2Ftb3RvIENvbnNlbnN1cyBob2xkcyBubyBndWFyYW50ZWVzIHRo
YXQgaXTigJlzIHByb2Nlc3MgaXMgZGV0ZXJtaW5pc3RpYy7CoCBJbiB0aGUgc2hvcnQgdGVy
bSwgd2UgY2FuIG9ic2VydmUgdGhhdCB0aGUgTmFrYW1vdG8gQ29uc2Vuc3VzIGlzIGVtcGly
aWNhbGx5IG5vbi1kZXRlcm1pbmlzdGljIHdoaWNoIGlzIGV2aWRlbnQgYnkgcmUtb3JnYW5p
emF0aW9ucyAocmUtb3JnKSBhcyBhIG1ldGhvZCBvZiByZXNvbHZpbmcgZGlzYWdyZWVtZW50
cyB3aXRoaW4gdGhlIG5ldHdvcmsuIMKgIER1cmluZyBhIHJlb3JnYW5pemF0aW9uIGEgYmxv
Y2tjaGFpbiBuZXR3b3JrIGlzIGF0IGl0cyB3ZWFrZXN0IHBvaW50LCBhbmQgYSA1MSUgYXR0
YWNrIHRvIHRha2UgdGhlIG5ldHdvcmsgYmVjb21lcyB1bm5lY2Vzc2FyeS4gQW4gYWR2ZXJz
YXJ5IHdobyBjYW4gZWNsaXBzZSBob25lc3QgaG9zdHMgb24gdGhlIG5ldHdvcmsgY2FuIHVz
ZSB0aGlzIGFzIGEgbWVhbnMgb2YgYnl6YW50aW5lIGZhdWx0LWluamVjdGlvbiB0byBkaXNy
dXB0IHRoZSBub3JtYWwgZmxvdyBvZiBtZXNzYWdlcyBvbiB0aGUgbmV0d29yayB3aGljaCBj
cmVhdGVzIGRpc2FncmVlbWVudCBiZXR3ZWVuIG1pbmVycy7CoDwvc3Bhbj48L3A+CiAgICAg
ICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5
bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQi
PjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpy
Z2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51
bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1h
bGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+RGVGaSAoRGVjZW50cmFsaXpl
ZCBGaW5hbmNlKSBhbmQgc21hcnQtY29udHJhY3Qgb2JsaWdhdGlvbnMgZGVwZW5kIG9uIG5l
dHdvcmsgc3RhYmlsaXR5IGFuZCBkZXRlcm1pbmlzbS7CoCBGYWlsdXJlIHRvIHBheSBjb250
cmFjdHMsIHN1Y2ggYXMgd2hhdCBoYXBwZW5lZCBvbiDigJxibGFjayB0aHVyc2RheeKAnSBy
ZXN1bHRlZCBpbiBzZWN1cmVkIGxvYW5zIGFjY2lkZW50YWxseSBmYWxsaW5nIGludG8gcmVk
ZW1wdGlvbi7CoCBUaGUgdHJhbnNhY3Rpb25zIHVzZWQgYnkgYSBzbWFydCBjb250cmFjdCBh
cmUgaW50ZW5kZWQgdG8gYmUgY29tcGxldGVkIHF1aWNrbHkgYW5kIHRoZSBvdXRjb21lIGlz
IGlycmV2ZXJzaWJsZS7CoCBIb3dldmVyLCBpZiB0aGUgYmxvY2tjaGFpbiBuZXR3b3JrIGhh
cyBzcGxpdCB0aGVuIGEgY29udHJhY3QgbWF5IGZpcmUgYW5kIGhhdmUgaXTigJlzIHNpZGUt
ZWZmZWN0cyBleGVjdXRlIG9ubHkgdG8gaGF2ZSB0aGUgdHJhbnNhY3Rpb24gb24gdGhlIGxl
ZGdlciB0byBiZSByZXBsYWNlZC7CoCBBbm90aGVyIGV4YW1wbGUgaXMgdGhhdCBhIGhhcmQt
Zm9yayBtaWdodCBjYXVzZSB0aGUgcGF5ZXIgb2YgYSBzbWFydCBjb250cmFjdCB0byBkZWZh
dWx0IC0gYXMgdGhlIHRyYW5zYWN0aW9uIHRoYXQgdGhleSBicm9hZGNhc3RlZCBlbmRlZCB1
cCBiZWluZyBvbiB0aGUgd2Vha2VyIGNoYWluIHRoYXQgbG9zdC4gU29tZSBzbWFydCBjb250
cmFjdHMsIHN1Y2ggYXMgY29sbGF0ZXJhbCBiYWNrZWQgbG9hbnMgaGF2ZSBhIHJlZGVtcHRp
b24gY2xhdXNlIHdoaWNoIHdvdWxkIGZvcmNlIHRoZSBib3Jyb3dlciBvbiB0aGUgbG9hbiB0
byBsb3NlIHRoZWlyIGRlcG9zaXQgZW50aXJlbHkuwqA8L3NwYW4+PC9wPgogICAgICAgICAg
ICA8YnI+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJs
aW5lLWhlaWdodDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3Bh
biBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAs
MCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmlj
Om5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246
YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPldpdGggdHdvIHNpZGVzIG9mIHRoZSBu
ZXR3b3JrIGJhbGFuY2VkIGFnYWluc3QgZWFjaCBvdGhlciAtIGFuIGF0dGFja2VyIGhhcyBz
cGxpdCB0aGUgYmxvY2tjaGFpbiBhbmQgdGhpcyBoYXJkLWZvcmsgY2FuIGxhc3QgZm9yIGFz
IGxvbmcgYXMgdGhlIGF0dGFja2VyIGlzIGFibGUgdG8gZXhlcnQgdGhlIGNvbXB1dGF0aW9u
YWwgcG93ZXIgdG8gZW5zdXJlIHRoYXQgcHJvb2Ytb2Ytd29yayBibG9ja3MgYXJlIHJlZ3Vs
YXJseSBmb3VuZCBvbiBib3RoIHNpZGVzIG9mIHRoZSBuZXR3b3JrLsKgIFRoZSBhbW91bnQg
b2YgcmVzb3VyY2VzIG5lZWRlZCB0byBiYWxhbmNlIHRoZSBuZXR3b3JrIGFnYWluc3QgaXRz
ZWxmIGlzIGZhciBsZXNzIHRoYW4gYSA1MSUgYXR0YWNrIC0gdGhlcmVieSB1bmRlcm1pbmlu
ZyB0aGUgc2VjdXJpdHkgZ3VhcmFudGVlcyBuZWVkZWQgZm9yIGEgZGVjZW50cmFsaXplZCB1
bnRydXN0ZWQgcGF5bWVudCBuZXR3b3JrIHRvIGZ1bmN0aW9uLsKgIEFuIGFkdmVyc2FyeSB3
aXRoIGEgc3VmZmljaWVudGx5IGxhcmdlIG5ldHdvcmsgb2YgZGlzaG9uZXN0IGJvdHMgY291
bGQgdXNlIHRoaXMgdG8gdGFrZSBhIHRhbGx5IG9mIHdoaWNoIG1pbmVycyBhcmUgcGFydGlj
aXBhdGluZyBpbiB3aGljaCBzaWRlIG9mIHRoZSBuZXR3b3JrIHNwbGl0LiBUaGlzIHdpbGwg
Y3JlYXRlIGFuIGF0dGFja2VyLWNvbnRyb2xsZWQgaGFyZCBmb3JrIG9mIHRoZSBuZXR3b3Jr
IHdpdGggdHdvIG11dHVhbGx5IGV4Y2x1c2l2ZSBtZXJrbGUgdHJlZXMuIFdoZXJlYnkgdGhl
IGR1cmF0aW9uIG9mIHRoaXMgc3BsaXQgaXMgYXJiaXRyYXJ5LCBhbmQgdGhlIGRlY2lzaW9u
IGluIHdoaWNoIGNoYWluIHRvIGNvbGxhcHNlIGlzIHVwIHRvIHRoZSBpbmRpdmlkdWFsIHdp
dGggdGhlIG1vc3QgSVAgYWRkcmVzcywgbm90IHRoZSBtb3N0IGNvbXB1dGF0aW9uLjwvc3Bh
bj48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAg
ICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2lu
LWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpB
cmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9u
dC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1h
bDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+SW4gU2F0
b3NoaSBOYWthbW90b+KAmXMgb3JpZ2luYWwgcGFwZXIgaXQgd2FzIHN0YXRlZCB0aGF0IHRo
ZSBlbGVjdG9yYXRlIHNob3VsZCBiZSByZXByZXNlbnRlZCBieSBjb21wdXRhdGlvbmFsIGVm
Zm9ydCBpbiB0aGUgZm9ybSBvZiBhIHByb29mLW9mLXdvcmssIGFuZCBvbmx5IHRoZXNlIG5v
ZGVzIGNhbiBwYXJ0aWNpcGF0ZSBpbiB0aGUgY29uc3VlcyBwcm9jZXNzLsKgIEhvd2V2ZXIs
IHRoZSBlbGVjdG9yYXRlIGNhbiBiZSBtaXNsZWQgYnkgbm9uLXZvdGluZyBub2RlcyB3aGlj
aCBjYW4gcmVzaGFwZSB0aGUgbmV0d29yayB0byBiZW5lZml0IGFuIGluZGl2aWR1YWwgYWR2
ZXJzYXJ5Ljwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxoNCBkaXI9Imx0ciIKICAgICAgICAg
ICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjE0cHQ7bWFyZ2luLWJv
dHRvbTo0cHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTJwdDtmb250LWZhbWlseTpBcmlh
bDtjb2xvcjpyZ2IoMTAyLDEwMiwxMDIpO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7
Zm9udC13ZWlnaHQ6NDAwO2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlh
bnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3Bh
Y2U6cHJlLXdyYXAiPkNoYWluIEZpdG5lc3M8L3NwYW4+PC9oND4KICAgICAgICAgICAgPHAg
ZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2lu
LXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFw
dDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6
dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1l
YXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpw
cmUtd3JhcCI+QW55IHNvbHV0aW9uIHRvIGJ5emFudGluZSBmYXVsdC1pbmplY3Rpb24gb3Ig
dGhlIGludGVudGlvbmFsIGZvcm1hdGlvbiBvZiBkaXNhZ3JlZW1lbnRzIG11c3QgYmUgZnVs
bHkgZGVjZW50cmFsaXplZC4gQSBibG9ja2NoYWluIGlzIGFsbG93ZWQgdG8gc3BsaXQgYmVj
YXVzZSB0aGVyZSBpcyBhbWJpZ3VpdHkgaW4gdGhlIE5ha2Ftb3RvIHByb29mLW9mLXdvcmss
IHdoaWNoIGNyZWF0ZXMgdGhlIGVudmlyb25tZW50IGZvciBhIHJhY2UtY29uZGl0aW9uIHRv
IGZvcm0uIFRvIHJlc29sdmUgdGhpcywgRmxvYXRpbmctUG9pbnQgTmFrYW1vdG8gQ29uc2Vu
c3VzIG1ha2VzIGl0IGluY3JlYXNpbmdseSBtb3JlIGV4cGVuc2l2ZSB0byByZXBsYWNlIHRo
ZSBjdXJyZW50IHdpbm5pbmcgYmxvY2suIFRoaXMgYWRkZWQgY29zdCBjb21lcyBmcm9tIGEg
bWV0aG9kIG9mIGRpc2FncmVlbWVudCByZXNvbHV0aW9uIHdoZXJlIG5vdCBldmVyeSBzb2x1
dGlvbiBibG9jayBpcyB0aGUgc2FtZSB2YWx1ZSwgYW5kIGEgbW9yZS1maXQgc29sdXRpb24g
aXMgYWx3YXlzIGNob3NlbiBvdmVyIGEgd2Vha2VyIHNvbHV0aW9uLiBBbnkgYWR2ZXJzYXJ5
IGF0dGVtcHRpbmcgdG8gaGF2ZSBhIHdlYWtlciBjaGFpbiB0byB3aW4gb3V0IHdvdWxkIGhh
dmUgdG8gb3ZlcmNvbWUgYSBraW5kIG9mIHJlbGF5LXJhY2UsIHdoZXJlYnkgdGhlIHdpbm5p
bmcgdGVhbeKAmXMgc3RyZW5ndGggaXMgY2FycmllZCBmb3J3YXJkIGFuZCB0aGUgbG9zZXIg
d2lsbCBoYXZlIHRvIHdvcmsgaGFyZGVyIGFuZCBoYXJkZXIgdG8gbWFpbnRhaW4gdGhlIGRp
c2FncmVlbWVudC7CoCBJbiBtb3N0IGNhc2VzIEZsb2F0aW5nLVBvaW50IE5ha2Ftb3RvIENv
bnNlbnN1cyB3aWxsIHByZXZlbnQgYSByZS1vcmcgYmxvY2tjaGFpbiBmcm9tIGV2ZXIgZ29p
bmcgcGFzdCBhIHNpbmdsZSBibG9jayB0aGVyZWJ5IGV4cGVkaXRpbmcgdGhlIGZvcm1hdGlv
biBvZiBhIGdsb2JhbCBjb25zZW5zdXMuwqAgRmxvYXRpbmctUG9pbnQgTmFrYW1vdG8gQ29u
c2Vuc3VzIGNlbWVudHMgdGhlIGxlYWQgb2YgdGhlIHdpbm5lciBhbmQgdG8gZ3JlYXRseSBp
bmNlbnRpdml6ZSB0aGUgbmV0d29yayB0byBhZG9wdCB0aGUgZG9taW5hbnQgY2hhaW4gbm8g
bWF0dGVyIGhvdyBtYW55IHZhbGlkIHNvbHV0aW9ucyBhcmUgYWR2ZXJ0aXNlZCwgb3Igd2hh
dCBvcmRlciB0aGV5IGFycml2ZS48L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAg
ICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDox
LjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9u
dC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3Jv
dW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250
LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hp
dGUtc3BhY2U6cHJlLXdyYXAiPlRoZSBmaXJzdCBzdGVwIGluIEZsb2F0aW5nLVBvaW50IE5h
a2Ftb3RvIENvbnNlbnN1cyBpcyB0aGF0IGFsbCBub2RlcyBpbiB0aGUgbmV0d29yayBzaG91
bGQgY29udGludWUgdG8gY29uZHVjdCB0cmFkaXRpb25hbCBOYWthbW90byBDb25zZW5zdXMg
YW5kIHRoZSBmb3JtYXRpb24gb2YgbmV3IGJsb2NrcyBpcyBkaWN0YXRlZCBieSB0aGUgc2Ft
ZSB6ZXJvLXByZWZpeCBwcm9vZi1vZi13b3JrIHJlcXVpcmVtZW50cy7CoCBJZiBhdCBhbnkg
cG9pbnQgdGhlcmUgYXJlIHR3byBzb2x1dGlvbiBibG9ja3MgYWR2ZXJ0aXNlZCBmb3IgdGhl
IHNhbWUgaGVpZ2h0IC0gdGhlbiBhIGZsb2F0aW5nLXBvaW50IGZpdG5lc3MgdmFsdWUgaXMg
Y2FsY3VsYXRlZCBhbmQgdGhlIHNvbHV0aW9uIHdpdGggdGhlIGhpZ2hlciBmaXRuZXNzIHZh
bHVlIGlzIHRoZSB3aW5uZXIgd2hpY2ggaXMgdGhlbiBwcm9wYWdhdGVkIHRvIGFsbCBuZWln
aGJvcnMuIEFueSB0aW1lIHR3byBzb2x1dGlvbnMgYXJlIGFkdmVydGlzZWQgdGhlbiBhIHJl
LW9yZyBpcyBpbmV2aXRhYmxlIGFuZCBpdCBpcyBpbiB0aGUgYmVzdCBpbnRlcmVzdCBvZiBh
bGwgbWluZXJzIHRvIGFkb3B0IHRoZSBtb3N0LWZpdCBibG9jaywgZmFpbGluZyB0byBkbyBz
byByaXNrcyB3YXN0aW5nIHJlc291cmNlcyBvbiBhIG1pbmluZyBvZiBhIGJsb2NrIHRoYXQg
d291bGQgYmUgZGlzY2FyZGVkLsKgIFRvIG1ha2Ugc3VyZSB0aGF0IGluY2VudGl2ZXMgYXJl
IGFsaWduZWQsIGFueSB6ZXJvLXByZWZpeCBwcm9vZiBvZiB3b3JrIGNvdWxkIGJlIHRoZSBu
ZXh0IHNvbHV0aW9uLCBidXQgbm93IGluIG9yZGVyIHRvIHJlcGxhY2UgdGhlIGN1cnJlbnQg
d2lubmluZyBzb2x1dGlvbiBhbiBhZHZlcnNhcnkgd291bGQgbmVlZCBhIHplcm8tcHJlZml4
IGJsb2NrIHRoYXQgaXMgYWxzbyBtb3JlIGZpdCB0aGF0IHRoZSBjdXJyZW50IHNvbHV0aW9u
IC0gd2hpY2ggaXMgbXVjaCBtb3JlIGNvbXB1dGF0aW9uYWxseSBleHBlbnNpdmUgdG8gcHJv
ZHVjZS48L3NwYW4+PC9wPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAg
ICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9t
OjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2Nv
bG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlh
bnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRp
Y2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5BbnkgY2hhbmdlcyB0
byB0aGUgY3VycmVudCB0aXAgb2YgdGhlIGJsb2NrY2hhaW4gbXVzdCBiZSBhdm9pZGVkIGFz
IG11Y2ggYXMgcG9zc2libGUuIFRvIGF2b2lkIHRocmFzaGluZyBiZXR3ZWVuIHR3byBvciBt
b3JlIGNvbXBldGl0aXZlIHNvbHV0aW9ucywgZWFjaCByZXBsYWNlbWVudCBjYW4gb25seSBi
ZSBkb25lIGlmIGl0IGlzIG1vcmUgZml0LCB0aGVyZWJ5IHByb3ZpbmcgdGhhdCBpdCBoYXMg
YW4gaW5jcmVhc2VkIGV4cGVuc2UuwqAgSWYgYXQgYW55IHBvaW50IHR3byBzb2x1dGlvbnMg
b2YgdGhlIHNhbWUgaGVpZ2h0IGFyZSBmb3VuZCBpdCBtZWFucyB0aGF0IGV2ZW50dWFsbHkg
c29tZSBub2RlIHdpbGwgaGF2ZSB0byByZXBsYWNlIHRoZWlyIHRpcCAtIGFuZCBpdCBpcyBi
ZXR0ZXIgdG8gaGF2ZSBpdCBkb25lIGFzIHF1aWNrbHkgYXMgcG9zc2libGUgc28gdGhhdCBj
b25zZW5zdXMgaXMgbWFpbnRhaW5lZC48L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAg
ICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdo
dDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0i
Zm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNr
Z3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtm
b250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7
d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkluIG9yZGVyIHRvIGhhdmUgYSBwdXJlbHkgZGVjZW50
cmFsaXplZCBzb2x1dGlvbiwgdGhpcyBraW5kIG9mIGFncmVlbWVudCBtdXN0IGJlIGVtcGly
aWNhbGx5IGRlcml2ZWQgZnJvbSB0aGUgZXhpc3RpbmcgcHJvb2Ytb2Ytd29yayBzbyB0aGF0
IGl0IGlzIHVuaXZlcnNhbGx5IGFuZCBpZGVudGljYWxseSB2ZXJpZmlhYmxlIGJ5IGFsbCBu
b2RlcyBvbiB0aGUgbmV0d29yay7CoCBBZGRpdGlvbmFsbHksIHRoaXMgZml0bmVzcy10ZXN0
IGV2YWx1YXRpb24gbmVlZHMgdG8gZW5zdXJlIHRoYXQgbm8gdHdvIGNvbXBldGluZyBzb2x1
dGlvbnMgY2FuIGJlIG51bWVyaWNhbGx5IGVxdWl2YWxlbnQuPC9zcGFuPjwvcD4KICAgICAg
ICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHls
ZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+
PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJn
YigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVt
ZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFs
aWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5MZXQgdXMgc3VwcG9zZSB0aGF0
IHR3byBvciBtb3JlIHZhbGlkIHNvbHV0aW9ucyB3aWxsIGJlIHByb3Bvc2VkIGZvciB0aGUg
c2FtZSBibG9jay7CoCBUbyB3ZWlnaCB0aGUgdmFsdWUgb2YgYSBnaXZlbiBzb2x1dGlvbiwg
bGV0J3MgY29uc2lkZXIgYSBzb2x1dGlvbiBmb3IgYmxvY2sgNjM5MjU0LCBpbiB3aGljaCB0
aGUgZm9sbG93aW5nIGhhc2ggd2FzIHByb3Bvc2VkOjwvc3Bhbj48L3A+CiAgICAgICAgICAg
IDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21h
cmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXpl
OjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNv
bG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlh
bnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3Bh
Y2U6cHJlLXdyYXAiPsKgwqDCoMKgMDAwMDAwMDAwMDAwMDAwMDAwMDhlMzNmYWE5NGQzMGNj
NzNhYTRmZDgxOWU1OGNlNTU5NzBlN2RiODJlMTBmODwvc3Bhbj48L3A+CiAgICAgICAgICAg
IDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9Imxp
bmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFu
IHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCww
LDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6
bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpi
YXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+VGhlcmUgYXJlIDE5IHplcm9zLCBhbmQg
dGhlIHJlbWFpbmluZyBoYXNoIGluIGJhc2UgMTYgc3RhcnRzIHdpdGggOWUzIGFuZCBlbmRz
IHdpdGggZjguwqAgVGhpcyBjYW4gdmFsdWUgY2FuIGJlIHJlcHJlc2VudGVkIGluIGZsb2F0
aW5nIHBvaW50IGFzOjwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAg
ICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdp
bi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6
QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2Zv
bnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3Jt
YWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPsKgwqDC
oMKgMTkuODQ3MDUyNTczMzM2MTE0MTMwMDY5MTk2MTU0ODA5NDUzMDI3NzkyMTIxODgyNTg4
NjE0OTA0PC9zcGFuPjwvcD4KICAgICAgICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9
Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9w
OjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2Zv
bnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFu
c3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3Qt
YXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13
cmFwIj5UbyBzaW1wbGlmeSBmdXJ0aGVyIGxldHMgZ2l2ZSB0aGlzIGJsb2NrIGEgc2luZ2xl
IHdob2xlIG51bWJlciB0byByZXByZXNlbnQgb25lIGNvbXBsZXRlIHNvbHV0aW9uLCBhbmQg
dXNlIGEgcm91bmRlZCBmbG9hdGluZy1wb2ludCB2YWx1ZSB0byByZXByZXNlbnQgc29tZSBm
cmFjdGlvbiBvZiBhZGRpdGlvbmFsIHdvcmsgZXhlcnRlZCBieSB0aGUgbWluZXIuwqA8L3Nw
YW4+PC9wPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBzdHlsZT0i
bGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNw
YW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigw
LDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJp
Yzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWdu
OmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj7CoMKgwqAxLjg0Nzwvc3Bhbj48L3A+
CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAg
ICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRv
bTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtj
b2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJp
YW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0
aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+Tm93IGxldCB1cyBz
dXBwb3NlIHRoYXQgYSBmZXcgbWludXRlcyBsYXRlciBhbm90aGVyIHNvbHV0aW9uIGlzIGFk
dmVydGlzZWQgdG8gdGhlIG5ldHdvcmsgc2hvd24gaW4gYmFzZTE2IGJlbG93Ojwvc3Bhbj48
L3A+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5l
LWhlaWdodDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBz
dHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCww
KTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5v
cm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFz
ZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPsKgwqDCoMKgMDAwMDAwMDAwMDAwMDAwMDAw
MDI4Mjg1ZWQ5YmQyYzc3NDEzNmFmOGU4YjkwY2ExYmJiMGNhYTM2NTQ0ZmJjMjwvc3Bhbj48
L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAg
ICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJv
dHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlh
bDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12
YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2
ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+VGhlIHNvbHV0
aW9uIGFib3ZlIGFsc28gaGFzIDE5IHByZWZpeGVkIHplcm9zLCBhbmQgaXMgYmVpbmcgYnJv
YWRjYXN0IGZvciB0aGUgc2FtZSBibG9ja2hlaWdodCB2YWx1ZSBvZiA2MzkyNTQgLSBhbmQg
YSBmaXRuZXNzIHNjb3JlIG9mIDEuMjgyLsKgIFdpdGggTmFrYW1vdG8gQ29uc2Vuc3VzIGJv
dGggb2YgdGhlc2Ugc29sdXRpb25zIHdvdWxkIGJlIGVxdWl2YWxlbnQgYW5kIGEgZ2l2ZW4g
bm9kZSB3b3VsZCBhZG9wdCB0aGUgb25lIHRoYXQgaXQgcmVjZWl2ZWQgZmlyc3QuwqAgSW4g
RmxvYXRpbmctUG9zdCBOYWthbW90byBDb25zZW5zdXMsIHdlIGNvbXBhcmUgdGhlIGZpdG5l
c3Mgc2NvcmVzIGFuZCBrZWVwIHRoZSBoaWdoZXN0LsKgIEluIHRoaXMgY2FzZSBubyBtYXR0
ZXIgd2hhdCBoYXBwZW5zIC0gc29tZSBub2RlcyB3aWxsIGhhdmUgdG8gY2hhbmdlIHRoZWly
IHRpcCBhbmQgYSBmaXRuZXNzIHRlc3QgbWFrZXMgc3VyZSB0aGlzIGhhcHBlbnMgaW1tZWRp
YXRlbHkuwqA8L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAgIDxwIGRp
cj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi10
b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7
Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRy
YW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFz
dC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJl
LXdyYXAiPldpdGggYm90aCBzb2x1dGlvbnMgY2lyY3VsYXRpbmcgaW4gdGhlIG5ldHdvcmsg
LSBhbnkgbm9kZSB3aG8gaGFzIHJlY2VpdmVkIGJvdGggcHJvb2Ytb2Ytd29ya3Mgc2hvdWxk
IGtub3cgMS44NDcgaXMgdGhlIGN1cnJlbnQgaGlnaGVzdCB2YWx1ZSwgYW5kIHNob3VsZG7i
gJl0IG5lZWQgdG8gdmFsaWRhdGUgYW55IGxvd2VyLXZhbHVlZCBzb2x1dGlvbi7CoCBJbiBm
YWN0IHRoaXMgZml0bmVzcyB2YWx1ZSBoYXMgYSBoaWdoIGRlZ3JlZSBvZiBjb25maWRlbmNl
IHRoYXQgaXQgd29u4oCZdCBiZSB1bnNlYXRlZCBieSBhIGxhcmdlciB2YWx1ZSAtIGJlaW5n
IGFibGUgdG8gcHJvZHVjZSBhIHByb29mLW9mLXdvcmsgd2l0aCAxOSAw4oCZcyBhbmQgYSBk
ZWNpbWFsIGNvbXBvbmVudCBncmVhdGVyIHRoYW4gMC44NDcgaXMgbm9uLXRyaXZpYWwuwqAg
QXMgdGltZSBwYXNzZXMgYW55IG5vZGVzIHRoYXQgcmVjZWl2ZWQgYSBwcm9vZi1vZi13b3Jr
IHdpdGggYSB2YWx1ZSAxLjIwNCAtIHRoZWlyIHZpZXcgb2YgdGhlIG5ldHdvcmsgc2hvdWxk
IGVyb2RlIGFzIHRoZXNlIG5vZGVzIGFkb3B0IHRoZSAxLjg0NyB2ZXJzaW9uIG9mIHRoZSBi
bG9ja2NoYWluLsKgPC9zcGFuPjwvcD4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAg
ICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2lu
LWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpB
cmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9u
dC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1h
bDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+QWxsIG5v
ZGVzIGFyZSBpbmNlbnRpdml6ZWQgdG8gc3VwcG9ydCB0aGUgc29sdXRpb24gd2l0aCB0aGUg
aGlnaGVzdCBmaXRuZXNzIHZhbHVlIC0gaXJyZWdhcmRsZXNzIG9mIHdoaWNoIG9yZGVyIHRo
ZXNlIHByb29mLW9mLXdvcmsgd2VyZSB2YWxpZGF0ZWQuIE1pbmVycyBhcmUgaW5jZW50aXZp
emVkIHRvIHN1cHBvcnQgdGhlIGRvbWluYW50IGNoYWluIHdoaWNoIGhlbHBzIHByZXNlcnZl
IHRoZSBnbG9iYWwgY29uc2Vuc3VzLjwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxicj4KICAg
ICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0
OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJm
b250LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tn
cm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2Zv
bnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3
aGl0ZS1zcGFjZTpwcmUtd3JhcCI+TGV0IHVzIGFzc3VtZSB0aGF0IHRoZSB1bmRlcmx5aW5n
IGNyeXB0b2dyYXBoaWMgaGFzaC1mdW5jdGlvbiB1c2VkIHRvIGdlbmVyYXRlIGEgcHJvb2Yt
b2Ytd29yayBpcyBhbiBpZGVhbCBwcmltaXRpdmUsIGFuZCB0aGVyZWZvcmUgYSBub2RlIGNh
bm5vdCBmb3JjZSB0aGUgb3V0Y29tZSBvZiB0aGUgbm9uLXplcm8gY29tcG9uZW50IG9mIHRo
ZWlyIHByb29mLW9mLXdvcmsuwqAgQWRkaXRpb25hbGx5IGlmIHdlIGFzc3VtZSBhbiBpZGVh
bCBjaXBoZXIgdGhlbiB0aGUgZml0bmVzcyBvZiBhbGwgcG9zc2libGUgc29sdXRpb25zIGlz
IGdhdXNzaWFuLXJhbmRvbS4gV2l0aCB0aGVzZSBhc3N1bXB0aW9ucyB0aGVuIG9uIGF2ZXJh
Z2UgYSBuZXcgc29sdXRpb24gd291bGQgc3BsaXQgdGhlIGtleXNwYWNlIG9mIHJlbWFpbmlu
ZyBzb2x1dGlvbnMgaW4gaGFsZi7CoCBHaXZlbiB0aGF0IHRoZSB3b3JrIG5lZWRlZCB0byBm
b3JtIGHCoCBuZXcgYmxvY2sgcmVtYWlucyBhIGNvbnN0YW50IGF0IDE5IGJsb2NrcyBmb3Ig
dGhpcyBwZXJpb2QgLSBpdCBpcyBjaGVhcGVyIHRvIHByb2R1Y2UgYSBOKzEgYmxvY2sgdGhh
dCBoYXMgYW55IGZsb2F0aW5nIHBvaW50IHZhbHVlIGFzIHRoaXMgaXMgZ3VhcmFudGVlZCB0
byBiZSBhZG9wdGVkIGJ5IGFsbCBub2RlcyBpZiBpdCBpcyB0aGUgZmlyc3Qgc29sdXRpb24u
wqAgVG8gbGV2ZXJhZ2UgYSBjaGFpbiByZXBsYWNlbWVudCBvbiBub2RlcyBjb25kdWN0aW5n
IEZsb2F0aW5nLVBvaW50IE5ha2Ftb3RvIENvbnNlbnN1cyBhIG1hbGljaW91cyBtaW5lciB3
b3VsZCBoYXZlIHRvIGV4cGVuZCBzaWduaWZpY2FudGx5IG1vcmUgcmVzb3VyY2VzLjwvc3Bh
bj48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCiAgICAg
ICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2lu
LWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpB
cmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9u
dC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1h
bDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+RWFjaCBz
dWNjZXNzaXZlIG4rMSBzb2x1dGlvbiB2YXJpYW50IG9mIHRoZSBzYW1lIGJsb2NrLWhlaWdo
dCBtdXN0IHRoZXJlZm9yZSBvbiBhdmVyYWdlIGNvbnN1bWUgaGFsZiBvZiB0aGUgcmVtYWlu
aW5nIGZpbml0ZSBrZXlzcGFjZS4gUmVzdWx0aW5nIGluIGEgdGhlIG4rMSB2YWx1ZSBub3Qg
b25seSBuZWVkZWQgdG8gb3ZlcmNvbWUgdGhlIDE5IHplcm8gcHJlZml4LCBidXQgYWxzbyB0
aGUgbm9uLXplcm8gZml0bmVzcyB0ZXN0LiDCoCBJdCBpcyBwb3NzaWJsZSBmb3IgYW4gYWR2
ZXJzYXJ5IHRvIHdhc3RlIHRoZWlyIHRpbWUgbWFraW5nIGEgMTkgd2hlcmUgbisxIHdhcyBu
b3QgZ3JlYXRlciwgYXQgd2hpY2ggcG9pbnQgdGhlIGVudGlyZSBuZXR3b3JrIHdpbGwgaGF2
ZSBoYWQgYSBjaGFuY2UgdG8gbW92ZSBvbiB3aXRoIHRoZSBuZXh0IHNvbHV0aW9uLsKgIFdp
dGggaW5kdWN0aXZlIHJlYXNvbmluZywgd2UgY2FuIHNlZSB0aGF0IGEgZGVtaXNzaW5pb25n
IGtleXNwYWNlIGluY3JlYXNlcyB0aGUgYW1vdW50IG9mIHdvcmsgbmVlZGVkIHRvIGZpbmQg
YSBzb2x1dGlvbiB0aGF0IGFsc28gbWVldHMgdGhpcyBuZXcgY3JpdGVyaWEuPC9zcGFuPjwv
cD4KICAgICAgICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAg
ICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90
dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFs
O2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZh
cmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3Zl
cnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5Ob3cgbGV0IHVz
IGFzc3VtZSBhIGhlYXZpbHktZnJhZ21lbnRlZCBuZXR3b3JrIHdoZXJlIHNvbWUgbm9kZXMg
aGF2ZSBnb3R0ZW4gb25lIG9yIGJvdGggb2YgdGhlIHNvbHV0aW9ucy7CoCBJbiB0aGUgY2Fz
ZSBvZiBub2RlcyB0aGF0IHJlY2VpdmVkIHRoZSBwcm9vZi1vZi13b3JrIHNvbHV0aW9uIHdp
dGggYSBmaXRuZXNzIG9mIDEuODQ3LCB0aGV5IHdpbGwgYmUgaGFwcGlseSBtaW5pbmcgb24g
dGhpcyB2ZXJzaW9uIG9mIHRoZSBibG9ja2NoYWluLiBUaGUgbm9kZXMgdGhhdCBoYXZlIGdv
dHRlbiBib3RoIDEuODQ3IGFuZCAuMjQwIHdpbGwgc3RpbGwgYmUgbWluaW5nIGZvciB0aGUg
MS44NDcgZG9tYWluaXRlIHZlcnNpb24sIGVuc3VyaW5nIGEgZG9taW5hbnQgY2hhaW4uwqAg
SG93ZXZlciwgd2UgbXVzdCBhc3N1bWUgc29tZSBwYXJ0cyBvZiB0aGUgbmV0d29yayBuZXZl
ciBnb3QgdGhlIG1lc3NhZ2UgYWJvdXQgMS44NDcgcHJvb2Ygb2Ygd29yaywgYW5kIGluc3Rl
YWQgY29udGludWVkIHRvIG1pbmUgdXNpbmcgYSB2YWx1ZSBvZiAxLjI0MCBhcyB0aGUgcHJl
dmlvdXMgYmxvY2suIMKgIE5vdywgbGV04oCZcyBzYXkgdGhpcyBncm91cCBvZiBpc29sYXRl
ZCBtaW5lcnMgbWFuYWdlcyB0byBwcmVzZW50IGEgbmV3IGNvbmZsaWN0aW5nIHByb29mLW9m
LXdvcmsgc29sdXRpb24gZm9yIDYzOTI1NTo8L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+
CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhl
aWdodDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHls
ZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTti
YWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1h
bDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxp
bmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPsKgwqDCoMKgwqAwMDAwMDAwMDAwMDAwMDAwMDAw
NThkOGViZWIwNzY1ODRiYjU4NTNjODAxMTFiYzA2YjVhZGEzNTQ2MzA5MWE2PC9zcGFuPjwv
cD4KICAgICAgICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAg
ICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90
dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFs
O2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZh
cmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3Zl
cnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5UaGUgYWJvdmUg
YmFzZTE2IGJsb2NrIGhhcyBhIGZpdG5lc3Mgc2NvcmUgb2YgMS41MzLCoCBUaGUgZml0bmVz
cyB2YWx1ZSBmb3IgdGhlIHByZXZpb3VzIGJsb2NrIDYzOTI1NCBpcyBhZGRlZCB0b2dldGhl
cjo8L3NwYW4+PC9wPgogICAgICAgICAgICA8YnI+CiAgICAgICAgICAgIDxwIGRpcj0ibHRy
IgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi10b3A6MHB0
O21hcmdpbi1ib3R0b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1m
YW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFy
ZW50O2ZvbnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lh
bjpub3JtYWw7dmVydGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAi
PsKgwqDCoMKgwqAyLjc3MiA9IDEuMjQwICsgMS41MzI8L3NwYW4+PC9wPgogICAgICAgICAg
ICA8YnI+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJs
aW5lLWhlaWdodDoxLjM4O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3Bh
biBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAs
MCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmlj
Om5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246
YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPkluIHRoaXMgc3BlY2lmaWMgY2FzZSwg
bm8gb3RoZXIgc29sdXRpb24gaGFzIGJlZW4gYnJvYWRjYXN0IGZvciBibG9jayBoZWlnaHQg
NjM5MjU1IC0gcHV0dGluZyB0aGUgd2Vha2VyIGJyYW5jaCBpbiB0aGUgbGVhZC7CoCBJZiB0
aGUgd2Vha2VyIGJyYW5jaCBpcyBzdWZmaWNpZW50bHkgbHVja3ksIGFuZCBmaW5kcyBhIHNv
bHV0aW9uIGJlZm9yZSB0aGUgZG9taW5hbnQgYnJhbmNoIHRoZW4gdGhpcyBzb2x1dGlvbiB3
aWxsIGhhdmUgYSBoaWdoZXIgb3ZlcmFsbCBmaXRuZXNzIHNjb3JlLCBhbmQgdGhpcyBzb2x1
dGlvbiB3aWxsIHByb3BhZ2F0ZSBhcyBpdCBoYXMgdGhlIGhpZ2hlciB2YWx1ZS7CoCBUaGlz
IGlzIGFsc28gaW1wb3J0YW50IGZvciB0cmFuc2FjdGlvbnMgb24gdGhlIG5ldHdvcmsgYXMg
dGhleSBiZW5lZml0IGZyb20gdXNpbmcgdGhlIG1vc3QgcmVjZW50bHkgZm9ybWVkIGJsb2Nr
IC0gd2hpY2ggd2lsbCBoYXZlIHRoZSBoaWdoZXN0IGxvY2FsIGZpdG5lc3Mgc2NvcmUgYXQg
dGhlIHRpbWUgb2YgaXRzIGRpc2NvdmVyeS7CoCBBdCB0aGlzIGp1bmN0aW9uLCB0aGUgd2Vh
a2VyIGJyYW5jaCBoYXMgYW4gb3Bwb3J0dW5pdHkgdG8gcHJldmFpbCBlbnRlcmFsbHkgdGh1
cyBlbmRpbmcgdGhlIHNwbGl0Ljwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAg
ICAgICAgPHAgZGlyPSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEu
Mzg7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250
LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91
bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQt
dmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0
ZS1zcGFjZTpwcmUtd3JhcCI+Tm93IGxldCB1cyByZXR1cm4gdG8gdGhlIERvUyB0aHJlYXQg
bW9kZWwgYW5kIGV4cGxvcmUgdGhlIHdvcnN0LWNhc2Ugc2NlbmFyaW8gY3JlYXRlZCBieSBi
eXphbnRpbmUgZmF1bHQgaW5qZWN0aW9uLiBMZXQgdXMgYXNzdW1lIHRoYXQgYm90aCB0aGUg
d2Vha2VyIGdyb3VwIGFuZCB0aGUgZG9taW5hbnQgZ3JvdXAgaGF2ZSBwcm9kdWNlZCBjb21w
ZXRpbmcgcHJvb2Ytb2Ytd29yayBzb2x1dGlvbnMgZm9yIGJsb2NrcyA2MzkyNTQgYW5kIDYz
OTI1NSByZXNwZWN0aXZlbHkuwqAgTGV04oCZcyBhc3N1bWUgdGhhdCB0aGUgZG9taW5hbnQg
Z3JvdXAgdGhhdCB3ZW50IHdpdGggdGhlIDEuODQ3IGZpdG5lc3Mgc2NvcmUgLSBhbHNvIHBy
b2R1Y2VzIGEgc29sdXRpb24gd2l0aCBhIHNpbWlsYXIgZml0bmVzcyB2YWx1ZSBhbmQgYWR2
ZXJ0aXNlcyB0aGUgZm9sbG93aW5nIHNvbHV0aW9uIHRvIHRoZSBuZXR3b3JrOjwvc3Bhbj48
L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCnN0eWxlPSJs
aW5lLWhlaWdodDoxLjM4O21hcmdpbi1sZWZ0OjM2cHQ7bWFyZ2luLXRvcDowcHQ7bWFyZ2lu
LWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtmb250LWZhbWlseTpB
cmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9u
dC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1h
bDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+MDAwMDAw
MDAwMDAwMDAwMDAwMDQ1NTIwN2UzNzViZjFkYWMwZDQ4M2E3NDQyMjM5ZjFlZjJjNzBkMDUw
YzExMzwvc3Bhbj48L3A+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgpzdHlsZT0ibGluZS1o
ZWlnaHQ6MS4zODttYXJnaW4tbGVmdDozNnB0O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0
b206MHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7
Y29sb3I6cmdiKDAsMCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFy
aWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVy
dGljYWwtYWxpZ246YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPjE5LjQxNDk3MzY0
OTQ2NDU3NDg3NzU0OTE5ODI5MDg3OTIzNzAzNjg2NzcwNTU5NDQyMTc1NjE3OTwvc3Bhbj48
L3A+CiAgICAgICAgICAgIDxwIGRpcj0ibHRyIgpzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODtt
YXJnaW4tbGVmdDozNnB0O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48c3Bh
biBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJpYWw7Y29sb3I6cmdiKDAs
MCwwKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2ZvbnQtdmFyaWFudC1udW1lcmlj
Om5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3JtYWw7dmVydGljYWwtYWxpZ246
YmFzZWxpbmU7d2hpdGUtc3BhY2U6cHJlLXdyYXAiPm9yPC9zcGFuPjwvcD4KICAgICAgICAg
ICAgPHAgZGlyPSJsdHIiCnN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi1sZWZ0OjM2
cHQ7bWFyZ2luLXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250
LXNpemU6MTFwdDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91
bmQtY29sb3I6dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQt
dmFyaWFudC1lYXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0
ZS1zcGFjZTpwcmUtd3JhcCI+My4yNjIgPSAxLjg0NyArIDEuNDE1PC9zcGFuPjwvcD4KICAg
ICAgICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAgICBz
dHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBw
dCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9y
OnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQt
bnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2Fs
LWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5BIHRvdGFsIG9mIDMuMjYy
IGlzIHN0aWxsIGRvbWluYW50IG92ZXIgdGhlIGxlc3NlciAyLjc3MiAtIGluIG9yZGVyIHRv
IG92ZXJjb21lIHRoaXMgLSB0aGUgMm5kIHdpbm5pbmcgYmxvY2sgbmVlZHMgdG8gbWFrZSB1
cCBmb3IgYWxsIG9mIHRoZSBsb3NzZXMgaW4gdGhlIHByZXZpb3VzIGJsb2NrLsKgIEluIHRo
aXMgc2NlbmFyaW8sIGluIG9yZGVyIGZvciB0aGUgd2Vha2VyIGNoYWluIHRvIHN1cHBsYW50
IHRoZSBkb21pbmFudCBjaGFpbiBpdCBtdXN0IG92ZXJjb21lIGEgLTAuNDkgcG9pbnQgZGVm
aWNpdC4gSW4gdHJhZGl0aW9uYWwgTmFrYW1vdG8gQ29uc2Vuc3VzIHRoZSBub2RlcyB3b3Vs
ZCBzZWUgYm90aCBmb3JrcyBhcyBhdXRob3JpdGF0aXZlIGVxdWFscyB3aGljaCBjcmVhdGVz
IGEgZGl2aWRlIGluIG1pbmluZyBjYXBhY2l0eSB3aGlsZSB0d28gZ3JvdXBzIG9mIG1pbmVy
cyBzZWFyY2ggZm9yIHRoZSBuZXh0IGJsb2NrLsKgIEluIEZsb2F0aW5nLVBvaW50IE5ha2Ft
b3RvIENvbnNlbnN1cyBhbnkgbm9kZXMgcmVjZWl2aW5nIGJvdGggZm9ya3MsIHdvdWxkIHBy
ZWZlciB0byBtaW5lIG9uIHRoZSBjaGFpbiB3aXRoIGFuIG92ZXJhbGwgZml0bmVzcyBzY29y
ZSBvZiArMy4yNjIgLSBtYWtpbmcgaXQgZXZlbiBoYXJkZXIgZm9yIHRoZSB3ZWFrZXIgY2hh
aW4gdG8gZmluZCBtaW5lcnMgdG8gY29tcGV0ZSBpbiBhbnkgZnV0dXJlIGRpc2FncmVlbWVu
dCwgdGhlcmVieSBlcm9kaW5nIHN1cHBvcnQgZm9yIHRoZSB3ZWFrZXIgY2hhaW4uIFRoaXMg
a2luZCBvZiBjb21wYXJpc29uIHJlcXVpcmVzIGFuIGVtcGlyaWNhbCBtZXRob2QgZm9yIGRl
dGVybWluaW5nIGZpdG5lc3MgYnkgbWluZXJzIGZvbGxvd2luZyB0aGUgc2FtZSBzYW1lIHN5
c3RlbSBvZiBydWxlcyB3aWxsIGluc3VyZSBhIHNlbGYtZnVsZmlsbGVkIG91dGNvbWUuwqAg
QWZ0ZXIgYWxsIG5vZGVzIGFkb3B0IHRoZSBkb21pbmFudCBjaGFpbiBub3JtYWwgTmFrYW1v
dG8gQ29uc3Vlc3MgY2FuIHJlc3VtZSB3aXRob3V0IGhhdmluZyB0byB0YWtlIGludG8gY29u
c2lkZXJhdGlvbiBibG9jayBmaXRuZXNzLiBUaGlzIGV4YW1wbGUgc2hvd3MgaG93IGRpc2Fn
cmVlbWVudCBjYW4gYmUgcmVzb2x2ZWQgbW9yZSBxdWlja2x5IGlmIHRoZSBuZXR3b3JrIGhh
cyBhIG1lY2hhbmlzbSB0byByZXNvbHZlIGFtYmlndWl0eSBhbmQgZGUtaW5jZW50aXZpc2Ug
ZGlzc2VudC48L3NwYW4+PC9wPgogICAgICAgICAgICA8aDQgZGlyPSJsdHIiCiAgICAgICAg
ICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRvcDoxNHB0O21hcmdpbi1i
b3R0b206NHB0Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjEycHQ7Zm9udC1mYW1pbHk6QXJp
YWw7Y29sb3I6cmdiKDEwMiwxMDIsMTAyKTtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50
O2ZvbnQtd2VpZ2h0OjQwMDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJp
YW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNw
YWNlOnByZS13cmFwIj5Tb2Z0IEZvcms8L3NwYW4+PC9oND4KICAgICAgICAgICAgPHAgZGly
PSJsdHIiCiAgICAgICAgICAgICAgc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLXRv
cDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFwdDtm
b250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6dHJh
bnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0
LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUt
d3JhcCI+QmxvY2tjaGFpbiBuZXR3b3JrcyB0aGF0IHdvdWxkIGxpa2UgdG8gaW1wcm92ZSB0
aGUgY29uc2Vuc3VzIGdlbmVyYXRpb24gbWV0aG9kIGJ5IGFkZGluZyBhIGZpdG5lc3MgdGVz
dCBzaG91bGQgYmUgYWJsZSB0byBkbyBzbyB1c2luZyBhIOKAnFNvZnQgRm9ya+KAnSBvdGhl
cndpc2Uga25vd24gYXMgYSBjb21wYXRpYmxlIHNvZnR3YXJlIHVwZGF0ZS7CoCBCeSBjb250
cmFzdCBhIOKAnEhhcmQtRm9ya+KAnSBpcyBhIHNlcGFyYXRlIGluY29tcGF0aWJsZSBuZXR3
b3JrIHRoYXQgZG9lcyBub3QgZm9ybSB0aGUgc2FtZSBjb25zZW5zdXMuwqAgRmxvYXRpbmct
UG9pbnQgTmFrYW1vdG8gQ29uc2Vuc3VzIGNhbiBiZSBpbXBsZW1lbnRlZCBhcyBhIHNvZnQt
Zm9yayBiZWNhdXNlIGJvdGggcGF0Y2hlZCwgYW5kIG5vbi1wYXRjaGVkIG5vZGVzIGNhbiBj
by1leGlzdCBhbmQgbm9uLXBhdGNoZWQgbm9kZXMgd2lsbCBiZW5lZml0IGZyb20gYSBraW5k
IG9mIGhlcmQgaW1tdW5pdHkgaW4gb3ZlcmFsbCBuZXR3b3JrIHN0YWJpbGl0eS7CoCBUaGlz
IGlzIGJlY2F1c2Ugb25jZSBhIHNtYWxsIG51bWJlciBvZiBub2RlcyBzdGFydCBmb2xsb3dp
bmcgdGhlIHNhbWUgcnVsZXMgdGhlbiB0aGV5IHdpbGwgYmVjb21lIHRoZSBkZWNpZGluZyBm
YWN0b3IgaW4gd2hpY2ggY2hhaW4gaXMgY2hvc2VuLsKgIENsaWVudHMgdGhhdCBhcmUgdXNp
bmcgb25seSB0cmFkaXRpb25hbCBOYWthbW90byBDb25zZW5zdXMgd2lsbCBzdGlsbCBhZ3Jl
ZSB3aXRoIG5ldyBjbGllbnRzIG92ZXIgdGhlIHRvdGFsIGNoYWluIGxlbmd0aC4gTWluZXJz
IHRoYXQgYWRvcHQgdGhlIG5ldyBzdHJhdGVneSBlYXJseSwgd2lsbCBiZSBsZXNzIGxpa2Vs
eSB0byBsb3NlIG91dCBvbiBtaW5pbmcgaW52YWxpZCBzb2x1dGlvbnMuPC9zcGFuPjwvcD4K
ICAgICAgICAgICAgPGg0IGRpcj0ibHRyIgogICAgICAgICAgICAgIHN0eWxlPSJsaW5lLWhl
aWdodDoxLjM4O21hcmdpbi10b3A6MTRwdDttYXJnaW4tYm90dG9tOjRwdCI+PHNwYW4gc3R5
bGU9ImZvbnQtc2l6ZToxMnB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigxMDIsMTAy
LDEwMik7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXdlaWdodDo0MDA7Zm9u
dC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1lYXN0LWFzaWFuOm5vcm1h
bDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUtd3JhcCI+Q29uY2x1
c2lvbjwvc3Bhbj48L2g0PgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAgICAg
ICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9t
OjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2Nv
bG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlh
bnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRp
Y2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5GbG9hdGluZy1Qb2lu
dCBOYWthbW90byBjb25zZW5zdXMgYWxsb3dzIHRoZSBuZXR3b3JrIHRvIGZvcm0gYSBjb25z
ZW5zdXMgbW9yZSBxdWlja2x5IGJ5IGF2b2lkaW5nIGFtYmlndWl0eSBhbGxvd2luZyBmb3Ig
ZGV0ZXJtaW5pc20gdG8gdGFrZSBob2xkLiBCaXRjb2luIGhhcyBiZWNvbWUgYW4gZXNzZW50
aWFsIHV0aWxpdHksIGFuZCBhdHRhY2tzIGFnYWluc3Qgb3VyIG5ldHdvcmtzIG11c3QgYmUg
YXZvaWRlZCBhbmQgYWRhcHRpbmcsIHBhdGNoaW5nIGFuZCBwcm90ZWN0aW5nIHRoZSBuZXR3
b3JrIGlzIGEgY29uc3RhbnQgZWZmb3J0LiBBbiBvcmdhbml6ZWQgYXR0YWNrIGFnYWluc3Qg
YSBjcnlwdG9jdXJyZW5jeSBuZXR3b3JrIHdpbGwgdW5kZXJtaW5lIHRoZSBndWFyYW50ZWVz
IHRoYXQgYmxvY2tjaGFpbiBkZXZlbG9wZXJzIGFyZSBkZXBlbmRpbmcgb24uPC9zcGFuPjwv
cD4KICAgICAgICAgICAgPGJyPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKICAgICAgICAg
ICAgICBzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90
dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFs
O2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZh
cmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3Zl
cnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5BbnkgYmxvY2tj
aGFpbiB1c2luZyBOYWthbW90byBDb25zZW5zdXMgY2FuIGJlIG1vZGlmaWVkIHRvIHVzZSBh
IGZpdG5lc3MgY29uc3RyYWludCBzdWNoIGFzIHRoZSBvbmUgdXNlZCBieSBhIEZsb2F0aW5n
LVBvaW50IE5ha2Ftb3RvIENvbnNlbnN1cy7CoCBBbiBleGFtcGxlIGltcGxlbWVudGF0aW9u
IGhhcyBiZWVuIHdyaXR0ZW4gYW5kIHN1Ym1pdHRlZCBhcyBhIFBSIHRvIHRoZSBiaXRjb2lu
IGNvcmUgd2hpY2ggaXMgZnJlZSB0byBiZSBhZGFwdGVkIGJ5IG90aGVyIG5ldHdvcmtzLjwv
c3Bhbj48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPGJyPgogICAgICAgICAg
ICA8YnI+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPGJyPgogICAgICAgICAgICA8
cCBkaXI9Imx0ciIKc3R5bGU9ImxpbmUtaGVpZ2h0OjEuMzg7bWFyZ2luLWxlZnQ6MzZwdDtt
YXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9tOjBwdCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6
ZToxMXB0O2ZvbnQtZmFtaWx5OkFyaWFsO2NvbG9yOnJnYigwLDAsMCk7YmFja2dyb3VuZC1j
b2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpub3JtYWw7Zm9udC12YXJp
YW50LWVhc3QtYXNpYW46bm9ybWFsO3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lO3doaXRlLXNw
YWNlOnByZS13cmFwIj5BIGNvbXBsZXRlIGltcGxlbWVudGF0aW9uIG9mIEZsb2F0aW5nLVBv
aW50IE5ha2Ftb3RvIGNvbnNlbnN1cyBpcyBpbiB0aGUgZm9sbG93aW5nIHB1bGwgcmVxdWVz
dDo8L3NwYW4+PC9wPgogICAgICAgICAgICA8cCBkaXI9Imx0ciIKc3R5bGU9ImxpbmUtaGVp
Z2h0OjEuMzg7bWFyZ2luLWxlZnQ6MzZwdDttYXJnaW4tdG9wOjBwdDttYXJnaW4tYm90dG9t
OjBwdCI+PGEKaHJlZj0iaHR0cHM6Ly9naXRodWIuY29tL2JpdGNvaW4vYml0Y29pbi9wdWxs
LzE5NjY1L2ZpbGVzIgogICAgICAgICAgICAgICAgdGFyZ2V0PSJfYmxhbmsiIHN0eWxlPSJ0
ZXh0LWRlY29yYXRpb24tbGluZTpub25lIgogICAgICAgICAgICAgICAgbW96LWRvLW5vdC1z
ZW5kPSJ0cnVlIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6QXJp
YWw7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJpYzpu
b3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3RleHQtZGVjb3JhdGlvbi1s
aW5lOnVuZGVybGluZTt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpwcmUt
d3JhcCI+aHR0cHM6Ly9naXRodWIuY29tL2JpdGNvaW4vYml0Y29pbi9wdWxsLzE5NjY1L2Zp
bGVzPC9zcGFuPjwvYT48L3A+CiAgICAgICAgICAgIDxicj4KICAgICAgICAgICAgPHAgZGly
PSJsdHIiCnN0eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi1sZWZ0OjM2cHQ7bWFyZ2lu
LXRvcDowcHQ7bWFyZ2luLWJvdHRvbTowcHQiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTFw
dDtmb250LWZhbWlseTpBcmlhbDtjb2xvcjpyZ2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6
dHJhbnNwYXJlbnQ7Zm9udC12YXJpYW50LW51bWVyaWM6bm9ybWFsO2ZvbnQtdmFyaWFudC1l
YXN0LWFzaWFuOm5vcm1hbDt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpw
cmUtd3JhcCI+UGFwZXI6PC9zcGFuPjwvcD4KICAgICAgICAgICAgPHAgZGlyPSJsdHIiCnN0
eWxlPSJsaW5lLWhlaWdodDoxLjM4O21hcmdpbi1sZWZ0OjM2cHQ7bWFyZ2luLXRvcDowcHQ7
bWFyZ2luLWJvdHRvbTowcHQiPjxhCmhyZWY9Imh0dHBzOi8vZ2l0aHViLmNvbS9pbi1zdC9G
bG9hdGluZy1Qb2ludC1OYWthbW90by1Db25zZW5zdXMiCiAgICAgICAgICAgICAgICB0YXJn
ZXQ9Il9ibGFuayIgc3R5bGU9InRleHQtZGVjb3JhdGlvbi1saW5lOm5vbmUiCiAgICAgICAg
ICAgICAgICBtb3otZG8tbm90LXNlbmQ9InRydWUiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6
MTFwdDtmb250LWZhbWlseTpBcmlhbDtiYWNrZ3JvdW5kLWNvbG9yOnRyYW5zcGFyZW50O2Zv
bnQtdmFyaWFudC1udW1lcmljOm5vcm1hbDtmb250LXZhcmlhbnQtZWFzdC1hc2lhbjpub3Jt
YWw7dGV4dC1kZWNvcmF0aW9uLWxpbmU6dW5kZXJsaW5lO3ZlcnRpY2FsLWFsaWduOmJhc2Vs
aW5lO3doaXRlLXNwYWNlOnByZS13cmFwIj5odHRwczovL2dpdGh1Yi5jb20vaW4tc3QvRmxv
YXRpbmctUG9pbnQtTmFrYW1vdG8tQ29uc2Vuc3VzPC9zcGFuPjwvYT48L3A+CiAgICAgICAg
ICAgIDxwIGRpcj0ibHRyIgpzdHlsZT0ibGluZS1oZWlnaHQ6MS4zODttYXJnaW4tbGVmdDoz
NnB0O21hcmdpbi10b3A6MHB0O21hcmdpbi1ib3R0b206MHB0Ij48YQogICAgICAgICAgICAg
ICAgaHJlZj0iaHR0cHM6Ly9pbi5zdC5jYXBpdGFsLyIgdGFyZ2V0PSJfYmxhbmsiCiAgICAg
ICAgICAgICAgICBzdHlsZT0idGV4dC1kZWNvcmF0aW9uLWxpbmU6bm9uZSIgbW96LWRvLW5v
dC1zZW5kPSJ0cnVlIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExcHQ7Zm9udC1mYW1pbHk6
QXJpYWw7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudDtmb250LXZhcmlhbnQtbnVtZXJp
Yzpub3JtYWw7Zm9udC12YXJpYW50LWVhc3QtYXNpYW46bm9ybWFsO3RleHQtZGVjb3JhdGlv
bi1saW5lOnVuZGVybGluZTt2ZXJ0aWNhbC1hbGlnbjpiYXNlbGluZTt3aGl0ZS1zcGFjZTpw
cmUtd3JhcCI+aHR0cHM6Ly9pbi5zdC5jYXBpdGFsPC9zcGFuPjwvYT48L3A+CiAgICAgICAg
ICAgIDxiciBjbGFzcz0iZ21haWwtQXBwbGUtaW50ZXJjaGFuZ2UtbmV3bGluZSI+CiAgICAg
ICAgICA8L3NwYW4+PC9kaXY+CiAgICAgIDwvZGl2PgogICAgICA8YnI+CiAgICAgIDxmaWVs
ZHNldCBjbGFzcz0ibWltZUF0dGFjaG1lbnRIZWFkZXIiPjwvZmllbGRzZXQ+CiAgICAgIDxw
cmUgY2xhc3M9Im1vei1xdW90ZS1wcmUiIHdyYXA9IiI+X19fX19fX19fX19fX19fX19fX19f
X19fX19fX19fX19fX19fX19fX19fX19fX18KYml0Y29pbi1kZXYgbWFpbGluZyBsaXN0Cjxh
IGNsYXNzPSJtb3otdHh0LWxpbmstYWJicmV2aWF0ZWQiIGhyZWY9Im1haWx0bzpiaXRjb2lu
LWRldkBsaXN0cy5saW51eGZvdW5kYXRpb24ub3JnIj5iaXRjb2luLWRldkBsaXN0cy5saW51
eGZvdW5kYXRpb24ub3JnPC9hPgo8YSBjbGFzcz0ibW96LXR4dC1saW5rLWZyZWV0ZXh0IiBo
cmVmPSJodHRwczovL2xpc3RzLmxpbnV4Zm91bmRhdGlvbi5vcmcvbWFpbG1hbi9saXN0aW5m
by9iaXRjb2luLWRldiI+aHR0cHM6Ly9saXN0cy5saW51eGZvdW5kYXRpb24ub3JnL21haWxt
YW4vbGlzdGluZm8vYml0Y29pbi1kZXY8L2E+CjwvcHJlPgogICAgPC9ibG9ja3F1b3RlPgog
IDwvYm9keT4KPC9odG1sPgo=
--------------3FCAF818CF8B3F72DE2CF89D--