summaryrefslogtreecommitdiff
path: root/src/math/math_FRPR.cxx
blob: d9674e6d8eafceb2cfc6b426361df9c21f4f9fdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//static const char* sccsid = "@(#)math_FRPR.cxx	3.2 95/01/10"; // Do not delete this line. Used by sccs.

//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif

#include <math_FRPR.ixx>

#include <math_BracketMinimum.hxx>
#include <math_BrentMinimum.hxx>
#include <math_Function.hxx>
#include <math_MultipleVarFunction.hxx>
#include <math_MultipleVarFunctionWithGradient.hxx>

// l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction
// donnee n'est pas du tout optimale. voir peut etre interpolation cubique
// classique et aussi essayer "recherche unidimensionnelle economique"
// PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82.

class DirFunctionTer : public math_Function {

     math_Vector *P0;
     math_Vector *Dir;
     math_Vector *P;
     math_MultipleVarFunction *F;

public :

     DirFunctionTer(math_Vector& V1, 
                 math_Vector& V2,
                 math_Vector& V3,
                 math_MultipleVarFunction& f);

     void Initialize(const math_Vector& p0, const math_Vector& dir);

     virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval);
};

     DirFunctionTer::DirFunctionTer(math_Vector& V1, 
                              math_Vector& V2,
                              math_Vector& V3,
                              math_MultipleVarFunction& f) {
        
        P0  = &V1;
        Dir = &V2;
        P   = &V3;
        F   = &f;
     }

     void DirFunctionTer::Initialize(const math_Vector& p0, 
                                  const math_Vector& dir) {

        *P0 = p0;
        *Dir = dir;
     }

     Standard_Boolean DirFunctionTer::Value(const Standard_Real x, Standard_Real& fval) {

        *P = *Dir;
        P->Multiply(x);
        P->Add(*P0);        
        F->Value(*P, fval);
        return Standard_True;
     }

static Standard_Boolean MinimizeDirection(math_Vector& P,
                                 math_Vector& Dir,
                                 Standard_Real& Result,
                                 DirFunctionTer& F) {

     Standard_Real ax, xx, bx;

     F.Initialize(P, Dir);
     math_BracketMinimum Bracket(F, 0.0, 1.0);
     if(Bracket.IsDone()) {
       Bracket.Values(ax, xx, bx);
       math_BrentMinimum Sol(F, ax, xx, bx, 1.0e-10, 100);
       if(Sol.IsDone()) {
         Standard_Real Scale = Sol.Location();
         Result = Sol.Minimum();
         Dir.Multiply(Scale);
         P.Add(Dir);
         return Standard_True;
       }
     }
     return Standard_False;
  }


void  math_FRPR::Perform(math_MultipleVarFunctionWithGradient& F,
                         const math_Vector& StartingPoint) {
  
       Standard_Boolean Good;
       Standard_Integer n = TheLocation.Length();
       Standard_Integer j, its;
       Standard_Real gg, gam, dgg;

       math_Vector g(1, n), h(1, n);
 
       math_Vector Temp1(1, n);
       math_Vector Temp2(1, n);
       math_Vector Temp3(1, n);
       DirFunctionTer F_Dir(Temp1, Temp2, Temp3, F);

       TheLocation = StartingPoint;
       Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
       if(!Good) { 
         Done = Standard_False;
         TheStatus = math_FunctionError;
         return;
       }

       g = -TheGradient;
       h = g;
       TheGradient = g;

       for(its = 1; its <= Itermax; its++) {
	 Iter = its;
	 
         Standard_Boolean IsGood = MinimizeDirection(TheLocation,
                                            TheGradient, TheMinimum, F_Dir);
         if(!IsGood) {
           Done = Standard_False;
           TheStatus = math_DirectionSearchError;
           return;
         }
         if(IsSolutionReached(F)) {
           Done = Standard_True;
	   State = F.GetStateNumber();
           TheStatus = math_OK;
           return;
         }
         Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
         if(!Good) { 
           Done = Standard_False;
           TheStatus = math_FunctionError;
           return;
         }

	 dgg =0.0;
	 gg = 0.0;
	 
	 for(j = 1; j<= n; j++) {
	   gg += g(j)*g(j);
//	   dgg += TheGradient(j)*TheGradient(j);  //for Fletcher-Reeves
	   dgg += (TheGradient(j)+g(j)) * TheGradient(j);  //for Polak-Ribiere
	 }

	 if (gg == 0.0) {
	   //Unlikely. If gradient is exactly 0 then we are already done.
	   Done = Standard_False;
	   TheStatus = math_FunctionError;
	   return;
	 }
	 
	 gam = dgg/gg;
	 g = -TheGradient;
	 TheGradient = g + gam*h;
	 h = TheGradient;
       }
       Done = Standard_False;
       TheStatus = math_TooManyIterations;
       return;

     }



    Standard_Boolean math_FRPR::IsSolutionReached(
//                           math_MultipleVarFunctionWithGradient& F) {
                           math_MultipleVarFunctionWithGradient& ) {

       return (2.0 * fabs(TheMinimum - PreviousMinimum)) <= 
              XTol * (fabs(TheMinimum) + fabs(PreviousMinimum) + EPSZ);
    }

    math_FRPR::math_FRPR(math_MultipleVarFunctionWithGradient& F,
                         const math_Vector& StartingPoint, 
                         const Standard_Real        Tolerance,
                         const Standard_Integer     NbIterations,
                         const Standard_Real        ZEPS) 
                         : TheLocation(1, StartingPoint.Length()),
                           TheGradient(1, StartingPoint.Length()) {

       XTol = Tolerance;
       EPSZ = ZEPS;
       Itermax = NbIterations;
       Perform(F, StartingPoint);
    }
                             

    math_FRPR::math_FRPR(math_MultipleVarFunctionWithGradient& F,
                         const Standard_Real        Tolerance,
                         const Standard_Integer     NbIterations,
                         const Standard_Real        ZEPS) 
                         : TheLocation(1, F.NbVariables()),
                           TheGradient(1, F.NbVariables()) {

       XTol = Tolerance;
       EPSZ = ZEPS;
       Itermax = NbIterations;
    }


    void math_FRPR::Delete()
    {}

    void math_FRPR::Dump(Standard_OStream& o) const {

       o << "math_FRPR ";
       if(Done) {
         o << " Status = Done \n";
	 o << " Location Vector = "<< TheLocation << "\n";
         o << " Minimum value = " << TheMinimum <<"\n";
         o << " Number of iterations = " << Iter <<"\n";
       }
       else {
         o << " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
       }
    }