summaryrefslogtreecommitdiff
path: root/src/math/math_BFGS.cxx
blob: c2898094e57d903e04ab9c36dc0ed0bf80ab52e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//static const char* sccsid = "@(#)math_BFGS.cxx	3.2 95/01/10"; // Do not delete this line. Used by sccs.

//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif

#include <math_BFGS.ixx>

#include <math_BracketMinimum.hxx>
#include <math_BrentMinimum.hxx>
#include <math_FunctionWithDerivative.hxx>
#include <math_MultipleVarFunctionWithGradient.hxx>
#include <math_Matrix.hxx>

#define R 0.61803399
#define C (1.0-R)
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
#define SIGN(a, b) ((b) > 0.0 ? fabs(a) : -fabs(a))
#define MOV3(a,b,c, d, e, f) (a)=(d); (b)= (e); (c)=(f);


// l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction
// donnee n'est pas du tout optimale. voir peut etre interpolation cubique
// classique et aussi essayer "recherche unidimensionnelle economique"
// PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82.

class DirFunction : public math_FunctionWithDerivative {

     math_Vector *P0;
     math_Vector *Dir;
     math_Vector *P;
     math_Vector *G;
     math_MultipleVarFunctionWithGradient *F;

public :

     DirFunction(math_Vector& V1, 
                 math_Vector& V2,
                 math_Vector& V3,
		 math_Vector& V4,
                 math_MultipleVarFunctionWithGradient& f) ;

     void Initialize(const math_Vector& p0, const math_Vector& dir) const;
     void TheGradient(math_Vector& Grad);
     virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval) ;
     virtual Standard_Boolean Values(const Standard_Real x, Standard_Real& fval, Standard_Real& D) ;
     virtual Standard_Boolean Derivative(const Standard_Real x, Standard_Real& D) ;

     
};

     DirFunction::DirFunction(math_Vector& V1, 
                              math_Vector& V2,
                              math_Vector& V3,
			      math_Vector& V4,
                              math_MultipleVarFunctionWithGradient& f) {
        
        P0  = &V1;
        Dir = &V2;
        P   = &V3;
        F   = &f;
	G =   &V4;
     }

     void DirFunction::Initialize(const math_Vector& p0, 
                                  const math_Vector& dir)  const{

        *P0 = p0;
        *Dir = dir;
     }

     void DirFunction::TheGradient(math_Vector& Grad) {
       Grad = *G;
     }


     Standard_Boolean DirFunction::Value(const Standard_Real x, 
					 Standard_Real& fval) 
     {
        *P = *Dir;
        P->Multiply(x);
        P->Add(*P0);        
        F->Value(*P, fval);
        return Standard_True;
     }

     Standard_Boolean DirFunction::Values(const Standard_Real x, 
					  Standard_Real& fval, 
					  Standard_Real& D) 
     {
        *P = *Dir;
        P->Multiply(x);
        P->Add(*P0);  
        F->Values(*P, fval, *G);
	D = (*G).Multiplied(*Dir);
        return Standard_True;
     }
     Standard_Boolean DirFunction::Derivative(const Standard_Real x, 
					      Standard_Real& D) 
     {
        *P = *Dir;
        P->Multiply(x);
        P->Add(*P0);        
	Standard_Real fval;
        F->Values(*P, fval, *G);
	D = (*G).Multiplied(*Dir);
        return Standard_True;
     }


static Standard_Boolean MinimizeDirection(math_Vector&   P,
					  Standard_Real  F0,
					  math_Vector&   Gr,
					  math_Vector&   Dir,
					  Standard_Real& Result,
					  DirFunction&   F) {



     Standard_Real ax, xx, bx, Fax, Fxx, Fbx, F1;
     F.Initialize(P, Dir);

     Standard_Real dy1, Hnr1, lambda, alfa=0;
     dy1 = Gr*Dir;
     if (dy1 != 0) {
       Hnr1 = Dir.Norm2();
       alfa = 0.7*(-F0)/dy1;
       lambda = 0.015/Sqrt(Hnr1);
     }
     else lambda = 1.0;
     if (lambda > alfa) lambda = alfa;
     F.Value(lambda, F1);
     math_BracketMinimum Bracket(F, 0.0, lambda, F0, F1);
     if(Bracket.IsDone()) {
       Bracket.Values(ax, xx, bx);
       Bracket.FunctionValues(Fax, Fxx, Fbx);

       Standard_Integer niter = 100;
       Standard_Real tol = 1.e-03;
       math_BrentMinimum Sol(tol, Fxx, niter, 1.e-08);
       Sol.Perform(F, ax, xx, bx);
       if(Sol.IsDone()) {
	 Standard_Real Scale = Sol.Location();
	 Result = Sol.Minimum();
	 Dir.Multiply(Scale);
	 P.Add(Dir);
	 return Standard_True;
       }
     }
     return Standard_False;
   }


void  math_BFGS::Perform(math_MultipleVarFunctionWithGradient& F,
                         const math_Vector& StartingPoint) {
  
       Standard_Boolean Good;
       Standard_Integer n = TheLocation.Length();
       Standard_Integer j, i;
       Standard_Real fae, fad, fac;

       math_Vector xi(1, n), dg(1, n), hdg(1, n);
       math_Matrix hessin(1, n, 1, n);
       hessin.Init(0.0);

       math_Vector Temp1(1, n);
       math_Vector Temp2(1, n);
       math_Vector Temp3(1, n);
       math_Vector Temp4(1, n);
       DirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F);

       TheLocation = StartingPoint;
       Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
       if(!Good) { 
         Done = Standard_False;
         TheStatus = math_FunctionError;
         return;
       }
       for(i = 1; i <= n; i++) {
         hessin(i, i) = 1.0;
	 xi(i) = -TheGradient(i);
       }


       for(nbiter = 1; nbiter <= Itermax; nbiter++) {
	 TheMinimum = PreviousMinimum;
         Standard_Boolean IsGood = MinimizeDirection(TheLocation, TheMinimum,
						     TheGradient,
                                                     xi, TheMinimum, F_Dir);
         if(!IsGood) {
           Done = Standard_False;
           TheStatus = math_DirectionSearchError;
           return;
         }
         if(IsSolutionReached(F)) {
           Done = Standard_True;
           TheStatus = math_OK;
           return;
         }
	 if (nbiter == Itermax) {
	   Done = Standard_False;
	   TheStatus = math_TooManyIterations;
	   return;
	 }
         PreviousMinimum = TheMinimum;

	 dg = TheGradient;

         Good = F.Values(TheLocation, TheMinimum, TheGradient);
         if(!Good) { 
           Done = Standard_False;
           TheStatus = math_FunctionError;
           return;
         }

         for(i = 1; i <= n; i++) {
	   dg(i) = TheGradient(i) - dg(i);
	 }
	 for(i = 1; i <= n; i++) {
	   hdg(i) = 0.0;
	   for (j = 1; j <= n; j++) 
	     hdg(i) += hessin(i, j) * dg(j);
	 }
	 fac = fae = 0.0;
	 for(i = 1; i <= n; i++) {
	   fac += dg(i) * xi(i);
	   fae += dg(i) * hdg(i);
	 }
         fac = 1.0 / fac;
         fad = 1.0 / fae;

	 for(i = 1; i <= n; i++) 
	   dg(i) = fac * xi(i) - fad * hdg(i);
	 
         for(i = 1; i <= n; i++) 
           for(j = 1; j <= n; j++)
             hessin(i, j) += fac * xi(i) * xi(j)
               - fad * hdg(i) * hdg(j) + fae * dg(i) * dg(j);

	 for(i = 1; i <= n; i++) {
	   xi(i) = 0.0;
	   for (j = 1; j <= n; j++) xi(i) -= hessin(i, j) * TheGradient(j);
	 }  
       }
       Done = Standard_False;
       TheStatus = math_TooManyIterations;
       return;
   }

    Standard_Boolean math_BFGS::IsSolutionReached(
                           math_MultipleVarFunctionWithGradient&) const {

       return 2.0 * fabs(TheMinimum - PreviousMinimum) <= 
              XTol * (fabs(TheMinimum) + fabs(PreviousMinimum) + EPSZ);
    }

    math_BFGS::math_BFGS(math_MultipleVarFunctionWithGradient& F,
                         const math_Vector& StartingPoint, 
                         const Standard_Real        Tolerance,
                         const Standard_Integer     NbIterations,
                         const Standard_Real        ZEPS) 
                         : TheLocation(1, StartingPoint.Length()),
                           TheGradient(1, StartingPoint.Length()) {

       XTol = Tolerance;
       EPSZ = ZEPS;
       Itermax = NbIterations;
       Perform(F, StartingPoint);
    }
                             
    math_BFGS::math_BFGS(math_MultipleVarFunctionWithGradient& F,
                         const Standard_Real        Tolerance,
                         const Standard_Integer     NbIterations,
                         const Standard_Real        ZEPS) 
                         : TheLocation(1, F.NbVariables()),
                           TheGradient(1, F.NbVariables()) {

       XTol = Tolerance;
       EPSZ = ZEPS;
       Itermax = NbIterations;
    }


    void math_BFGS::Delete()
    {}

    void math_BFGS::Dump(Standard_OStream& o) const {

       o<< "math_BFGS resolution: ";
       if(Done) {
         o << " Status = Done \n";
	 o <<" Location Vector = " << Location() << "\n";
	 o <<" Minimum value = "<< Minimum()<<"\n";
	 o <<" Number of iterations = "<<NbIterations() <<"\n";;
       }
       else {
         o<< " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
       }
    }