summaryrefslogtreecommitdiff
path: root/src/gp/gp_Vec.cxx
blob: 2fc477689092a08a8428e5f95f399c049ca2b57d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
// File gp_Vec.cxx  , JCV 03/06/90
// JCV 30/08/90 Modif passage version C++ 2.0 sur Sun
// JCV 1/10/90 Changement de nom du package vgeom -> gp
// JCV 07/12/90 Modifs suite a l'introduction des classes XYZ et Mat dans gp

#define No_Standard_OutOfRange

#include <gp_Vec.ixx>
#include <gp.hxx>

Standard_Boolean gp_Vec::IsEqual
(const gp_Vec& Other, 
 const Standard_Real LinearTolerance,
 const Standard_Real AngularTolerance) const
{
  if (Magnitude ()       <= LinearTolerance || 
      Other.Magnitude () <= LinearTolerance) {
    Standard_Real val = Magnitude() - Other.Magnitude();
    if (val < 0) val = - val;
    return val <= LinearTolerance;
  }
  else {
    Standard_Real val = Magnitude() - Other.Magnitude();
    if (val < 0) val = - val;
    return val <= LinearTolerance && Angle(Other) <= AngularTolerance;
  }
}    

void gp_Vec::Mirror (const gp_Vec& V)
{
  Standard_Real D = V.coord.Modulus();
  if (D > gp::Resolution()) {
    const gp_XYZ& XYZ = V.coord;
    Standard_Real A = XYZ.X() / D;
    Standard_Real B = XYZ.Y() / D;
    Standard_Real C = XYZ.Z() / D; 
    Standard_Real M1 = 2.0 * A * B;
    Standard_Real M2 = 2.0 * A * C;
    Standard_Real M3 = 2.0 * B * C;
    Standard_Real X = coord.X();
    Standard_Real Y = coord.Y();
    Standard_Real Z = coord.Z();
    coord.SetX(((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z);
    coord.SetY(M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z);
    coord.SetZ(M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z);
  }
}

void gp_Vec::Mirror (const gp_Ax1& A1)
{
  const gp_XYZ& V = A1.Direction().XYZ();
  Standard_Real A = V.X();
  Standard_Real B = V.Y();
  Standard_Real C = V.Z();
  Standard_Real X = coord.X();
  Standard_Real Y = coord.Y();
  Standard_Real Z = coord.Z();
  Standard_Real M1 = 2.0 * A * B;
  Standard_Real M2 = 2.0 * A * C;
  Standard_Real M3 = 2.0 * B * C;
  coord.SetX(((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z);
  coord.SetY(M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z);
  coord.SetZ(M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z);
}

void gp_Vec::Mirror (const gp_Ax2& A2)
{
  gp_XYZ Z      = A2.Direction().XYZ();
  gp_XYZ MirXYZ = Z.Crossed (coord);
  if (MirXYZ.Modulus() <= gp::Resolution()) { coord.Reverse(); }
  else {
    Z.Cross (MirXYZ);
    Mirror (Z);
  }
}

void gp_Vec::Transform(const gp_Trsf& T)
{
  if (T.Form() == gp_Identity || T.Form() == gp_Translation) { }
  else if (T.Form() == gp_PntMirror) { coord.Reverse(); }
  else if (T.Form() == gp_Scale) { coord.Multiply (T.ScaleFactor()); }
  else { coord.Multiply (T.VectorialPart()); }
}

gp_Vec gp_Vec::Mirrored (const gp_Vec& V) const
{
  gp_Vec Vres = *this;
  Vres.Mirror (V);
  return Vres;                     
}

gp_Vec gp_Vec::Mirrored (const gp_Ax1& A1) const
{
  gp_Vec Vres = *this;
  Vres.Mirror (A1);
  return Vres;                     
}

gp_Vec gp_Vec::Mirrored (const gp_Ax2& A2) const
{
  gp_Vec Vres = *this;
  Vres.Mirror (A2);
  return Vres;                     
}