blob: b1e8e3ff5086c14b03903eb027ca63d150268f99 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
// File gp_Dir.cxx , JCV 01/10/90
// JCV 07/12/90 Modifs suite a l'introduction des classes XYZ et Mat dans gp
#include <gp_Dir.ixx>
Standard_Real gp_Dir::Angle (const gp_Dir& Other) const
{
// Commentaires :
// Au dessus de 45 degres l'arccos donne la meilleur precision pour le
// calcul de l'angle. Sinon il vaut mieux utiliser l'arcsin.
// Les erreurs commises sont loin d'etre negligeables lorsque l'on est
// proche de zero ou de 90 degres.
// En 3d les valeurs angulaires sont toujours positives et comprises entre
// 0 et PI
Standard_Real Cosinus = coord.Dot (Other.coord);
if (Cosinus > -0.70710678118655 && Cosinus < 0.70710678118655)
return acos (Cosinus);
else {
Standard_Real Sinus = (coord.Crossed (Other.coord)).Modulus ();
if(Cosinus < 0.0) return Standard_PI - asin (Sinus);
else return asin (Sinus);
}
}
Standard_Real gp_Dir::AngleWithRef (const gp_Dir& Other,
const gp_Dir& Vref) const
{
Standard_Real Ang;
gp_XYZ XYZ = coord.Crossed (Other.coord);
Standard_Real Cosinus = coord.Dot(Other.coord);
Standard_Real Sinus = XYZ.Modulus ();
if (Cosinus > -0.70710678118655 && Cosinus < 0.70710678118655)
Ang = acos (Cosinus);
else {
if(Cosinus < 0.0) Ang = Standard_PI - asin (Sinus);
else Ang = asin (Sinus);
}
if (XYZ.Dot (Vref.coord) >= 0.0) return Ang;
else return -Ang;
}
void gp_Dir::Mirror (const gp_Dir& V)
{
const gp_XYZ& XYZ = V.coord;
Standard_Real A = XYZ.X();
Standard_Real B = XYZ.Y();
Standard_Real C = XYZ.Z();
Standard_Real X = coord.X();
Standard_Real Y = coord.Y();
Standard_Real Z = coord.Z();
Standard_Real M1 = 2.0 * A * B;
Standard_Real M2 = 2.0 * A * C;
Standard_Real M3 = 2.0 * B * C;
Standard_Real XX = ((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z;
Standard_Real YY = M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z;
Standard_Real ZZ = M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z;
coord.SetCoord(XX,YY,ZZ);
}
void gp_Dir::Mirror (const gp_Ax1& A1)
{
const gp_XYZ& XYZ = A1.Direction().coord;
Standard_Real A = XYZ.X();
Standard_Real B = XYZ.Y();
Standard_Real C = XYZ.Y();
Standard_Real X = coord.X();
Standard_Real Y = coord.Y();
Standard_Real Z = coord.Z();
Standard_Real M1 = 2.0 * A * B;
Standard_Real M2 = 2.0 * A * C;
Standard_Real M3 = 2.0 * B * C;
Standard_Real XX = ((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z;
Standard_Real YY = M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z;
Standard_Real ZZ = M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z;
coord.SetCoord(XX,YY,ZZ);
}
void gp_Dir::Mirror (const gp_Ax2& A2)
{
gp_XYZ Z = A2.Direction().XYZ();
gp_XYZ MirXYZ = Z.Crossed (coord);
if (MirXYZ.Modulus() <= gp::Resolution())
{ coord.Reverse(); }
else {
Z.Cross (MirXYZ);
gp_Dir MirDirection (MirXYZ);
Mirror (MirDirection);
}
}
void gp_Dir::Transform (const gp_Trsf& T)
{
if (T.Form() == gp_Identity || T.Form() == gp_Translation) { }
else if (T.Form() == gp_PntMirror) { coord.Reverse(); }
else if (T.Form() == gp_Scale) {
if (T.ScaleFactor() < 0.0) { coord.Reverse(); }
}
else {
coord.Multiply (T.HVectorialPart());
Standard_Real D = coord.Modulus();
coord.Divide(D);
if (T.ScaleFactor() < 0.0) { coord.Reverse(); }
}
}
gp_Dir gp_Dir::Mirrored (const gp_Dir& V) const
{
gp_Dir Vres = *this;
Vres.Mirror (V);
return Vres;
}
gp_Dir gp_Dir::Mirrored (const gp_Ax1& A1) const
{
gp_Dir V = *this;
V.Mirror (A1);
return V;
}
gp_Dir gp_Dir::Mirrored (const gp_Ax2& A2) const
{
gp_Dir V = *this;
V.Mirror (A2);
return V;
}
|