summaryrefslogtreecommitdiff
path: root/src/gp/gp_Ax3.cdl
blob: 2dd12510d444dcbc11848b30e3af957a7ddea4e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
-- File:	gp_Ax3.cdl
-- Created:	Mon Aug  2 18:33:16 1993
-- Author:	Laurent BOURESCHE
--		<lbo@phylox>
---Copyright:	 Matra Datavision 1993


class Ax3   from gp  inherits Storable 

        --- Purpose : Describes a coordinate system in 3D space. Unlike a
        --  gp_Ax2 coordinate system, a gp_Ax3 can be
        -- right-handed ("direct sense") or left-handed ("indirect sense").
        -- A coordinate system is defined by:
        -- -   its origin (also referred to as its "Location point"), and
        -- -   three orthogonal unit vectors, termed the "X
        --   Direction", the "Y Direction" and the "Direction" (also
        --   referred to as the "main Direction").
        -- The "Direction" of the coordinate system is called its
        -- "main Direction" because whenever this unit vector is
        -- modified, the "X Direction" and the "Y Direction" are
        -- recomputed. However, when we modify either the "X
        -- Direction" or the "Y Direction", "Direction" is not modified.
        -- "Direction" is also the "Z Direction".
        -- The "main Direction" is always parallel to the cross
        -- product of its "X Direction" and "Y Direction".
        -- If the coordinate system is right-handed, it satisfies the equation:
        -- "main Direction" = "X Direction" ^ "Y Direction"
        -- and if it is left-handed, it satisfies the equation:
        -- "main Direction" = -"X Direction" ^ "Y Direction"
        -- A coordinate system is used:
        -- -   to describe geometric entities, in particular to position
        --   them. The local coordinate system of a geometric
        --   entity serves the same purpose as the STEP function
        --   "axis placement three axes", or
        -- -   to define geometric transformations.
        -- Note:
        -- -   We refer to the "X Axis", "Y Axis" and "Z Axis",
        --   respectively, as the axes having:
        -- -   the origin of the coordinate system as their origin, and
        -- -   the unit vectors "X Direction", "Y Direction" and
        --    "main Direction", respectively, as their unit vectors.
        -- -   The "Z Axis" is also the "main Axis".
        -- -   gp_Ax2 is used to define a coordinate system that must be always right-handed. 

uses Ax1  from gp,
     Ax2  from gp,
     Dir  from gp,
     Pnt  from gp,
     Trsf from gp,
     Vec  from gp

raises ConstructionError from Standard

is
    
  Create  returns Ax3 from gp;
        --- Purpose : Creates an object corresponding to the reference 
        --            coordinate system (OXYZ).

  Create (A : Ax2 from gp) returns Ax3 from gp;
	---Purpose: Creates  a  coordinate  system from a right-handed
	--          coordinate system.
     
  Create (P : Pnt from gp; N, Vx : Dir from gp)   returns Ax3 from gp
	--- Purpose :  Creates a  right handed axis placement with the
	--  "Location"  point  P  and  two  directions, N    gives the
	--  "Direction" and Vx gives the "XDirection".
        --  Raises ConstructionError if N and Vx are parallel (same or opposite orientation).
    raises ConstructionError;
  

  Create (P : Pnt from gp; V : Dir from gp)  returns Ax3 from gp;
        --- Purpose :
        --  Creates an axis placement with the  "Location" point <P>
        --  and the normal direction <V>.
                            
  XReverse(me : in out)
    ---Purpose: Reverses the X direction of <me>.
  is static;

  YReverse(me : in out)
    ---Purpose: Reverses the Y direction of <me>.
  is static;

  ZReverse(me : in out)
    ---Purpose: Reverses the Z direction of <me>.
  is static;


  SetAxis (me : in out; A1 : Ax1)
        --- Purpose : Assigns the origin and "main Direction" of the axis A1 to
        -- this coordinate system, then recomputes its "X Direction" and "Y Direction".
        -- Note:
        -- -   The new "X Direction" is computed as follows:
        -- new "X Direction" = V1 ^(previous "X Direction" ^ V)
        -- where V is the "Direction" of A1.
        -- -   The orientation of this coordinate system
        --   (right-handed or left-handed) is not modified.
        --  Raises ConstructionError  if the "Direction" of <A1> and the "XDirection" of <me>
        --  are parallel (same or opposite orientation) because it is 
        --  impossible to calculate the new "XDirection" and the new
        --  "YDirection".
     raises ConstructionError
 
     is static;


  SetDirection (me : in out; V : Dir)
        --- Purpose :
        --  Changes the main direction of this coordinate system,
        -- then recomputes its "X Direction" and "Y Direction".
        -- Note:
        -- -   The new "X Direction" is computed as follows:
        -- new "X Direction" = V ^ (previous "X Direction" ^ V).
        -- -   The orientation of this coordinate system (left- or right-handed) is not modified.   
        -- Raises ConstructionError if <V< and the previous "XDirection" are parallel
        --  because it is impossible to calculate the new "XDirection" 
        --  and the new "YDirection".
     raises ConstructionError

     is static;


  SetLocation (me : in out; P : Pnt)   is static;
        --- Purpose :
        --  Changes the "Location" point (origin) of <me>.


  SetXDirection (me : in out; Vx : Dir)
        --- Purpose :
        --  Changes the "Xdirection" of <me>. The main direction 
        --  "Direction" is not modified, the "Ydirection" is modified.
        --  If <Vx> is not normal to the main direction then <XDirection>
        --  is computed as follows XDirection = Direction ^ (Vx ^ Direction).   
    	-- Raises ConstructionError if <Vx> is parallel (same or opposite 
    	-- orientation) to the main direction of <me>
     raises ConstructionError

     is static;


  SetYDirection(me : in out; Vy : Dir)
        ---C++:inline
        --- Purpose :
        --  Changes the "Ydirection" of <me>. The main direction is not 
        --  modified but the "Xdirection" is changed.
        --  If <Vy> is not normal to the main direction then "YDirection"
        --  is computed as  follows 
        --  YDirection = Direction ^ (<Vy> ^ Direction).  
  -- Raises ConstructionError if <Vy> is parallel to the main direction of <me>
     raises ConstructionError

    is static;

  Angle (me; Other : Ax3)  returns Real    is static;
        ---C++:inline 
        --- Purpose :
        --  Computes the angular value between the main direction of
        --  <me> and the main direction of <Other>. Returns the angle
        --  between 0 and PI in radians.

  Axis (me)  returns Ax1         is static;
        ---C++:inline 
        --- Purpose :
        --  Returns the main axis of <me>. It is the "Location" point
        --  and the main "Direction".
    	---C++: return const&

  Ax2 (me) returns Ax2 from gp
        ---Purpose: Computes a right-handed coordinate system with the
        -- same "X Direction" and "Y Direction" as those of this
        -- coordinate system, then recomputes the "main Direction".
        -- If this coordinate system is right-handed, the result
        -- returned is the same coordinate system. If this
        -- coordinate system is left-handed, the result is reversed.
  is static;

  Direction (me)  returns Dir    is static;
        ---C++:inline 
        --- Purpose :
        --  Returns the main direction of <me>. 
    	---C++: return const&


  Location (me)  returns Pnt     is static;
        ---C++:inline 
        --- Purpose :
        --  Returns the "Location" point (origin) of <me>.
    	---C++: return const&


  XDirection (me)  returns Dir   is static;
        ---C++:inline 
        --- Purpose :
        --  Returns the "XDirection" of <me>.
    	---C++: return const&


  YDirection(me)  returns Dir    is static;
        ---C++:inline 
        --- Purpose :
        --  Returns the "YDirection" of <me>.
    	---C++: return const&


  Direct(me) returns Boolean
        ---C++:inline 
	---Purpose: Returns  True if  the  coordinate  system is right-handed. i.e. 
	--          XDirection().Crossed(YDirection()).Dot(Direction()) > 0
  is static;



  IsCoplanar (me; Other : Ax3; LinearTolerance, AngularTolerance : Real)
     returns Boolean
     is static;
        ---C++:inline 
        --- Purpose :
        --  Returns True if 
        --  . the distance between the "Location" point of <me> and
        --    <Other> is lower or equal to LinearTolerance and
        --  . the distance between the "Location" point of <Other> and
        --    <me> is lower or equal to LinearTolerance and
        --  . the main direction of <me> and the main direction of 
        --    <Other> are parallel (same or opposite orientation).


  IsCoplanar (me; A1 : Ax1; LinearTolerance, AngularTolerance : Real)
     returns Boolean
     is static;
        ---C++:inline 
        --- Purpose : Returns True if
        --  . the distance between <me> and the "Location" point of A1
        --    is lower of equal to LinearTolerance and
        --  . the distance between A1 and the "Location" point of <me>
        --    is lower or equal to LinearTolerance and
        --  . the main direction of <me> and the direction of A1 are normal.


  Mirror (me : in out; P : Pnt)          is static;

  Mirrored (me; P : Pnt)  returns Ax3    is static;


        --- Purpose :
        --  Performs the symmetrical transformation of an axis
        --  placement with respect to the point P which is the
        --  center of the symmetry.
        --  Warnings :
        --  The main direction of the axis placement is not changed.
        --  The "XDirection" and the "YDirection" are reversed. 
        --  So the axis placement stay right handed.

  Mirror (me : in out; A1 : Ax1)         is static;

  Mirrored (me; A1 : Ax1)  returns Ax3   is static;

        --- Purpose :
        --  Performs the symmetrical transformation of an axis
        --  placement with respect to an axis placement which
        --  is the axis of the symmetry.
        --  The transformation is performed on the "Location"
        --  point, on the "XDirection" and "YDirection". 
        --  The resulting main "Direction" is the cross product between 
        --  the "XDirection" and the "YDirection" after transformation.
    


  Mirror (me : in out; A2 : Ax2)         is static;

  Mirrored (me; A2 : Ax2)  returns Ax3   is static;

        --- Purpose :
        --  Performs the symmetrical transformation of an axis
        --  placement with respect to a plane.
        --  The axis placement  <A2> locates the plane of the symmetry :
        --  (Location, XDirection, YDirection).
        --  The transformation is performed on the "Location"
        --  point, on the "XDirection" and "YDirection". 
        --  The resulting main "Direction" is the cross product between 
        --  the "XDirection" and the "YDirection" after transformation.


  Rotate (me : in out; A1 : Ax1; Ang : Real)         is static;
  Rotated (me; A1 : Ax1; Ang : Real)  returns Ax3    is static;

        --- Purpose :
        --  Rotates an axis placement. <A1> is the axis of the
        --  rotation . Ang is the angular value of the rotation
        --  in radians.


  Scale (me : in out; P : Pnt; S : Real)             is static;
  Scaled (me; P : Pnt; S : Real)  returns Ax3        is static;
        --- Purpose :
        --  Applies a scaling transformation on the axis placement.
        --  The "Location" point of the axisplacement is modified.
        -- Warnings :
        --  If the scale <S> is negative :
        --   . the main direction of the axis placement is not changed.
        --   . The "XDirection" and the "YDirection" are reversed. 
        --  So the axis placement stay right handed.              

 

  Transform (me : in out; T : Trsf)                  is static;
  Transformed (me; T : Trsf)   returns Ax3           is static;
        --- Purpose :  
        --  Transforms an axis placement with a Trsf.
        --  The "Location" point, the "XDirection" and the
     	--  "YDirection" are transformed with T.  The resulting
    	--  main "Direction" of <me> is the cross product between 
    	--  the "XDirection" and the "YDirection" after transformation.




  Translate (me : in out; V : Vec)                   is static;
  Translated (me; V : Vec)  returns Ax3              is static;
        --- Purpose : 
        --  Translates an axis plaxement in the direction of the vector
        --  <V>. The magnitude of the translation is the vector's magnitude.



  Translate (me : in out; P1, P2 : Pnt)              is static;
  Translated (me; P1, P2 : Pnt)   returns Ax3        is static;
 
        --- Purpose :
        --  Translates an axis placement from the point <P1> to the 
        --  point <P2>.       

fields

   axis  : Ax1 from gp;
   vydir : Dir from gp;
   vxdir : Dir from gp;

end;