1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
-- File: Geom_Transformation.cdl
-- Created: Wed Mar 10 10:59:19 1993
-- Author: JCV
-- <fid@phylox>
-- Copyright: Matra Datavision 1993
class Transformation from Geom inherits TShared from MMgt
---Purpose : Describes how to construct the following elementary transformations
-- - translations,
-- - rotations,
-- - symmetries,
-- - scales.
-- The Transformation class can also be used to
-- construct complex transformations by combining these
-- elementary transformations.
-- However, these transformations can never change
-- the type of an object. For example, the projection
-- transformation can change a circle into an ellipse, and
-- therefore change the real type of the object. Such a
-- transformation is forbidden in this environment and
-- cannot be a Geom_Transformation.
-- The transformation can be represented as follow :
--
-- V1 V2 V3 T
-- | a11 a12 a13 a14 | | x | | x'|
-- | a21 a22 a23 a24 | | y | | y'|
-- | a31 a32 a33 a34 | | z | = | z'|
-- | 0 0 0 1 | | 1 | | 1 |
--
-- where {V1, V2, V3} defines the vectorial part of the
-- transformation and T defines the translation part of
-- the transformation.
-- Note: Geom_Transformation transformations
-- provide the same kind of "geometric" services as
-- gp_Trsf ones but have more complex data structures.
-- The geometric objects provided by the Geom
-- package use gp_Trsf transformations in the syntaxes
-- Transform and Transformed.
-- Geom_Transformation transformations are used in
-- a context where they can be shared by several
-- objects contained inside a common data structure.
uses Ax1 from gp,
Ax2 from gp,
Ax3 from gp,
Pnt from gp,
Trsf from gp,
TrsfForm from gp,
Vec from gp
raises ConstructionError from Standard,
OutOfRange from Standard
is
Create returns mutable Transformation;
---Purpose : Creates an identity transformation.
Create (T : Trsf) returns mutable Transformation;
---Purpose : Creates a transient copy of T.
SetMirror (me : mutable; P : Pnt);
---Purpose :
-- Makes the transformation into a symmetrical transformation
-- with respect to a point P.
-- P is the center of the symmetry.
SetMirror (me : mutable; A1 : Ax1);
---Purpose :
-- Makes the transformation into a symmetrical transformation
-- with respect to an axis A1.
-- A1 is the center of the axial symmetry.
SetMirror (me : mutable; A2 : Ax2);
---Purpose :
-- Makes the transformation into a symmetrical transformation
-- with respect to a plane. The plane of the symmetry is
-- defined with the axis placement A2. It is the plane
-- (Location, XDirection, YDirection).
SetRotation (me : mutable; A1 : Ax1; Ang : Real);
---Purpose :
-- Makes the transformation into a rotation.
-- A1 is the axis rotation and Ang is the angular value
-- of the rotation in radians.
SetScale (me : mutable; P : Pnt; S : Real);
---Purpose :
-- Makes the transformation into a scale. P is the center of
-- the scale and S is the scaling value.
SetTransformation (me : mutable; FromSystem1, ToSystem2 : Ax3);
---Purpose :
-- Makes a transformation allowing passage from the coordinate
-- system "FromSystem1" to the coordinate system "ToSystem2".
--- Example :
-- In a C++ implementation :
-- Real x1, y1, z1; // are the coordinates of a point in the
-- // local system FromSystem1
-- Real x2, y2, z2; // are the coordinates of a point in the
-- // local system ToSystem2
-- gp_Pnt P1 (x1, y1, z1)
-- Geom_Transformation T;
-- T.SetTransformation (FromSystem1, ToSystem2);
-- gp_Pnt P2 = P1.Transformed (T);
-- P2.Coord (x2, y2, z2);
SetTransformation (me : mutable; ToSystem : Ax3);
---Purpose :
-- Makes the transformation allowing passage from the basic
-- coordinate system
-- {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
-- to the local coordinate system defined with the Ax2 ToSystem.
-- Same utilisation as the previous method. FromSystem1 is
-- defaulted to the absolute coordinate system.
SetTranslation (me : mutable; V : Vec);
---Purpose :
-- Makes the transformation into a translation.
-- V is the vector of the translation.
SetTranslation(me : mutable; P1, P2 : Pnt);
---Purpose :
-- Makes the transformation into a translation from the point
-- P1 to the point P2.
SetTrsf (me : mutable; T : Trsf);
---Purpose : Converts the gp_Trsf transformation T into this transformation.
IsNegative (me) returns Boolean;
---Purpose : Checks whether this transformation is an indirect
-- transformation: returns true if the determinant of the
-- matrix of the vectorial part of the transformation is less than 0.
Form (me) returns TrsfForm;
---Purpose : Returns the nature of this transformation as a value
-- of the gp_TrsfForm enumeration.
ScaleFactor (me) returns Real;
---Purpose : Returns the scale value of the transformation.
Trsf (me) returns Trsf;
---Purpose :
-- Returns a non transient copy of <me>.
---C++: return const&
Value (me; Row, Col : Integer) returns Real
---Purpose :
-- Returns the coefficients of the global matrix of tranformation.
-- It is a 3 rows X 4 columns matrix.
raises OutOfRange;
---Purpose :
-- Raised if Row < 1 or Row > 3 or Col < 1 or Col > 4
---Purpose :
-- Computes the reverse transformation.
Invert (me : mutable)
raises ConstructionError;
---Purpose :
-- Raised if the the transformation is singular. This means that
-- the ScaleFactor is lower or equal to Resolution from
-- package gp.
Inverted (me) returns mutable Transformation
raises ConstructionError;
---Purpose :
-- Raised if the the transformation is singular. This means that
-- the ScaleFactor is lower or equal to Resolution from
-- package gp.
Multiplied (me; Other : Transformation) returns mutable Transformation;
---Purpose :
-- Computes the transformation composed with Other and <me>.
-- <me> * Other.
-- Returns a new transformation
Multiply (me : mutable; Other : Transformation);
---Purpose :
-- Computes the transformation composed with Other and <me> .
-- <me> = <me> * Other.
Power (me : mutable; N : Integer)
---Purpose :
-- Computes the following composition of transformations
-- if N > 0 <me> * <me> * .......* <me>.
-- if N = 0 Identity
-- if N < 0 <me>.Invert() * .........* <me>.Invert()
raises ConstructionError;
---Purpose :
-- Raised if N < 0 and if the transformation is not inversible
Powered (me; N : Integer) returns Transformation
raises ConstructionError;
---Purpose :
-- Raised if N < 0 and if the transformation is not inversible
PreMultiply (me : mutable; Other : Transformation);
---Purpose :
-- Computes the matrix of the transformation composed with
-- <me> and Other. <me> = Other * <me>
Transforms (me; X, Y, Z : in out Real);
---Purpose :
-- Applies the transformation <me> to the triplet {X, Y, Z}.
Copy (me) returns mutable Transformation;
---Purpose: Creates a new object which is a copy of this transformation.
fields
gpTrsf : Trsf;
end;
|