summaryrefslogtreecommitdiff
path: root/src/FairCurve/FairCurve_MinimalVariation.cxx
blob: 572fe51b256550aa20214ffa3d7caf9f034a0a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// File:	FairCurve_MinimalVariation.cxx
// Created:	Mon Feb 26 13:54:16 1996
// Author:	Philippe MANGIN


#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif

#include <FairCurve_MinimalVariation.ixx>

#include <BSplCLib.hxx>
#include <PLib.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <FairCurve_BattenLaw.hxx>
#include <FairCurve_EnergyOfMVC.hxx>
#include <FairCurve_Newton.hxx>
#include <math_Matrix.hxx>
#include <Precision.hxx>
#include <TColgp_HArray1OfPnt2d.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>

//======================================================================================
FairCurve_MinimalVariation::FairCurve_MinimalVariation(const gp_Pnt2d& P1,
						       const gp_Pnt2d& P2, 
						       const Standard_Real Heigth,
						       const Standard_Real Slope,
						       const Standard_Real PhysicalRatio)
//======================================================================================
                                       :FairCurve_Batten(P1, P2, Heigth, Slope),
					OldCurvature1(0), OldCurvature2(0),
                                        OldPhysicalRatio(PhysicalRatio),
					NewCurvature1(0),  NewCurvature2(0),  
					NewPhysicalRatio(PhysicalRatio)
{
}

//======================================================================================
Standard_Boolean FairCurve_MinimalVariation::Compute(FairCurve_AnalysisCode& ACode,
						     const Standard_Integer NbIterations,
						     const Standard_Real Tolerance)
//======================================================================================
{
  Standard_Boolean Ok=Standard_True, End=Standard_False;
  Standard_Real AngleMax = 0.7;      // parametre reglant la fonction d'increment 
                                     // ( 40 degrees )
  Standard_Real AngleMin = 2*PI/100; // parametre reglant la fonction d'increment 
                                     // un tour complet ne doit pas couter plus de 
                                     // 100 pas.
  Standard_Real DAngle1, DAngle2,  DRho1, DRho2, Ratio, Fraction, Toler;
  Standard_Real OldDist, NewDist;

//  Boucle d'Homotopie : calcul du pas et optimisation 

  while (Ok && !End) {
     DAngle1 = NewAngle1-OldAngle1;
     DAngle2 = NewAngle2-OldAngle2;
     DRho1 = NewCurvature1 - OldCurvature1;
     DRho2 = NewCurvature2 - OldCurvature2;
     Ratio = 1;

     if (NewConstraintOrder1>0) {
        Fraction = Abs(DAngle1) / (AngleMax * Exp (-Abs(OldAngle1)/AngleMax) + AngleMin);
        if (Fraction > 1) Ratio = 1 / Fraction;
     }
     if (NewConstraintOrder2>0) {
        Fraction = Abs(DAngle2) / (AngleMax * Exp (-Abs(OldAngle2)/AngleMax) + AngleMin);
        if (Fraction > 1)  Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
     }
     
     OldDist = OldP1.Distance(OldP2);
     NewDist = NewP1.Distance(NewP2);
     Fraction = Abs(OldDist-NewDist) / (OldDist/3);
     if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction); 

     if (NewConstraintOrder1>1) {
       Fraction = Abs(DRho1)*OldDist / (2+Abs(OldAngle1) + Abs(OldAngle2));   
       if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
     }

     if (NewConstraintOrder2>1) {
       Fraction = Abs(DRho2)*OldDist/ (2+Abs(OldAngle1) + Abs(OldAngle2));   
       if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction); 
     }

     gp_Vec2d DeltaP1(OldP1, NewP1) , DeltaP2(OldP2, NewP2);
     if ( Ratio == 1) {
        End = Standard_True;
        Toler = Tolerance;
      }
     else {
       DeltaP1 *= Ratio;
       DeltaP2 *= Ratio;
       DAngle1 *= Ratio;
       DAngle2 *= Ratio;
       DRho1 *= Ratio;
       DRho2 *= Ratio;
       Toler =  10 * Tolerance;
     }
 
     Ok = Compute( DeltaP1, DeltaP2, 
	           DAngle1, DAngle2,
		   DRho1,   DRho2,           
	           ACode,
                   NbIterations,
                   Toler);

     if (ACode != FairCurve_OK) End = Standard_True;
     if (NewFreeSliding) NewSlidingFactor = OldSlidingFactor;
     if (NewConstraintOrder1 == 0) NewAngle1 = OldAngle1;
     if (NewConstraintOrder1 < 2)  NewCurvature1 = OldCurvature1;
     if (NewConstraintOrder2 == 0) NewAngle2 = OldAngle2; 
     if (NewConstraintOrder2 < 2)  NewCurvature2 = OldCurvature2;
  }
  myCode = ACode; 
  return Ok;
}

//======================================================================================
Standard_Boolean FairCurve_MinimalVariation::Compute(const gp_Vec2d& DeltaP1,
						     const gp_Vec2d& DeltaP2,
						     const Standard_Real DeltaAngle1,
						     const Standard_Real DeltaAngle2,
						     const Standard_Real DeltaCurvature1,
						     const Standard_Real DeltaCurvature2,
						           FairCurve_AnalysisCode& ACode,
						     const Standard_Integer NbIterations,
						     const Standard_Real Tolerance)
//======================================================================================
{
 Standard_Boolean Ok, OkCompute=Standard_True;
 ACode = FairCurve_OK;

// Deformation de la courbe par ajout d'un polynome d'interpolation
   Standard_Integer L = 2 + NewConstraintOrder1 + NewConstraintOrder2,
                    kk, ii;
//                    NbP1 = Poles->Length()-1, kk, ii;
#ifdef DEB
   Standard_Integer NbP1 = 
#endif
                           Poles->Length() ;
#ifdef DEB
   NbP1 = NbP1 - 1 ;
#endif
   TColStd_Array1OfReal knots (1,2);
   knots(1) = 0;
   knots(2) = 1;
   TColStd_Array1OfInteger mults (1,2);
   TColgp_Array1OfPnt2d HermitePoles(1,L);
   TColgp_Array1OfPnt2d Interpolation(1,L);
   Handle(TColgp_HArray1OfPnt2d) NPoles = new  TColgp_HArray1OfPnt2d(1, Poles->Length());

// Polynomes d'Hermites
   math_Matrix HermiteCoef(1, L, 1, L);
   Ok = PLib::HermiteCoefficients(0,1, NewConstraintOrder1,  NewConstraintOrder2,
                                  HermiteCoef);
   if (!Ok) return Standard_False;

// Definition des contraintes d'interpolation
   TColgp_Array1OfXY ADelta(1,L);
   gp_Vec2d VOld(OldP1, OldP2), VNew( -(OldP1.XY()+DeltaP1.XY()) + (OldP2.XY()+DeltaP2.XY()) );
   Standard_Real DAngleRef = VNew.Angle(VOld);
   Standard_Real DAngle1 = DeltaAngle1 - DAngleRef,
                 DAngle2 = DAngleRef   - DeltaAngle2; // Correction du Delta par le Delta induit par les points.


   ADelta(1) = DeltaP1.XY();
   kk = 2;
   if (NewConstraintOrder1>0) {
      // rotation de la derive premiereDeltaAngle1
      gp_Vec2d OldDerive( Poles->Value(Poles->Lower()), 
                          Poles->Value(Poles->Lower()+1) );
      OldDerive *= Degree / (Knots->Value(Knots->Lower()+1)-Knots->Value(Knots->Lower()) ); 
      ADelta(kk) = (OldDerive.Rotated(DAngle1) -  OldDerive).XY();
      kk += 1;
   
      if (NewConstraintOrder1>1) {
	 // rotation de la derive seconde + ajout 
         gp_Vec2d OldSeconde( Poles->Value(Poles->Lower()).XY() + Poles->Value(Poles->Lower()+2).XY()  
                            - 2*Poles->Value(Poles->Lower()+1).XY() );
         OldSeconde *=  Degree*( Degree-1)
	             /  pow (Knots->Value(Knots->Lower()+1)-Knots->Value(Knots->Lower()), 2);
         Standard_Real CPrim = OldDerive.Magnitude();
         ADelta(kk) = ( OldSeconde.Rotated(DAngle1) -  OldSeconde 
		      + DeltaCurvature1*CPrim*OldDerive.Rotated(PI/2+DAngle1) ).XY();
         kk += 1;
      }
   }
   ADelta(kk) = DeltaP2.XY();
   kk += 1;  
   if (NewConstraintOrder2>0) {
      gp_Vec2d OldDerive( Poles->Value(Poles->Upper()-1), 
                          Poles->Value(Poles->Upper()) );
      OldDerive *= Degree / (Knots->Value(Knots->Upper()) - Knots->Value(Knots->Upper()-1) );
      ADelta(kk) = (OldDerive.Rotated(DAngle2) -  OldDerive).XY();
      kk += 1;
      if (NewConstraintOrder2>1) {
	 // rotation de la derive seconde + ajout 
         gp_Vec2d OldSeconde( Poles->Value(Poles->Upper()).XY() + Poles->Value(Poles->Upper()-2).XY()  
                            - 2*Poles->Value(Poles->Upper()-1).XY() );
         OldSeconde *=  Degree*( Degree-1)
	             /  pow (Knots->Value(Knots->Upper())-Knots->Value(Knots->Upper()-1), 2);
         Standard_Real CPrim = OldDerive.Magnitude();
         ADelta(kk) = ( OldSeconde.Rotated(DAngle2) -  OldSeconde 
		      + DeltaCurvature2*CPrim*OldDerive.Rotated(PI/2+DAngle2) ).XY();
         kk += 1;
      }
   }

// Interpolation
  gp_XY AuxXY (0,0);
  for (ii=1; ii<=L; ii++) {
      AuxXY.SetCoord(0.0, 0);
      for (kk=1; kk<=L; kk++) {
          AuxXY +=  HermiteCoef(kk, ii) * ADelta(kk);       
      }
      Interpolation(ii).SetXY(AuxXY);
  }
// Conversion en BSpline de meme structure que le batten courant.
  PLib::CoefficientsPoles(Interpolation,  PLib::NoWeights(), 
                          HermitePoles,  PLib::NoWeights()); 

  mults.Init(L);

  Handle(Geom2d_BSplineCurve) DeltaCurve = 
    new  Geom2d_BSplineCurve( HermitePoles, 
                              knots, mults, L-1);

  DeltaCurve->IncreaseDegree(Degree);
  if (Mults->Length()>2) {
     DeltaCurve->InsertKnots(Knots->Array1(), Mults->Array1(), 1.e-10);
  }

// Sommation
  DeltaCurve->Poles( NPoles->ChangeArray1() );
  for (kk= NPoles->Lower(); kk<=NPoles->Upper(); kk++) { 
     NPoles->ChangeValue(kk).ChangeCoord() += Poles->Value(kk).Coord(); 
   }

// Donnees intermediaires

 Standard_Real Angle1, Angle2, SlidingLength, 
               Alph1 =  OldAngle1 + DeltaAngle1, 
               Alph2 =  OldAngle2 + DeltaAngle2,
               Rho1 =   OldCurvature1 + DeltaCurvature1,
               Rho2 =   OldCurvature2 + DeltaCurvature2,
               Dist  =  NPoles->Value(NPoles->Upper()) 
                      . Distance( NPoles->Value( NPoles->Lower() ) ),
	       LReference = SlidingOfReference(Dist, Alph1, Alph2);
 gp_Vec2d Ox(1, 0),
                P1P2 (  NPoles->Value(NPoles->Upper()).Coord()
                      - NPoles->Value(NPoles->Lower()).Coord() );

// Angles par rapport a l'axe ox

 Angle1 =  Ox.Angle(P1P2) + Alph1;
 Angle2 = -Ox.Angle(P1P2) + Alph2;

// Calcul de la longeur de glissement (impose ou intiale);
 
 if (!NewFreeSliding) {
    SlidingLength = NewSlidingFactor * LReference;
  }
 else {
   if (OldFreeSliding) {
     SlidingLength = OldSlidingFactor *  LReference;
   }
   else {
     SlidingLength = SlidingOfReference(Dist, Alph1, Alph2);
   }
 }


     
// Energie et vecteurs d'initialisation
 FairCurve_BattenLaw LBatten (NewHeight, NewSlope, SlidingLength ); 
 FairCurve_EnergyOfMVC EMVC (Degree+1, Flatknots, NPoles,  
			     NewConstraintOrder1,  NewConstraintOrder2, 
			     LBatten, NewPhysicalRatio, SlidingLength, NewFreeSliding,
                             Angle1, Angle2, Rho1, Rho2);
 math_Vector VInit (1, EMVC.NbVariables());

 // La valeur ci-dessous donne une idee de la plus petie valeur propre
 //   du critere de flexion.
 Standard_Real VConvex = 0.01 * pow(NewHeight / SlidingLength, 3);
 if (VConvex < 1.e-12) {VConvex = 1.e-12;}

 Ok = EMVC.Variable(VInit);
 
// Minimisation
 FairCurve_Newton Newton(EMVC,
			 Tolerance*(P1P2.Magnitude()/10),
			 Tolerance,
			 NbIterations,
			 VConvex);
 Newton.Perform(EMVC, VInit);
 Ok = Newton.IsDone();
 
 if (Ok) {
    gp_Vec2d Tangente, PseudoNormale;
    Poles = NPoles;
    Newton.Location(VInit);

    if (NewFreeSliding) { OldSlidingFactor = VInit(VInit.Upper()) / LReference;}
    else                { OldSlidingFactor = NewSlidingFactor; }

    if (NewConstraintOrder1 < 2) {
       Tangente.SetXY(  Poles->Value(Poles->Lower()+1).XY()
                      - Poles->Value(Poles->Lower()).XY() );

       if (NewConstraintOrder1 == 0) {OldAngle1 = P1P2.Angle(Tangente);}
       else {OldAngle1 = Alph1;}

       PseudoNormale.SetXY ( Poles->Value(Poles->Lower()).XY()
                            - 2 * Poles->Value(Poles->Lower()+1).XY()
		            + Poles->Value(Poles->Lower()+2).XY());
       OldCurvature1 = (((double)Degree-1) /Degree) * (Tangente.Normalized()^PseudoNormale)
	               / Tangente.SquareMagnitude();
     }
    else {OldCurvature1 = Rho1;
	  OldAngle1 = Alph1; }

    if (NewConstraintOrder2 < 2) {
       Tangente.SetXY ( Poles->Value(Poles->Upper()).XY()
                      - Poles->Value(Poles->Upper()-1).XY() );
       if (NewConstraintOrder2 == 0) OldAngle2 = (-Tangente).Angle(-P1P2);
       else { OldAngle2 = Alph2;}
       PseudoNormale.SetXY ( Poles->Value(Poles->Upper()).XY()
                            - 2 * Poles->Value(Poles->Upper()-1).XY()
		            + Poles->Value(Poles->Upper()-2).XY());
       OldCurvature2 = (((double)Degree-1) /Degree) * (Tangente.Normalized()^PseudoNormale)
	             / Tangente.SquareMagnitude();
     }
    else { OldAngle2 = Alph2;
	   OldCurvature2 = Rho2;
    }

    OldP1 = Poles->Value(Poles->Lower());
    OldP2 = Poles->Value(Poles->Upper());
    OldConstraintOrder1 = NewConstraintOrder1;
    OldConstraintOrder2 = NewConstraintOrder2;
    OldFreeSliding      = NewFreeSliding;
    OldSlope = NewSlope;
    OldHeight = NewHeight;
    OldPhysicalRatio =  NewPhysicalRatio;
  }
  else {
    Standard_Real V;
    ACode = EMVC.Status();
    if (!LBatten.Value(0, V) || !LBatten.Value(1, V)) {
       ACode = FairCurve_NullHeight;
    }
    else { OkCompute = Standard_False;}
    return OkCompute;
  }

 Ok = EMVC.Variable(VInit);

 // Traitement de la non convergence
 if (!Newton.IsConverged()) {
    ACode = FairCurve_NotConverged;
  }


 // Prevention du glissement infinie
 if (NewFreeSliding &&  VInit(VInit.Upper()) > 2*LReference) ACode = FairCurve_InfiniteSliding;  
    

// Insertion eventuelle de Noeuds
 Standard_Boolean  NewKnots = Standard_False;
 Standard_Integer NbKnots = Knots->Length();
 Standard_Real ValAngles = (Abs(OldAngle1) +  Abs(OldAngle2) 
                         + 2 * Abs(OldAngle2 - OldAngle1) ) ;
 while ( ValAngles > (2*(NbKnots-2) + 1)*(1+2*NbKnots) ) {
   NewKnots = Standard_True;
   NbKnots += NbKnots-1;
 }

 if  (NewKnots) {  
   Handle(Geom2d_BSplineCurve) NewBS = 
    new  Geom2d_BSplineCurve( NPoles->Array1(), Knots->Array1(), 
			      Mults->Array1(), Degree);

   Handle(TColStd_HArray1OfInteger) NMults  =
      new TColStd_HArray1OfInteger (1,NbKnots);
   NMults->Init(Degree-3);

    Handle(TColStd_HArray1OfReal) NKnots  =
      new TColStd_HArray1OfReal (1,NbKnots);
   for (ii=1; ii<=NbKnots; ii++) {
       NKnots->ChangeValue(ii) = (double) (ii-1) / (NbKnots-1);
   } 

   NewBS -> InsertKnots(NKnots->Array1(), NMults->Array1(), 1.e-10);
   Handle(TColgp_HArray1OfPnt2d) NPoles = 
      new  TColgp_HArray1OfPnt2d(1, NewBS->NbPoles());
   NewBS -> Poles( NPoles->ChangeArray1() );
   NewBS -> Multiplicities( NMults->ChangeArray1() );
   NewBS -> Knots( NKnots->ChangeArray1() );
   Handle(TColStd_HArray1OfReal) FKnots  =
      new TColStd_HArray1OfReal (1, NewBS->NbPoles() + Degree+1);
   NewBS -> KnotSequence( FKnots->ChangeArray1()); 

   Poles = NPoles;
   Mults = NMults;
   Knots = NKnots;
   Flatknots = FKnots;		      
 } 


// Pour d'eventuelle debug
//  Newton.Dump(cout);
   
 return OkCompute;
} 


//======================================================================================
void FairCurve_MinimalVariation::Dump(Standard_OStream& o) const 
//======================================================================================
{

o << "  MVCurve      |"; o.width(7); o<< "Old " << " | " << "  New" << endl;
o << "  P1    X      |"; o.width(7); o<<  OldP1.X() << " | " << NewP1.X() << endl;
o << "        Y      |"; o.width(7); o<<  OldP1.Y() << " | " << NewP1.Y() << endl;
o << "  P2    X      |"; o.width(7); o<<  OldP2.X() << " | " << NewP2.X() << endl;
o << "        Y      |"; o.width(7); o<<  OldP2.Y() << " | " << NewP2.Y() << endl;
o << "      Angle1   |"; o.width(7); o<<  OldAngle1 << " | " << NewAngle1 << endl;
o << "      Angle2   |"; o.width(7); o<<  OldAngle2 << " | " << NewAngle2 << endl;
o << " Curvature1    |"; o.width(7); o<<  OldCurvature1 << " | " << NewCurvature1 << endl;
o << " Curvature2    |"; o.width(7); o<<  OldCurvature2 << " | " << NewCurvature2 << endl;
o << "      Height   |"; o.width(7); o<<  OldHeight << " | " << NewHeight << endl;
o << "      Slope    |"; o.width(7); o<<  OldSlope  << " | " << NewSlope << endl; 
o << " PhysicalRatio |"; o.width(7); o<<  OldPhysicalRatio << " | " << NewPhysicalRatio << endl;
o << " SlidingFactor |"; o.width(7); o<<  OldSlidingFactor << " | " << NewSlidingFactor << endl;
o << " FreeSliding   |"; o.width(7); o<<  OldFreeSliding << " | " << NewFreeSliding << endl; 
o << " ConstrOrder1  |"; o.width(7); o<<  OldConstraintOrder1 << " | " << NewConstraintOrder1 << endl; 
o << " ConstrOrder2  |"; o.width(7); o<<  OldConstraintOrder2 << " | " << NewConstraintOrder2 << endl;
 switch (myCode) {
   case  FairCurve_OK : 
     o << "AnalysisCode : Ok" << endl;
     break;
   case  FairCurve_NotConverged : 
     o << "AnalysisCode : NotConverged" << endl;
     break;
   case  FairCurve_InfiniteSliding : 
     o << "AnalysisCode : InfiniteSliding" << endl;
     break;
   case  FairCurve_NullHeight : 
     o << "AnalysisCode : NullHeight" << endl;
     break;
     }   
}