summaryrefslogtreecommitdiff
path: root/src/FairCurve/FairCurve_DistributionOfTension.cxx
blob: c5bf8694a987efe9b6420eea9a93d4b88ceaa7b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// 30-01-1996 : PMN Version originale

#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif

#include <FairCurve_DistributionOfTension.ixx>


#include <gp_XY.hxx>
#include <gp_Pnt2d.hxx>
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <BSplCLib.hxx>



 FairCurve_DistributionOfTension::FairCurve_DistributionOfTension(const Standard_Integer BSplOrder,
								  const Handle(TColStd_HArray1OfReal)& FlatKnots, 
								  const Handle(TColgp_HArray1OfPnt2d)& Poles,
								  const Standard_Integer DerivativeOrder,
								  const Standard_Real LengthSliding, 
								  const FairCurve_BattenLaw& Law, 
								  const Standard_Integer NbValAux,
								  const Standard_Boolean Uniform ) :
                                   FairCurve_DistributionOfEnergy(BSplOrder,  
								  FlatKnots, 
								  Poles, 
								  DerivativeOrder,
								  NbValAux) ,
								  MyLengthSliding (LengthSliding),  
								  MyLaw (Law)
{
 if (Uniform) {MyLaw.Value(0.5, MyHeight);} // it used in MVC to avoid Parametrization Problemes
 else         {MyHeight = 0;}
}



Standard_Boolean FairCurve_DistributionOfTension::Value(const math_Vector& TParam, math_Vector& FTension)
{
  Standard_Boolean Ok = Standard_True;
  Standard_Integer ier, ii, jj, kk;
  gp_XY CPrim  (0., 0.);
  Standard_Integer  LastGradientIndex, FirstNonZero, LastZero; 

  // (0.0) initialisations generales
  FTension.Init(0.0);
  math_Matrix Base(1, 3, 1, MyBSplOrder ); // On shouhaite utiliser la derive premieres
                                           // Dans EvalBsplineBasis C' <=> DerivOrder = 2
                                           // et il faut ajouter 1 rang dans la matrice Base => 3 rang
   
  ier  =  BSplCLib::EvalBsplineBasis( 1, 1,  MyBSplOrder, 
                                    MyFlatKnots->Array1(), TParam(TParam.Lower()),
                                    FirstNonZero, Base );
  if (ier != 0) return Standard_False;
  LastZero = FirstNonZero - 1;
  FirstNonZero = 2*LastZero+1;

  // (0.1) evaluation de CPrim
  for (ii= 1; ii<= MyBSplOrder; ii++) {
      CPrim += Base(2, ii) * MyPoles->Value(ii+LastZero).Coord();
      }

  // (1) Evaluation de la tension locale --------------------------------
  Standard_Real NormeCPrim = CPrim.Modulus();
  Standard_Real Hauteur, Difference;

  if (MyHeight > 0) {Hauteur = MyHeight;} // it used in MVC to avoid Parametrization Problemes
  else { 
    Ok = MyLaw.Value (TParam(TParam.Lower()), Hauteur); 
    if (!Ok) return Ok;
  }
  Difference = NormeCPrim - MyLengthSliding;
 
  FTension(FTension.Lower()) = Hauteur * pow(Difference, 2) / MyLengthSliding ;

  if (MyDerivativeOrder >= 1) {
  // (2) Evaluation du gradient de la tension locale ----------------------
      math_Vector GradDifference (1, 2*MyBSplOrder+MyNbValAux);
      Standard_Real Xaux, Yaux, Facteur;

      Xaux = CPrim.X() / NormeCPrim;
      Yaux = CPrim.Y() / NormeCPrim;
      Facteur = 2 * Hauteur * Difference / MyLengthSliding;

      kk = FTension.Lower() + FirstNonZero;
      jj = 1;
      for (ii=1; ii<= MyBSplOrder; ii++) {
	     GradDifference(jj)   = Base(2, ii) * Xaux;
             FTension(kk) = Facteur *  GradDifference(jj);
             jj +=1;
	     GradDifference(jj) = Base(2, ii) * Yaux;
             FTension(kk+1) = Facteur *  GradDifference(jj);
             jj += 1;
             kk += 2;
      }
      if (MyNbValAux == 1) {
         LastGradientIndex = FTension.Lower() + 2*MyPoles->Length() + 1;
         GradDifference( GradDifference.Upper()) =  (1 - pow( NormeCPrim/MyLengthSliding, 2));
         FTension(LastGradientIndex) = Hauteur * GradDifference(GradDifference.Upper());        
       }

      else { LastGradientIndex = FTension.Lower() + 2*MyPoles->Length(); }


      if (MyDerivativeOrder >= 2) { 
   
// (3) Evaluation du Hessien de la tension locale ----------------------

         Standard_Real FacteurX =  Difference * (1-pow(Xaux,2)) / NormeCPrim;
         Standard_Real FacteurY =  Difference * (1-pow(Yaux,2)) / NormeCPrim;
         Standard_Real FacteurXY = - Difference * Xaux*Yaux / NormeCPrim;
         Standard_Real Produit;
         Standard_Integer k1, k2;
   
         Facteur = 2 * Hauteur / MyLengthSliding;

         kk = FirstNonZero;
         k2 = LastGradientIndex + (kk-1)*kk/2;

         for (ii=2; ii<= 2*MyBSplOrder; ii+=2) {
	   k1 = k2+FirstNonZero;
           k2 = k1+kk;
           kk += 2;              
           for (jj=2; jj< ii; jj+=2) {
             Produit =  Base(2, ii/2) *  Base(2, jj/2);

	     FTension(k1) = Facteur * ( GradDifference(ii-1)*GradDifference(jj-1)
                                      + FacteurX * Produit) ;  // derivation en XiXj
             k1++;
	     FTension(k1) = Facteur * ( GradDifference(ii)*GradDifference(jj-1)	
                                      + FacteurXY * Produit); // derivation en YiXj
	     k1++;
	     FTension(k2) = Facteur * ( GradDifference(ii-1)*GradDifference(jj)
                                    + FacteurXY * Produit); // derivation en XiYj
             k2++;
	     FTension(k2) = Facteur * ( GradDifference(ii)*GradDifference(jj)
                                      + FacteurY * Produit); // derivation en YiYj
	     k2++;
	     }
         // cas ou jj = ii : remplisage en triangle
             Produit =  pow (Base(2, ii/2), 2);

	     FTension(k1) = Facteur * ( GradDifference(ii-1)*GradDifference(ii-1)
                                      + FacteurX * Produit) ;  // derivation en XiXi
	     FTension(k2) = Facteur * ( GradDifference(ii)*GradDifference(ii-1)
                                      + FacteurXY * Produit); // derivation en XiYi
             k2++;
	     FTension(k2) = Facteur * ( GradDifference(ii)*GradDifference(ii)
                                      + FacteurY * Produit); // derivation en YiYi
	 }
         if (MyNbValAux == 1) {
           FacteurX = -2*CPrim.X()*Hauteur / pow (MyLengthSliding, 2);
           FacteurY = -2*CPrim.Y()*Hauteur / pow (MyLengthSliding, 2);

           ii = LastGradientIndex-FTension.Lower();
	   kk = LastGradientIndex + (ii-1)*ii/2 +  FirstNonZero;
	   for (ii=1; ii<= MyBSplOrder; ii++) {
             FTension(kk) = FacteurX * Base(2, ii);
             kk ++;
             FTension(kk) = FacteurY * Base(2, ii);
             kk ++;
	   }
           FTension(FTension.Upper()) = 2 * Hauteur * pow (NormeCPrim/MyLengthSliding, 2)
	                              / MyLengthSliding;
	 }
       }
    }
          
// sortie standard           
  return Ok;
}