1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
// File: BooleanOperations_OnceExplorer.cxx
// Created: Thu Sep 7 17:13:36 2000
// Author: Vincent DELOS
// <vds@bulox.paris1.matra-dtv.fr>
#include <BooleanOperations_OnceExplorer.ixx>
//#define theStackSize (20)
const static Standard_Integer theStackSize=20;
#define BITFLAG(n) (1 << (n)) // creation of 2 power n.
#define BITSET(word,mask) (word) |= (mask) // to set a bit to 1 in word using mask.
#define BITCLEAR(word,mask) (word) &= ~(mask) // to set a bit to 0 in word using mask.
#define BITISSET(word,mask) ((word) & (mask)) // returns the value of the bit corresponding to mask.
#define LEMOT(id) ((id) >> 5) // the number of the integer we will work on.
#define LEBIT(id) (BITFLAG((id) & 31)) // the number of the bit we will work on (2 power (id%32)).
#define CC0BIT(id,anArray) BITCLEAR(anArray[LEMOT(id)],LEBIT(id)) // sets to 0 the bit number id in anArray.
#define CC1BIT(id,anArray) BITSET(anArray[LEMOT(id)],LEBIT(id)) // sets to 1 the bit number id in anArray.
#define NNNBIT(id,anArray) (BITISSET(anArray[LEMOT(id)],LEBIT(id)) ? 1 : 0) // returns the bit number id in anArray.
//===========================================================================
//function : BooleanOperations_OnceExplorer
//purpose :
//===========================================================================
BooleanOperations_OnceExplorer::BooleanOperations_OnceExplorer
(const BooleanOperations_ShapesDataStructure& SDS):
BooleanOperations_Explorer(SDS)
{
hasMore = Standard_False;
// The size of the array of bits is the lower multiple of
//32 greater than the number of shapes in myShapesDataStructure.
Standard_Integer MultipleOf32= (((*myShapesDataStructure).myLength+31) & (~31));
mySizeOfArrayOfBits = MultipleOf32/32;
myArrayOfBits = 0L;
}
//modified by NIZNHY-PKV Sun Dec 15 16:28:15 2002 f
//===========================================================================
//function : Delete
//purpose : alias ~BooleanOperations_Explorer
//===========================================================================
void BooleanOperations_OnceExplorer::Delete()
{
if (myArrayOfBits) {
free (myArrayOfBits);
}
BooleanOperations_Explorer::Delete();
}
//modified by NIZNHY-PKV Sun Dec 15 16:29:10 2002 t
//===========================================================================
//function : Init
//purpose :
//===========================================================================
void BooleanOperations_OnceExplorer::Init(const Standard_Integer aShapeNumber,
const TopAbs_ShapeEnum TargetToFind,
const TopAbs_ShapeEnum TargetToAvoid)
{
Standard_Integer i,j,k,theNumberOfTheShapeOnTop,aSuccessorNumber;
Standard_Integer* anArrayOfBits;
Standard_Boolean shapeAlreadyProcessed;
TopAbs_ShapeEnum theTypeOfShapeOnTop,successorType;
myTargetToFind = TargetToFind;
myTargetToAvoid = TargetToAvoid;
// Modified by skv - Thu Apr 7 11:19:39 2005 Begin
hasMore = Standard_False;
// Modified by skv - Thu Apr 7 11:19:41 2005 End
// We first test if myShapesDataStructure has changed.
Standard_Integer MultipleOf32= (((*myShapesDataStructure).myLength+31) & (~31));
Standard_Integer NewSize = MultipleOf32/32;
if (myArrayOfBits!=0L)
free(myArrayOfBits);
myArrayOfBits = (Standard_Integer*)calloc(mySizeOfArrayOfBits,sizeof(Standard_Integer));
mySizeOfArrayOfBits = NewSize;
if (myStack != 0L) {
Standard::Free((Standard_Address&)myStack);
}
mySizeOfStack = theStackSize;
myStack = (Standard_Integer*)Standard::Allocate(theStackSize*sizeof(Standard_Integer));
((Standard_Integer*)myStack)[0] = aShapeNumber;
myTopOfStack = 0;
theNumberOfTheShapeOnTop = ((Standard_Integer*)myStack)[myTopOfStack];
theTypeOfShapeOnTop = (*myShapesDataStructure).GetShapeType(theNumberOfTheShapeOnTop);
if (theTypeOfShapeOnTop == myTargetToFind)
{
hasMore = Standard_True;
return;
}
// Modified by skv - Thu Apr 7 11:19:39 2005 Begin
if (theTypeOfShapeOnTop == TopAbs_VERTEX) {
hasMore = Standard_False;
return;
}
// Modified by skv - Thu Apr 7 11:19:41 2005 End
while (theTypeOfShapeOnTop != myTargetToFind)
{
Standard_Address theSuccessors;
Standard_Integer theNumberOfSuccessors;
// We get the successors of the shape on top of the stack.
(*myShapesDataStructure).GetSuccessors(theNumberOfTheShapeOnTop,theSuccessors,theNumberOfSuccessors);
// Do we have enough place to store our new successors ?
if ((myTopOfStack+theNumberOfSuccessors > mySizeOfStack) && (theSuccessors != 0L))
{
// We don't have enough place so we reallocate.
Standard_Address theNewStack = (Standard_Integer*)Standard::Allocate
((mySizeOfStack+theStackSize+theNumberOfSuccessors)*sizeof(Standard_Integer));
// We copy the old array in the new one.
for (j=0;j<myTopOfStack;j++)
((Standard_Integer*)theNewStack)[j] = ((Standard_Integer*)myStack)[j];
Standard::Free((Standard_Address&)myStack);
myStack = theNewStack;
mySizeOfStack = mySizeOfStack+theStackSize+theNumberOfSuccessors;
}
// We remove the shape on top and replace it by its own successors.
// We must skip the shape of type TargetToAvoid, k counts them.
k = 0;
anArrayOfBits = (Standard_Integer*)myArrayOfBits;
for (i=0;i<theNumberOfSuccessors;i++)
{
aSuccessorNumber = ((Standard_Integer*)theSuccessors)[i];
shapeAlreadyProcessed = NNNBIT(aSuccessorNumber,anArrayOfBits);
successorType = (*myShapesDataStructure).GetShapeType(((Standard_Integer*)theSuccessors)[i]);
// Modified by skv - Thu Apr 7 11:19:39 2005 Begin
// if ((successorType == myTargetToAvoid) || (shapeAlreadyProcessed==1))
if ((successorType == myTargetToAvoid) || (shapeAlreadyProcessed==1) ||
(successorType != myTargetToFind && successorType == TopAbs_VERTEX))
// Modified by skv - Thu Apr 7 11:19:41 2005 End
k++;
else
{
// Insertion of the successor in the stack.
((Standard_Integer*)myStack)[i+myTopOfStack-k] = ((Standard_Integer*)theSuccessors)[i];
// We need to set the corresponding bit to one to say that we processed this shape.
CC1BIT(aSuccessorNumber,anArrayOfBits);
}
}
if (theNumberOfSuccessors-k == 0)
{
// No successor of a type different of myTargetToAvoid.
myTopOfStack--;
if (myTopOfStack < 0)
{
// Empty stack.
hasMore = Standard_False;
return;
}
}
else
myTopOfStack = myTopOfStack+theNumberOfSuccessors-k-1;
theNumberOfTheShapeOnTop = ((Standard_Integer*)myStack)[myTopOfStack];
theTypeOfShapeOnTop = (*myShapesDataStructure).GetShapeType(theNumberOfTheShapeOnTop);
if (theTypeOfShapeOnTop == myTargetToFind)
{
hasMore = Standard_True;
return;
}
}
}
//===========================================================================
//function : Current
//purpose :
//===========================================================================
Standard_Integer BooleanOperations_OnceExplorer::Current()
{
myTopOfStack--;
if (myTopOfStack < 0)
hasMore = Standard_False;
return ((Standard_Integer*)myStack)[myTopOfStack+1];
}
//===========================================================================
//function : Next
//purpose :
//===========================================================================
void BooleanOperations_OnceExplorer::Next()
{
TopAbs_ShapeEnum theTypeOfShapeOnTop,successorType;
Standard_Integer j,k,theNumberOfTheShapeOnTop,successorNumber;
Standard_Boolean shapeAlreadyProcessed;
Standard_Integer* anArrayOfBits;
if (myTopOfStack < 0)
{
hasMore = Standard_False;
return;
}
theNumberOfTheShapeOnTop = ((Standard_Integer*)myStack)[myTopOfStack];
theTypeOfShapeOnTop = (*myShapesDataStructure).GetShapeType(theNumberOfTheShapeOnTop);
if (theTypeOfShapeOnTop == myTargetToFind)
{
hasMore = Standard_True;
return;
}
while (theTypeOfShapeOnTop != myTargetToFind)
{
Standard_Address theSuccessors = 0L;
Standard_Integer theNumberOfSuccessors;
(*myShapesDataStructure).GetSuccessors(theNumberOfTheShapeOnTop,(Standard_Address&)theSuccessors,theNumberOfSuccessors);
// Do we have enough place to store our new successors ?
if ((myTopOfStack+theNumberOfSuccessors > mySizeOfStack) && (theSuccessors != 0L))
{
Standard_Address theNewStack;
theNewStack = (Standard_Integer*)Standard::Allocate
((mySizeOfStack+theNumberOfSuccessors+theStackSize)*sizeof(Standard_Integer));
for (j=0;j<myTopOfStack;j++)
((Standard_Integer*)theNewStack)[j] = ((Standard_Integer*)myStack)[j];
Standard::Free((Standard_Address&)myStack);
myStack = theNewStack;
mySizeOfStack = mySizeOfStack+theNumberOfSuccessors+theStackSize;
}
// We remove the shape on top and replace it by its own successors.
// We must skip the shape of type TargetToAvoid.
k = 0;
anArrayOfBits = (Standard_Integer*)myArrayOfBits;
for (j=0;j<theNumberOfSuccessors;j++)
{
successorNumber = ((Standard_Integer*)theSuccessors)[j];
successorType = (*myShapesDataStructure).GetShapeType(successorNumber);
shapeAlreadyProcessed = NNNBIT(successorNumber,anArrayOfBits);
if ((successorType == myTargetToAvoid) || (shapeAlreadyProcessed==1))
k++;
else
{
((Standard_Integer*)myStack)[j+myTopOfStack-k] = ((Standard_Integer*)theSuccessors)[j];
// We need to set the corresponding bit to one to say that we processed this shape.
CC1BIT(successorNumber,anArrayOfBits);
}
}
if (theNumberOfSuccessors-k == 0)
{
// No valid successors...
myTopOfStack--;
if (myTopOfStack < 0)
{
// Empty stack...
hasMore = Standard_False;
return;
}
}
else
myTopOfStack = myTopOfStack+theNumberOfSuccessors-k-1;
theNumberOfTheShapeOnTop = ((Standard_Integer*)myStack)[myTopOfStack];
theTypeOfShapeOnTop = (*myShapesDataStructure).GetShapeType(theNumberOfTheShapeOnTop);
if (theTypeOfShapeOnTop == myTargetToFind)
{
hasMore = Standard_True;
return;
}
}
}
//===========================================================================
//function : Dump
//purpose :
//===========================================================================
void BooleanOperations_OnceExplorer::Dump(Standard_OStream& S) const
{
Standard_Integer u;
Standard_Integer* anArrayOfBits;
Standard_Integer* theSuccessors;
theSuccessors = ((Standard_Integer*)myStack);
S << "\n" << "Dump of BooleanOperations_Explorer:" << "\n";
S << "mySizeOfStack = " << mySizeOfStack << "\n";
S << "myTopOfStack = " << myTopOfStack << "\n";
S << "myTargetToFind = " << myTargetToFind << "\n";
S << "myTargetToAvoid = " << myTargetToAvoid << "\n";
S << "hasMore = " << hasMore << "\n";
for (u=0;u<=myTopOfStack;u++)
{
S << " " << *theSuccessors;
theSuccessors++;
}
anArrayOfBits = (Standard_Integer*)myArrayOfBits;
S << "\n" ;
for (u=1; u<=mySizeOfArrayOfBits*32; u++)
{
S << NNNBIT(u,anArrayOfBits);
if (u%32==0)
S << " ";
}
S << "\n" ;
}
|