1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
|
-- File: BSplCLib.cdl
-- Created: Fri Aug 9 15:12:53 1991
-- Author: Jean Claude VAUTHIER
---Copyright: Matra Datavision 1991, 1992
--
--Modified : RLE Aug 1993 Major modifications.
-- 15-Mar-95 xab : added cache mecanism to speed up
-- evaluation
-- 25-Mar-95 xab : added Lagrange evaluator
-- mei : modified 08-Jun-95 : added method MovePoint
-- xab : modified 11-Mar-96 : added method MovePointAndTangent
-- xab : modified 18-Mar-97 : added method to reparameterise a bspline
-- jct : modified 15-Apr-97 : added method to extend a bspline
package BSplCLib
---Purpose: BSplCLib B-spline curve Library.
--
-- The BSplCLib package is a basic library for BSplines. It
-- provides three categories of functions.
--
-- * Management methods to process knots and multiplicities.
--
-- * Multi-Dimensions spline methods. BSpline methods where
-- poles have an arbitrary number of dimensions. They divides
-- in two groups :
--
-- - Global methods modifying the whole set of poles. The
-- poles are described by an array of Reals and a
-- Dimension. Example : Inserting knots.
--
-- - Local methods computing points and derivatives. The
-- poles are described by a pointer on a local array of
-- Reals and a Dimension. The local array is modified.
--
-- * 2D and 3D spline curves methods.
--
-- Methods for 2d and 3d BSplines curves rational or not
-- rational.
--
-- Those methods have the following structure :
--
-- - They extract the pole informations in a working array.
--
-- - They process the working array with the
-- multi-dimension methods. (for example a 3d rational
-- curve is processed as a 4 dimension curve).
--
-- - They get back the result in the original dimension.
--
-- Note that the bspline surface methods found in the
-- package BSplSLib uses the same structure and rely on
-- BSplCLib.
--
-- In the following list of methods the 2d and 3d curve
-- methods will be described with the corresponding
-- multi-dimension method.
--
-- The 3d or 2d B-spline curve is defined with :
--
-- . its control points : TColgp_Array1OfPnt(2d) Poles
-- . its weights : TColStd_Array1OfReal Weights
-- . its knots : TColStd_Array1OfReal Knots
-- . its multiplicities : TColStd_Array1OfInteger Mults
-- . its degree : Standard_Integer Degree
-- . its periodicity : Standard_Boolean Periodic
--
-- Warnings :
-- The bounds of Poles and Weights should be the same.
-- The bounds of Knots and Mults should be the same.
--
-- Weights can be a null reference (BSplCLib::NoWeights())
-- the curve is non rational.
--
-- Mults can be a null reference (BSplCLib::NoMults())
-- the knots are "flat" knots.
--
-- KeyWords :
-- B-spline curve, Functions, Library
--
-- References :
-- . A survey of curves and surfaces methods in CADG Wolfgang
-- BOHM CAGD 1 (1984)
-- . On de Boor-like algorithms and blossoming Wolfgang BOEHM
-- cagd 5 (1988)
-- . Blossoming and knot insertion algorithms for B-spline curves
-- Ronald N. GOLDMAN
-- . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
-- . Curves and Surfaces for Computer Aided Geometric Design,
-- a practical guide Gerald Farin
uses TColStd, gp, TColgp, math
is
imported EvaluatorFunction ;
---Purpose: this is a one dimensional function
-- typedef void (*EvaluatorFunction) (
-- Standard_Integer // Derivative Request
-- Standard_Real * // StartEnd[2]
-- Standard_Real // Parameter
-- Standard_Real & // Result
-- Standard_Integer &) ;// Error Code
-- serves to multiply a given vectorial BSpline by a function
enumeration KnotDistribution is NonUniform, Uniform;
---Purpose: This enumeration describes the repartition of the
-- knots sequence. If all the knots differ by the
-- same positive constant from the preceding knot the
-- "KnotDistribution" is <Uniform> else it is
-- <NonUniform>
enumeration MultDistribution is NonConstant, Constant, QuasiConstant;
---Purpose: This enumeration describes the form of the
-- sequence of mutiplicities. MultDistribution is :
--
-- Constant if all the multiplicities have the same
-- value.
--
-- QuasiConstant if all the internal knots have the
-- same multiplicity and if the first and last knot
-- have a different multiplicity.
--
-- NonConstant in other cases.
-------------------------------------------------------------
-------------------------------------------------------------
---------- ----------
---------- Knots and Multiplicities ----------
---------- ----------
-------------------------------------------------------------
-------------------------------------------------------------
Hunt (XX : in Array1OfReal from TColStd;
X : in Real;
Iloc : in out Integer);
---Purpose: This routine searches the position of the real
-- value X in the ordered set of real values XX.
--
-- The elements in the table XX are either
-- monotonically increasing or monotonically
-- decreasing.
--
-- The input value Iloc is used to initialize the
-- algorithm : if Iloc is outside of the bounds
-- [XX.Lower(), -- XX.Upper()] the bisection algorithm
-- is used else the routine searches from a previous
-- known position by increasing steps then converges
-- by bisection.
--
-- This routine is used to locate a knot value in a
-- set of knots.
--
---References : Numerical Recipes in C (William H.Press, Brian
-- P. Flannery, Saul A. Teukolsky, William T.
-- Vetterling)
FirstUKnotIndex (Degree : Integer;
Mults : Array1OfInteger from TColStd)
returns Integer;
---Purpose: Computes the index of the knots value which gives
-- the start point of the curve.
LastUKnotIndex (Degree : Integer;
Mults : Array1OfInteger from TColStd)
returns Integer;
---Purpose: Computes the index of the knots value which gives
-- the end point of the curve.
FlatIndex (Degree : Integer;
Index : Integer;
Mults : Array1OfInteger from TColStd;
Periodic : Boolean)
returns Integer;
---Purpose: Computes the index of the flats knots sequence
-- corresponding to <Index> in the knots sequence
-- which multiplicities are <Mults>.
LocateParameter (Degree : Integer;
Knots : Array1OfReal from TColStd;
Mults : Array1OfInteger from TColStd;
U : Real;
IsPeriodic : Boolean;
FromK1 : Integer;
ToK2 : Integer;
KnotIndex : in out Integer;
NewU : in out Real);
---Purpose: Locates the parametric value U in the knots
-- sequence between the knot K1 and the knot K2.
-- The value return in Index verifies.
--
-- Knots(Index) <= U < Knots(Index + 1)
-- if U <= Knots (K1) then Index = K1
-- if U >= Knots (K2) then Index = K2 - 1
--
-- If Periodic is True U may be modified to fit in
-- the range Knots(K1), Knots(K2). In any case the
-- correct value is returned in NewU.
--
-- Warnings :Index is used as input data to initialize the
-- searching function.
-- Warning: Knots have to be "withe repetitions"
LocateParameter (Degree : Integer;
Knots : Array1OfReal from TColStd;
U : Real;
IsPeriodic : Boolean;
FromK1 : Integer;
ToK2 : Integer;
KnotIndex : in out Integer;
NewU : in out Real);
---Purpose: Locates the parametric value U in the knots
-- sequence between the knot K1 and the knot K2.
-- The value return in Index verifies.
--
-- Knots(Index) <= U < Knots(Index + 1)
-- if U <= Knots (K1) then Index = K1
-- if U >= Knots (K2) then Index = K2 - 1
--
-- If Periodic is True U may be modified to fit in
-- the range Knots(K1), Knots(K2). In any case the
-- correct value is returned in NewU.
--
-- Warnings :Index is used as input data to initialize the
-- searching function.
-- Warning: Knots have to be "flat"
LocateParameter (Knots : Array1OfReal from TColStd;
U : Real;
Periodic : Boolean;
K1,K2 : Integer;
Index : in out Integer;
NewU : in out Real;
Uf,Ue : Real)
is private;
---Level: Internal
LocateParameter (Degree : Integer;
Knots : Array1OfReal from TColStd;
Mults : Array1OfInteger from TColStd;
U : Real;
Periodic : Boolean;
Index : in out Integer;
NewU : in out Real);
---Level: Internal
MaxKnotMult (Mults : Array1OfInteger from TColStd;
K1, K2 : Integer)
returns Integer;
---Purpose: Finds the greatest multiplicity in a set of knots
-- between K1 and K2. Mults is the multiplicity
-- associated with each knot value.
MinKnotMult (Mults : Array1OfInteger from TColStd;
K1, K2 : Integer)
returns Integer;
---Purpose: Finds the lowest multiplicity in a set of knots
-- between K1 and K2. Mults is the multiplicity
-- associated with each knot value.
NbPoles(Degree : Integer;
Periodic : Boolean;
Mults : Array1OfInteger from TColStd)
returns Integer;
---Purpose: Returns the number of poles of the curve. Returns 0 if
-- one of the multiplicities is incorrect.
--
-- * Non positive.
--
-- * Greater than Degree, or Degree+1 at the first and
-- last knot of a non periodic curve.
--
-- * The last periodicity on a periodic curve is not
-- equal to the first.
KnotSequenceLength(Mults : Array1OfInteger from TColStd;
Degree : Integer;
Periodic : Boolean)
returns Integer;
---Purpose: Returns the length of the sequence of knots with
-- repetition.
--
-- Periodic :
--
-- Sum(Mults(i), i = Mults.Lower(); i <= Mults.Upper());
--
-- Non Periodic :
--
-- Sum(Mults(i); i = Mults.Lower(); i < Mults.Upper())
-- + 2 * Degree
KnotSequence (Knots : Array1OfReal from TColStd;
Mults : Array1OfInteger from TColStd;
KnotSeq : in out Array1OfReal from TColStd);
KnotSequence (Knots : Array1OfReal from TColStd;
Mults : Array1OfInteger from TColStd;
Degree : Integer;
Periodic : Boolean;
KnotSeq : in out Array1OfReal from TColStd);
---Purpose: Computes the sequence of knots KnotSeq with
-- repetition of the knots of multiplicity greater
-- than 1.
--
-- Length of KnotSeq must be KnotSequenceLength(Mults,Degree,Periodic)
KnotsLength( KnotSeq : Array1OfReal from TColStd;
Periodic : Boolean = Standard_False)
returns Integer;
---Purpose: Returns the length of the sequence of knots (and
-- Mults) without repetition.
Knots( KnotSeq : Array1OfReal from TColStd;
Knots : out Array1OfReal from TColStd;
Mults : out Array1OfInteger from TColStd;
Periodic : Boolean = Standard_False);
---Purpose: Computes the sequence of knots Knots without
-- repetition of the knots of multiplicity greater
-- than 1.
--
-- Length of <Knots> and <Mults> must be
-- KnotsLength(KnotSequence,Periodic)
KnotForm (Knots : Array1OfReal from TColStd;
FromK1, ToK2 : Integer)
returns KnotDistribution;
---Purpose: Analyses if the knots distribution is "Uniform"
-- or "NonUniform" between the knot FromK1 and the
-- knot ToK2. There is no repetition of knot in the
-- knots'sequence <Knots>.
MultForm (Mults : Array1OfInteger from TColStd;
FromK1, ToK2 : Integer)
returns MultDistribution;
---Purpose:
-- Analyses the distribution of multiplicities between
-- the knot FromK1 and the Knot ToK2.
Reparametrize (U1, U2 : Real;
Knots : in out Array1OfReal from TColStd);
---Purpose:
-- Reparametrizes a B-spline curve to [U1, U2].
-- The knot values are recomputed such that Knots (Lower) = U1
-- and Knots (Upper) = U2 but the knot form is not modified.
-- Warnings :
-- In the array Knots the values must be in ascending order.
-- U1 must not be equal to U2 to avoid division by zero.
Reverse (Knots : in out Array1OfReal from TColStd);
---Purpose: Reverses the array knots to become the knots
-- sequence of the reversed curve.
Reverse (Mults : in out Array1OfInteger from TColStd);
---Purpose: Reverses the array of multiplicities.
Reverse (Poles : in out Array1OfPnt from TColgp;
Last : Integer);
---Purpose: Reverses the array of poles. Last is the index of
-- the new first pole. On a non periodic curve last
-- is Poles.Upper(). On a periodic curve last is
--
-- (number of flat knots - degree - 1)
--
-- or
--
-- (sum of multiplicities(but for the last) + degree
-- - 1)
Reverse (Poles : in out Array1OfPnt2d from TColgp;
Last : Integer);
---Purpose: Reverses the array of poles.
Reverse (Weights : in out Array1OfReal from TColStd;
Last : Integer);
---Purpose: Reverses the array of poles.
IsRational(Weights : Array1OfReal from TColStd;
I1,I2 : Integer;
Epsilon : Real = 0.0) returns Boolean;
---Purpose:
-- Returns False if all the weights of the array <Weights>
-- between I1 an I2 are identic. Epsilon is used for
-- comparing weights. If Epsilon is 0. the Epsilon of the
-- first weight is used.
MaxDegree returns Integer;
---Purpose: returns the degree maxima for a BSplineCurve.
---C++: inline
Eval(U : Real;
Degree : Integer;
Knots : in out Real;
Dimension : Integer;
Poles : in out Real);
---Purpose: Perform the Boor algorithm to evaluate a point at
-- parameter <U>, with <Degree> and <Dimension>.
--
-- Poles is an array of Reals of size
--
-- <Dimension> * <Degree>+1
--
-- Containing the poles. At the end <Poles> contains
-- the current point.
BoorScheme(U : Real;
Degree : Integer;
Knots : in out Real;
Dimension : Integer;
Poles : in out Real;
Depth : Integer;
Length : Integer);
---Purpose: Performs the Boor Algorithm at parameter <U> with
-- the given <Degree> and the array of <Knots> on the
-- poles <Poles> of dimension <Dimension>. The schema
-- is computed until level <Depth> on a basis of
-- <Length+1> poles.
--
-- * Knots is an array of reals of length :
--
-- <Length> + <Degree>
--
-- * Poles is an array of reals of length :
--
-- (2 * <Length> + 1) * <Dimension>
--
-- The poles values must be set in the array at the
-- positions.
--
-- 0..Dimension,
--
-- 2 * Dimension ..
-- 3 * Dimension
--
-- 4 * Dimension ..
-- 5 * Dimension
--
-- ...
--
-- The results are found in the array poles depending
-- on the Depth. (See the method GetPole).
AntiBoorScheme(U : Real;
Degree : Integer;
Knots : in out Real;
Dimension : Integer;
Poles : in out Real;
Depth : Integer;
Length : Integer;
Tolerance : Real) returns Boolean;
---Purpose: Compute the content of Pole before the BoorScheme.
-- This method is used to remove poles.
--
-- U is the poles to remove, Knots should contains the
-- knots of the curve after knot removal.
--
-- The first and last poles do not change, the other
-- poles are computed by averaging two possible values.
-- The distance between the two possible poles is
-- computed, if it is higher than <Tolerance> False is
-- returned.
Derivative(Degree : Integer;
Knots : in out Real;
Dimension : Integer;
Length : Integer;
Order : Integer;
Poles : in out Real);
---Purpose: Computes the poles of the BSpline giving the
-- derivatives of order <Order>.
--
-- The formula for the first order is
--
-- Pole(i) = Degree * (Pole(i+1) - Pole(i)) /
-- (Knots(i+Degree+1) - Knots(i+1))
--
-- This formula is repeated (Degree is decremented at
-- each step).
Bohm(U : Real;
Degree : Integer;
N : Integer;
Knots : in out Real;
Dimension : Integer;
Poles : in out Real);
---Purpose: Performs the Bohm Algorithm at parameter <U>. This
-- algorithm computes the value and all the derivatives
-- up to order N (N <= Degree).
--
-- <Poles> is the original array of poles.
--
-- The result in <Poles> is the value and the
-- derivatives. Poles[0] is the value, Poles[Degree]
-- is the last derivative.
NoWeights returns Array1OfReal from TColStd;
---Purpose: Used as argument for a non rational curve.
--
---C++: return &
---C++: inline
NoMults returns Array1OfInteger from TColStd;
---Purpose: Used as argument for a flatknots evaluation.
--
---C++: return &
---C++: inline
BuildKnots(Degree, Index : Integer;
Periodic : Boolean;
Knots : Array1OfReal from TColStd;
Mults : Array1OfInteger from TColStd;
LK : in out Real);
---Purpose: Stores in LK the usefull knots for the BoorSchem
-- on the span Knots(Index) - Knots(Index+1)
PoleIndex (Degree, Index : Integer;
Periodic : Boolean;
Mults : Array1OfInteger from TColStd)
returns Integer;
---Purpose: Return the index of the first Pole to use on the
-- span Mults(Index) - Mults(Index+1). This index
-- must be added to Poles.Lower().
BuildEval(Degree,Index : Integer;
Poles : Array1OfReal from TColStd;
Weights : Array1OfReal from TColStd;
LP : in out Real);
BuildEval(Degree,Index : Integer;
Poles : Array1OfPnt from TColgp;
Weights : Array1OfReal from TColStd;
LP : in out Real);
BuildEval(Degree,Index : Integer;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd;
LP : in out Real);
---Purpose: Copy in <LP> the poles and weights for the Eval
-- scheme. starting from Poles(Poles.Lower()+Index)
BuildBoor(Index,Length,Dimension : Integer;
Poles : Array1OfReal from TColStd;
LP : in out Real);
---Purpose: Copy in <LP> poles for <Dimension> Boor scheme.
-- Starting from <Index> * <Dimension>, copy
-- <Length+1> poles.
BoorIndex(Index, Length, Depth : Integer)
returns Integer;
---Purpose: Returns the index in the Boor result array of the
-- poles <Index>. If the Boor algorithm was perform
-- with <Length> and <Depth>.
GetPole(Index,Length,Depth,Dimension : Integer;
LocPoles : in out Real;
Position : in out Integer;
Pole : in out Array1OfReal from TColStd);
---Purpose: Copy the pole at position <Index> in the Boor
-- scheme of dimension <Dimension> to <Position> in
-- the array <Pole>. <Position> is updated.
PrepareInsertKnots (
Degree : in Integer;
Periodic : in Boolean;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
AddKnots : in Array1OfReal from TColStd;
AddMults : in Array1OfInteger from TColStd;
NbPoles : out Integer;
NbKnots : out Integer;
Epsilon : in Real;
Add : in Boolean = Standard_True)
returns Boolean;
---Purpose: Returns in <NbPoles, NbKnots> the new number of poles
-- and knots if the sequence of knots <AddKnots,
-- AddMults> is inserted in the sequence <Knots, Mults>.
--
-- Epsilon is used to compare knots for equality.
--
-- If Add is True the multiplicities on equal knots are
-- added.
--
-- If Add is False the max value of the multiplicities is
-- kept.
--
-- Return False if :
-- The knew knots are knot increasing.
-- The new knots are not in the range.
InsertKnots (
Degree : in Integer;
Periodic : in Boolean;
Dimension : in Integer;
Poles : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
AddKnots : in Array1OfReal from TColStd;
AddMults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Epsilon : in Real;
Add : in Boolean = Standard_True);
InsertKnots (
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
AddKnots : in Array1OfReal from TColStd;
AddMults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Epsilon : in Real;
Add : in Boolean = Standard_True);
InsertKnots (
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
AddKnots : in Array1OfReal from TColStd;
AddMults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Epsilon : in Real;
Add : in Boolean = Standard_True);
---Purpose: Insert a sequence of knots <AddKnots> with
-- multiplicities <AddMults>. <AddKnots> must be a non
-- decreasing sequence and verifies :
--
-- Knots(Knots.Lower()) <= AddKnots(AddKnots.Lower())
-- Knots(Knots.Upper()) >= AddKnots(AddKnots.Upper())
--
-- The NewPoles and NewWeights arrays must have a length :
-- Poles.Length() + Sum(AddMults())
--
-- When a knot to insert is identic to an existing knot the
-- multiplicities are added.
--
-- Epsilon is used to test knots for equality.
--
-- When AddMult is negative or null the knot is not inserted.
-- No multiplicity will becomes higher than the degree.
--
-- The new Knots and Multiplicities are copied in <NewKnots>
-- and <NewMults>.
--
-- All the New arrays should be correctly dimensioned.
--
-- When all the new knots are existing knots, i.e. only the
-- multiplicities will change it is safe to use the same
-- arrays as input and output.
InsertKnot (
UIndex : in Integer;
U : in Real;
UMult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights : out Array1OfReal from TColStd);
InsertKnot (
UIndex : in Integer;
U : in Real;
UMult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights : out Array1OfReal from TColStd);
---Purpose: Insert a new knot U of multiplicity UMult in the
-- knot sequence.
--
-- The location of the new Knot should be given as an input
-- data. UIndex locates the new knot U in the knot sequence
-- and Knots (UIndex) < U < Knots (UIndex + 1).
--
-- The new control points corresponding to this insertion are
-- returned. Knots and Mults are not updated.
RaiseMultiplicity (
KnotIndex : in Integer;
Mult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights : out Array1OfReal from TColStd);
RaiseMultiplicity (
KnotIndex : in Integer;
Mult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights : out Array1OfReal from TColStd);
---Purpose: Raise the multiplicity of knot to <UMult>.
--
-- The new control points are returned. Knots and Mults are
-- not updated.
RemoveKnot (
Index : in Integer;
Mult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Dimension : in Integer;
Poles : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Tolerance : Real) returns Boolean;
RemoveKnot (
Index : in Integer;
Mult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Tolerance : Real) returns Boolean;
RemoveKnot (
Index : in Integer;
Mult : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights : out Array1OfReal from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
Tolerance : Real) returns Boolean;
---Purpose: Decrement the multiplicity of <Knots(Index)>
-- to <Mult>. If <Mult> is null the knot is
-- removed.
--
-- As there are two ways to compute the new poles
-- the midlle will be used as long as the
-- distance is lower than Tolerance.
--
-- If a distance is bigger than tolerance the
-- methods returns False and the new arrays are
-- not modified.
--
-- A low tolerance can be used to test if the
-- knot can be removed without modifying the
-- curve.
--
-- A high tolerance can be used to "smooth" the
-- curve.
IncreaseDegreeCountKnots (Degree, NewDegree : Integer;
Periodic : Boolean;
Mults : Array1OfInteger from TColStd)
returns Integer;
---Purpose: Returns the number of knots of a curve with
-- multiplicities <Mults> after elevating the degree from
-- <Degree> to <NewDegree>. See the IncreaseDegree method
-- for more comments.
IncreaseDegree (Degree,
NewDegree : in Integer;
Periodic : in Boolean;
Dimension : in Integer;
Poles : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : in out Array1OfReal from TColStd;
NewKnots : in out Array1OfReal from TColStd;
NewMults : in out Array1OfInteger from TColStd);
IncreaseDegree (Degree,
NewDegree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : in out Array1OfPnt from TColgp;
NewWeights : in out Array1OfReal from TColStd;
NewKnots : in out Array1OfReal from TColStd;
NewMults : in out Array1OfInteger from TColStd);
IncreaseDegree (Degree,
NewDegree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
NewPoles : in out Array1OfPnt2d from TColgp;
NewWeights : in out Array1OfReal from TColStd;
NewKnots : in out Array1OfReal from TColStd;
NewMults : in out Array1OfInteger from TColStd);
IncreaseDegree (NewDegree : in Integer;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
NewPoles : in out Array1OfPnt from TColgp;
NewWeights : in out Array1OfReal from TColStd);
---Warning: To be used for Beziercurves ONLY!!!
IncreaseDegree (NewDegree : in Integer;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
NewPoles : in out Array1OfPnt2d from TColgp;
NewWeights : in out Array1OfReal from TColStd);
---Purpose: Increase the degree of a bspline (or bezier) curve
-- of dimension <Dimension> form <Degree> to
-- <NewDegree>.
--
-- The number of poles in the new curve is :
--
-- Poles.Length() + (NewDegree - Degree) * Number of spans
--
-- Where the number of spans is :
--
-- LastUKnotIndex(Mults) - FirstUKnotIndex(Mults) + 1
--
-- for a non-periodic curve
--
-- And Knots.Length() - 1 for a periodic curve.
--
-- The multiplicities of all knots are increased by
-- the degree elevation.
--
-- The new knots are usually the same knots with the
-- exception of a non-periodic curve with the first
-- and last multiplicity not equal to Degree+1 where
-- knots are removed form the start and the bottom
-- untils the sum of the multiplicities is equal to
-- NewDegree+1 at the knots corresponding to the
-- first and last parameters of the curve.
--
-- Example : Suppose a curve of degree 3 starting
-- with following knots and multiplicities :
--
-- knot : 0. 1. 2.
-- mult : 1 2 1
--
-- The FirstUKnot is 2. because the sum of
-- multiplicities is Degree+1 : 1 + 2 + 1 = 4 = 3 + 1
--
-- i.e. the first parameter of the curve is 2. and
-- will still be 2. after degree elevation. Let
-- raises this curve to degree 4. The multiplicities
-- are increased by 2.
--
-- They become 2 3 2. But we need a sum of
-- multiplicities of 5 at knot 2. So the first knot
-- is removed and the new knots are :
--
-- knot : 1. 2.
-- mult : 3 2
--
-- The multipicity of the first knot may also be
-- reduced if the sum is still to big.
--
-- In the most common situations (periodic curve or
-- curve with first and last multiplicities equals to
-- Degree+1) the knots are knot changes.
--
-- The method IncreaseDegreeCountKnots can be used to
-- compute the new number of knots.\
--
---Warning: To be used for Beziercurves ONLY!!!
PrepareUnperiodize (Degree : in Integer from Standard;
Mults : in Array1OfInteger from TColStd;
NbKnots : out Integer from Standard;
NbPoles : out Integer from Standard);
---Purpose: Set in <NbKnots> and <NbPolesToAdd> the number of Knots and
-- Poles of the NotPeriodic Curve identical at the
-- periodic curve with a degree <Degree> , a
-- knots-distribution with Multiplicities <Mults>.
Unperiodize (Degree : in Integer from Standard;
Dimension : in Integer from Standard;
Mults : in Array1OfInteger from TColStd;
Knots : in Array1OfReal from TColStd;
Poles : in Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewPoles : out Array1OfReal from TColStd);
Unperiodize (Degree : in Integer from Standard;
Mults : in Array1OfInteger from TColStd;
Knots : in Array1OfReal from TColStd;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights: out Array1OfReal from TColStd);
Unperiodize (Degree : in Integer from Standard;
Mults : in Array1OfInteger from TColStd;
Knots : in Array1OfReal from TColStd;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewKnots : out Array1OfReal from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights: out Array1OfReal from TColStd);
PrepareTrimming (Degree : in Integer from Standard;
Periodic: in Boolean from Standard;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
U1 : in Real from Standard;
U2 : in Real from Standard;
NbKnots : out Integer from Standard;
NbPoles : out Integer from Standard);
---Purpose: Set in <NbKnots> and <NbPoles> the number of Knots and
-- Poles of the curve resulting of the trimming of the
-- BSplinecurve definded with <degree>, <knots>, <mults>
Trimming (Degree : in Integer from Standard;
Periodic : in Boolean from Standard;
Dimension : in Integer from Standard;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
Poles : in Array1OfReal from TColStd;
U1 : in Real from Standard;
U2 : in Real from Standard;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewPoles : out Array1OfReal from TColStd);
Trimming (Degree : in Integer from Standard;
Periodic : in Boolean from Standard;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
U1 : in Real from Standard;
U2 : in Real from Standard;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt from TColgp;
NewWeights : out Array1OfReal from TColStd);
Trimming (Degree : in Integer from Standard;
Periodic : in Boolean from Standard;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
U1 : in Real from Standard;
U2 : in Real from Standard;
NewKnots : out Array1OfReal from TColStd;
NewMults : out Array1OfInteger from TColStd;
NewPoles : out Array1OfPnt2d from TColgp;
NewWeights : out Array1OfReal from TColStd);
-------------------------------------------------------------
-------------------------------------------------------------
---------- ----------
---------- Curve Evaluations ----------
---------- ----------
-------------------------------------------------------------
-------------------------------------------------------------
D0(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfReal from TColStd;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Real);
D0(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt from gp);
D0(U : in Real;
UIndex : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt2d from gp);
D0(U : in Real;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt from gp);
---Warning: To be used for Beziercurves ONLY!!!
D0(U : in Real;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt2d from gp);
---Warning: To be used for Beziercurves ONLY!!!
D1(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfReal from TColStd;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Real;
V : out Real);
D1(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt from gp;
V : out Vec from gp);
D1(U : in Real;
UIndex : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt2d from gp;
V : out Vec2d from gp);
D1(U : in Real;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt from gp;
V : out Vec from gp);
---Warning: To be used for Beziercurves ONLY!!!
D1(U : in Real;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt2d from gp;
V : out Vec2d from gp);
---Warning: To be used for Beziercurves ONLY!!!
D2(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfReal from TColStd;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Real;
V1,V2 : out Real);
D2(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt from gp;
V1,V2 : out Vec from gp);
D2(U : in Real;
UIndex : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt2d from gp;
V1,V2 : out Vec2d from gp);
D2(U : in Real;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt from gp;
V1,V2 : out Vec from gp);
---Warning: To be used for Beziercurves ONLY!!!
D2(U : in Real;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt2d from gp;
V1,V2 : out Vec2d from gp);
---Warning: To be used for Beziercurves ONLY!!!
D3(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfReal from TColStd;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Real;
V1,V2,V3 : out Real);
D3(U : in Real;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt from gp;
V1,V2,V3 : out Vec from gp);
D3(U : in Real;
UIndex : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
P : out Pnt2d from gp;
V1,V2,V3 : out Vec2d from gp);
D3(U : in Real;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt from gp;
V1,V2,V3 : out Vec from gp);
---Warning: To be used for Beziercurves ONLY!!!
D3(U : in Real;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt2d from gp;
V1,V2,V3 : out Vec2d from gp);
---Warning: To be used for Beziercurves ONLY!!!
DN(U : in Real;
N : in Integer;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfReal from TColStd;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
VN : out Real);
DN(U : in Real;
N : in Integer;
Index : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
VN : out Vec from gp);
DN(U : in Real;
N : in Integer;
UIndex : in Integer;
Degree : in Integer;
Periodic : in Boolean;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
Knots : in Array1OfReal from TColStd;
Mults : in Array1OfInteger from TColStd;
V : out Vec2d from gp);
DN(U : in Real;
N : in Integer;
Poles : in Array1OfPnt from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt from gp;
VN : out Vec from gp);
---Warning: To be used for Beziercurves ONLY!!!
DN(U : in Real;
N : in Integer;
Poles : in Array1OfPnt2d from TColgp;
Weights : in Array1OfReal from TColStd;
P : out Pnt2d from gp;
VN : out Vec2d from gp);
---Purpose: The above functions compute values and
-- derivatives in the following situations :
--
-- * 3D, 2D and 1D
--
-- * Rational or not Rational.
--
-- * Knots and multiplicities or "flat knots" without
-- multiplicities.
--
-- * The <Index> is the the localization of the
-- parameter in the knot sequence. If <Index> is out
-- of range the correct value will be searched.
--
--
-- VERY IMPORTANT!!!
-- USE BSplCLib::NoWeights() as Weights argument for non
-- rational curves computations.
---Warning: To be used for Beziercurves ONLY!!!
EvalBsplineBasis(Side : in Integer ;
DerivativeOrder : in Integer ;
Order : in Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameter : in Real ;
FirstNonZeroBsplineIndex : in out Integer ;
BsplineBasis : in out Matrix from math)
returns Integer ;
---Purpose: This evaluates the Bspline Basis at a
-- given parameter Parameter up to the
-- requested DerivativeOrder and store the
-- result in the array BsplineBasis in the
-- following fashion
-- BSplineBasis(1,1) =
-- value of first non vanishing
-- Bspline function which has Index FirstNonZeroBsplineIndex
-- BsplineBasis(1,2) =
-- value of second non vanishing
-- Bspline function which has Index
-- FirstNonZeroBsplineIndex + 1
-- BsplineBasis(1,n) =
-- value of second non vanishing non vanishing
-- Bspline function which has Index
-- FirstNonZeroBsplineIndex + n (n <= Order)
-- BSplineBasis(2,1) =
-- value of derivative of first non vanishing
-- Bspline function which has Index FirstNonZeroBsplineIndex
-- BSplineBasis(N,1) =
-- value of Nth derivative of first non vanishing
-- Bspline function which has Index FirstNonZeroBsplineIndex
-- if N <= DerivativeOrder + 1
BuildBSpMatrix(Parameters : in Array1OfReal from TColStd;
OrderArray : in Array1OfInteger from TColStd;
FlatKnots : in Array1OfReal from TColStd;
Degree : in Integer;
Matrix : in out Matrix from math;
UpperBandWidth : out Integer ;
LowerBandWidth : out Integer) returns Integer ;
---Purpose: This Builds a fully blown Matrix of
-- (ni)
-- Bi (tj)
--
-- with i and j within 1..Order + NumPoles
-- The integer ni is the ith slot of the
-- array OrderArray, tj is the jth slot of
-- the array Parameters
FactorBandedMatrix(Matrix : in out Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
PivotIndexProblem : out Integer) returns Integer ;
---Purpose: this factors the Banded Matrix in
-- the LU form with a Banded storage of
-- components of the L matrix
-- WARNING : do not use if the Matrix is
-- totally positive (It is the case for
-- Bspline matrices build as above with
-- parameters being the Schoenberg points
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
ArrayDimension : in Integer ;
Array : in out Real)
returns Integer ;
---Purpose: This solves the system Matrix.X = B
-- with when Matrix is factored in LU form
-- The Array is an seen as an
-- Array[1..N][1..ArrayDimension] with N =
-- the rank of the matrix Matrix. The
-- result is stored in Array when each
-- coordinate is solved that is B is the
-- array whose values are
-- B[i] = Array[i][p] for each p in 1..ArrayDimension
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
Array : in out Array1OfPnt2d from TColgp)
returns Integer ;
---Purpose: This solves the system Matrix.X = B
-- with when Matrix is factored in LU form
-- The Array has the length of
-- the rank of the matrix Matrix. The
-- result is stored in Array when each
-- coordinate is solved that is B is the
-- array whose values are
-- B[i] = Array[i][p] for each p in 1..ArrayDimension
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
Array : in out Array1OfPnt from TColgp)
returns Integer ;
---Purpose: This solves the system Matrix.X = B
-- with when Matrix is factored in LU form
-- The Array has the length of
-- the rank of the matrix Matrix. The
-- result is stored in Array when each
-- coordinate is solved that is B is the
-- array whose values are
-- B[i] = Array[i][p] for each p in 1..ArrayDimension
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
HomogenousFlag : in Boolean ;
ArrayDimension : Integer ;
Array : in out Real ;
Weights : in out Real )
returns Integer ;
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
HomogenousFlag : in Boolean ;
Array : in out Array1OfPnt2d from TColgp;
Weights : in out Array1OfReal from TColStd )
returns Integer ;
---Purpose: This solves the system Matrix.X = B
-- with when Matrix is factored in LU form
-- The Array is an seen as an
-- Array[1..N][1..ArrayDimension] with N =
-- the rank of the matrix Matrix. The
-- result is stored in Array when each
-- coordinate is solved that is B is the
-- array whose values are B[i] =
-- Array[i][p] for each p in
-- 1..ArrayDimension. If HomogeneousFlag ==
-- 0 the Poles are multiplied by the
-- Weights uppon Entry and once
-- interpolation is carried over the
-- result of the poles are divided by the
-- result of the interpolation of the
-- weights. Otherwise if HomogenousFlag == 1
-- the Poles and Weigths are treated homogenously
-- that is that those are interpolated as they
-- are and result is returned without division
-- by the interpolated weigths.
SolveBandedSystem (Matrix : in Matrix from math ;
UpperBandWidth : in Integer ;
LowerBandWidth : in Integer ;
HomogeneousFlag : in Boolean ;
Array : in out Array1OfPnt from TColgp;
Weights : in out Array1OfReal from TColStd )
returns Integer ;
---Purpose: This solves the system Matrix.X = B
-- with when Matrix is factored in LU form
-- The Array is an seen as an
-- Array[1..N][1..ArrayDimension] with N =
-- the rank of the matrix Matrix. The
-- result is stored in Array when each
-- coordinate is solved that is B is the
-- array whose values are
-- B[i] = Array[i][p] for each p in 1..ArrayDimension
-- If HomogeneousFlag ==
-- 0 the Poles are multiplied by the
-- Weights uppon Entry and once
-- interpolation is carried over the
-- result of the poles are divided by the
-- result of the interpolation of the
-- weights. Otherwise if HomogenousFlag == 1
-- the Poles and Weigths are treated homogenously
-- that is that those are interpolated as they
-- are and result is returned without division
-- by the interpolated weigths.
MergeBSplineKnots(Tolerance : Real from Standard ;
StartValue : Real from Standard ;
EndValue : Real from Standard ;
Degree1 : Integer from Standard ;
Knots1 : Array1OfReal from TColStd ;
Mults1 : Array1OfInteger from TColStd ;
Degree2 : Integer from Standard ;
Knots2 : Array1OfReal from TColStd ;
Mults2 : Array1OfInteger from TColStd ;
NumPoles : in out Integer ;
NewKnots : in out HArray1OfReal from TColStd ;
NewMults : in out HArray1OfInteger from TColStd) ;
---Purpose: Merges two knot vector by setting the starting and
-- ending values to StartValue and EndValue
FunctionReparameterise(Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
PolesDimension : Integer ;
Poles : in out Real ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Real ;
Status : in out Integer) ;
---Purpose: This function will compose a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] with a
-- function a(t) which is assumed to satisfy the
-- following:
--
-- 1. F(a(t)) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots
--
-- 2. a(t) defines a differentiable
-- isomorphism between the range of FlatKnots to the range
-- of BSplineFlatKnots which is the
-- same as the range of F(t)
--
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
--
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of F(a(t))
FunctionReparameterise(
Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfReal from TColStd ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfReal from TColStd ;
Status : in out Integer) ;
---Purpose: This function will compose a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] with a
-- function a(t) which is assumed to satisfy the
-- following:
--
-- 1. F(a(t)) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots
--
-- 2. a(t) defines a differentiable
-- isomorphism between the range of FlatKnots to the range
-- of BSplineFlatKnots which is the
-- same as the range of F(t)
--
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
--
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of F(a(t))
FunctionReparameterise( Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt from TColgp ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfPnt from TColgp ;
Status : in out Integer) ;
---Purpose: this will compose a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] with a
-- function a(t) which is assumed to satisfy the
-- following : 1. F(a(t)) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots
-- 2. a(t) defines a differentiable
-- isomorphism between the range of FlatKnots to the range
-- of BSplineFlatKnots which is the
-- same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of F(a(t))
FunctionReparameterise(
Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt2d from TColgp ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfPnt2d from TColgp ;
Status : in out Integer) ;
---Purpose: this will compose a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] with a
-- function a(t) which is assumed to satisfy the
-- following : 1. F(a(t)) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots
-- 2. a(t) defines a differentiable
-- isomorphism between the range of FlatKnots to the range
-- of BSplineFlatKnots which is the
-- same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of F(a(t))
FunctionMultiply(Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
PolesDimension : Integer ;
Poles : in out Real ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Real ;
Status : in out Integer) ;
---Purpose: this will multiply a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] by a
-- function a(t) which is assumed to satisfy the
-- following : 1. a(t) * F(t) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots 2. the range of a(t)
-- is the same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of a(t)*F(t)
FunctionMultiply(Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfReal from TColStd ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfReal from TColStd ;
Status : in out Integer) ;
---Purpose: this will multiply a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] by a
-- function a(t) which is assumed to satisfy the
-- following : 1. a(t) * F(t) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots 2. the range of a(t)
-- is the same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of a(t)*F(t)
FunctionMultiply(Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt2d from TColgp ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfPnt2d from TColgp ;
Status : in out Integer) ;
---Purpose: this will multiply a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] by a
-- function a(t) which is assumed to satisfy the
-- following : 1. a(t) * F(t) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots 2. the range of a(t)
-- is the same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of a(t)*F(t)
FunctionMultiply(Function : EvaluatorFunction from BSplCLib ;
BSplineDegree : Integer ;
BSplineFlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt from TColgp ;
FlatKnots : Array1OfReal from TColStd ;
NewDegree : Integer ;
NewPoles : in out Array1OfPnt from TColgp ;
Status : in out Integer) ;
---Purpose: this will multiply a given Vectorial BSpline F(t)
-- defined by its BSplineDegree and BSplineFlatKnotsl,
-- its Poles array which are coded as an array of Real
-- of the form [1..NumPoles][1..PolesDimension] by a
-- function a(t) which is assumed to satisfy the
-- following : 1. a(t) * F(t) is a polynomial BSpline
-- that can be expressed exactly as a BSpline of degree
-- NewDegree on the knots FlatKnots 2. the range of a(t)
-- is the same as the range of F(t)
-- Warning: it is
-- the caller's responsability to insure that conditions
-- 1. and 2. above are satisfied : no check whatsoever
-- is made in this method
-- Status will return 0 if OK else it will return the pivot index
-- of the matrix that was inverted to compute the multiplied
-- BSpline : the method used is interpolation at Schoenenberg
-- points of a(t)*F(t)
Eval(U : Real;
PeriodicFlag : Boolean ;
DerivativeRequest : Integer ;
ExtrapMode : in out Integer ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
ArrayDimension : Integer ;
Poles : in out Real ;
Result : in out Real) ;
---Purpose: Perform the De Boor algorithm to evaluate a point at
-- parameter <U>, with <Degree> and <Dimension>.
--
-- Poles is an array of Reals of size
--
-- <Dimension> * <Degree>+1
--
-- Containing the poles. At the end <Poles> contains
-- the current point. Poles Contain all the poles of
-- the BsplineCurve, Knots also Contains all the knots
-- of the BsplineCurve. ExtrapMode has two slots [0] =
-- Degree used to extrapolate before the first knot [1]
-- = Degre used to extrapolate after the last knot has
-- to be between 1 and Degree
Eval(U : Real;
PeriodicFlag : Boolean ;
DerivativeRequest : Integer ;
ExtrapMode : in out Integer ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
ArrayDimension : Integer ;
Poles : in out Real ;
Weights : in out Real ;
PolesResult : in out Real ;
WeightsResult : in out Real) ;
---Purpose: Perform the De Boor algorithm to evaluate a point at
-- parameter <U>, with <Degree> and <Dimension>.
-- Evaluates by multiplying the Poles by the Weights and
-- gives the homogeneous result in PolesResult that is
-- the results of the evaluation of the numerator once it
-- has been multiplied by the weights and in
-- WeightsResult one has the result of the evaluation of
-- the denominator
--
-- Warning: <PolesResult> and <WeightsResult> must be dimensionned
-- properly.
Eval(U : Real;
PeriodicFlag : Boolean ;
HomogeneousFlag : Boolean ;
ExtrapMode : in out Integer ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp ;
Weight : in out Real) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
Eval(U : Real;
PeriodicFlag : Boolean ;
HomogeneousFlag : Boolean ;
ExtrapMode : in out Integer ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp ;
Weight : in out Real) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
--
TangExtendToConstraint(FlatKnots : Array1OfReal from TColStd ;
C1Coefficient : Real ;
NumPoles : in Integer ;
Poles : in out Real ;
Dimension : Integer ;
Degree : Integer ;
ConstraintPoint : Array1OfReal from TColStd ;
Continuity : Integer ;
After : Boolean ;
NbPolesResult : in out Integer ;
NbKnotsRsult : in out Integer ;
KnotsResult : in out Real ;
PolesResult : in out Real) ;
---Purpose: Extend a BSpline nD using the tangency map
-- <C1Coefficient> is the coefficient of reparametrisation
-- <Continuity> must be equal to 1, 2 or 3.
-- <Degree> must be greater or equal than <Continuity> + 1.
--
-- Warning: <KnotsResult> and <PolesResult> must be dimensionned
-- properly.
CacheD0(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp) ;
---Purpose: Perform the evaluation of the of the cache
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- this just evaluates the current point
-- the CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effects
CacheD0(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- ththe CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effectsis just evaluates the current point
CoefsD0(U : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp) ;
---Purpose: Calls CacheD0 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CoefsD0(U : Real;
Poles : Array1OfPnt2d from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp) ;
---Purpose: Calls CacheD0 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CacheD1(U : Real;
Degree : Integer;
CacheParameter: Real;
SpanLenght : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp ;
Vec : out Vec from gp) ;
---Purpose: Perform the evaluation of the of the cache
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- this just evaluates the current point
-- the CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effects
CacheD1(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp ;
Vec : out Vec2d from gp) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- ththe CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effectsis just evaluates the current point
CoefsD1(U : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp;
Vec : out Vec from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CoefsD1(U : Real;
Poles : Array1OfPnt2d from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp;
Vec : out Vec2d from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CacheD2(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp ;
Vec1,Vec2 : out Vec from gp) ;
---Purpose: Perform the evaluation of the of the cache
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- this just evaluates the current point
-- the CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effects
CacheD2(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp ;
Vec1,Vec2 : out Vec2d from gp) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- ththe CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effectsis just evaluates the current point
CoefsD2(U : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp;
Vec1,Vec2 : out Vec from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CoefsD2(U : Real;
Poles : Array1OfPnt2d from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp;
Vec1,Vec2 : out Vec2d from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CacheD3(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp ;
Vec1,Vec2,Vec3 : out Vec from gp) ;
---Purpose: Perform the evaluation of the of the cache
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- this just evaluates the current point
-- the CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effects
CacheD3(U : Real;
Degree : Integer;
CacheParameter : Real;
SpanLenght : Real;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp ;
Vec1,Vec2,Vec3 : out Vec2d from gp) ;
---Purpose: Perform the evaluation of the Bspline Basis
-- and then multiplies by the weights
-- this just evaluates the current point
-- the parameter must be normalized between
-- the 0 and 1 for the span.
-- The Cache must be valid when calling this
-- routine. Geom Package will insure that.
-- and then multiplies by the weights
-- ththe CacheParameter is where the Cache was
-- constructed the SpanLength is to normalize
-- the polynomial in the cache to avoid bad conditioning
-- effectsis just evaluates the current point
CoefsD3(U : Real;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt from gp;
Vec1,Vec2,Vec3: out Vec from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
CoefsD3(U : Real;
Poles : Array1OfPnt2d from TColgp ;
Weights : Array1OfReal from TColStd ;
Point : out Pnt2d from gp;
Vec1,Vec2,Vec3: out Vec2d from gp) ;
---Purpose: Calls CacheD1 for Bezier Curves Arrays computed with
-- the method PolesCoefficients.
-- Warning: To be used for Beziercurves ONLY!!!
---C++: inline
BuildCache(U : Real;
InverseOfSpanDomain : Real;
PeriodicFlag : Boolean ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt from TColgp;
Weights : Array1OfReal from TColStd ;
CachePoles : in out Array1OfPnt from TColgp;
CacheWeights : in out Array1OfReal from TColStd) ;
---Purpose: Perform the evaluation of the Taylor expansion
-- of the Bspline normalized between 0 and 1.
-- If rational computes the homogeneous Taylor expension
-- for the numerator and stores it in CachePoles
BuildCache(U : Real;
InverseOfSpanDomain : Real;
PeriodicFlag : Boolean ;
Degree : Integer;
FlatKnots : Array1OfReal from TColStd ;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
CachePoles : in out Array1OfPnt2d from TColgp;
CacheWeights : in out Array1OfReal from TColStd) ;
---Purpose: Perform the evaluation of the Taylor expansion
-- of the Bspline normalized between 0 and 1.
-- If rational computes the homogeneous Taylor expension
-- for the numerator and stores it in CachePoles
PolesCoefficients(Poles : Array1OfPnt2d from TColgp;
CachePoles : in out Array1OfPnt2d from TColgp);
---Warning: To be used for Beziercurves ONLY!!!
---C++: inline
PolesCoefficients(Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd ;
CachePoles : in out Array1OfPnt2d from TColgp;
CacheWeights : in out Array1OfReal from TColStd) ;
---Warning: To be used for Beziercurves ONLY!!!
PolesCoefficients(Poles : Array1OfPnt from TColgp;
CachePoles : in out Array1OfPnt from TColgp);
---Warning: To be used for Beziercurves ONLY!!!
---C++: inline
PolesCoefficients(Poles : Array1OfPnt from TColgp;
Weights : Array1OfReal from TColStd ;
CachePoles : in out Array1OfPnt from TColgp;
CacheWeights : in out Array1OfReal from TColStd) ;
---Purpose: Encapsulation of BuildCache to perform the
-- evaluation of the Taylor expansion for beziercurves
-- at parameter 0.
-- Warning: To be used for Beziercurves ONLY!!!
FlatBezierKnots (Degree: Integer) returns Real;
---Purpose: Returns pointer to statically allocated array representing
-- flat knots for bezier curve of the specified degree.
-- Raises OutOfRange if Degree > MaxDegree()
---C++: return const &
BuildSchoenbergPoints(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : in out Array1OfReal from TColStd) ;
---Purpose: builds the Schoenberg points from the flat knot
-- used to interpolate a BSpline since the
-- BSpline matrix is invertible.
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
Poles : in out Array1OfPnt from TColgp ;
InversionProblem : out Integer) ;
---Purpose: Performs the interpolation of the data given in
-- the Poles array according to the requests in
-- ContactOrderArray that is : if
-- ContactOrderArray(i) has value d it means that
-- Poles(i) containes the dth derivative of the
-- function to be interpolated. The length L of the
-- following arrays must be the same :
-- Parameters, ContactOrderArray, Poles,
-- The length of FlatKnots is Degree + L + 1
-- Warning:
-- the method used to do that interpolation is
-- gauss elimination WITHOUT pivoting. Thus if the
-- diagonal is not dominant there is no guarantee
-- that the algorithm will work. Nevertheless for
-- Cubic interpolation or interpolation at Scheonberg
-- points the method will work
-- The InversionProblem will report 0 if there was no
-- problem else it will give the index of the faulty
-- pivot
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
Poles : in out Array1OfPnt2d from TColgp ;
InversionProblem : out Integer) ;
---Purpose: Performs the interpolation of the data given in
-- the Poles array according to the requests in
-- ContactOrderArray that is : if
-- ContactOrderArray(i) has value d it means that
-- Poles(i) containes the dth derivative of the
-- function to be interpolated. The length L of the
-- following arrays must be the same :
-- Parameters, ContactOrderArray, Poles,
-- The length of FlatKnots is Degree + L + 1
-- Warning:
-- the method used to do that interpolation is
-- gauss elimination WITHOUT pivoting. Thus if the
-- diagonal is not dominant there is no guarantee
-- that the algorithm will work. Nevertheless for
-- Cubic interpolation at knots or interpolation at Scheonberg
-- points the method will work.
-- The InversionProblem w
-- ll report 0 if there was no
-- problem else it will give the index of the faulty
-- pivot
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
Poles : in out Array1OfPnt from TColgp ;
Weights : in out Array1OfReal from TColStd ;
InversionProblem : out Integer) ;
---Purpose: Performs the interpolation of the data given in
-- the Poles array according to the requests in
-- ContactOrderArray that is : if
-- ContactOrderArray(i) has value d it means that
-- Poles(i) containes the dth derivative of the
-- function to be interpolated. The length L of the
-- following arrays must be the same :
-- Parameters, ContactOrderArray, Poles,
-- The length of FlatKnots is Degree + L + 1
-- Warning:
-- the method used to do that interpolation is
-- gauss elimination WITHOUT pivoting. Thus if the
-- diagonal is not dominant there is no guarantee
-- that the algorithm will work. Nevertheless for
-- Cubic interpolation at knots or interpolation at Scheonberg
-- points the method will work.
-- The InversionProblem will report 0 if there was no
-- problem else it will give the index of the faulty
-- pivot
--
--
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
Poles : in out Array1OfPnt2d from TColgp ;
Weights : in out Array1OfReal from TColStd ;
InversionProblem : out Integer) ;
---Purpose: Performs the interpolation of the data given in
-- the Poles array according to the requests in
-- ContactOrderArray that is : if
-- ContactOrderArray(i) has value d it means that
-- Poles(i) containes the dth derivative of the
-- function to be interpolated. The length L of the
-- following arrays must be the same :
-- Parameters, ContactOrderArray, Poles,
-- The length of FlatKnots is Degree + L + 1
-- Warning:
-- the method used to do that interpolation is
-- gauss elimination WITHOUT pivoting. Thus if the
-- diagonal is not dominant there is no guarantee
-- that the algorithm will work. Nevertheless for
-- Cubic interpolation at knots or interpolation at Scheonberg
-- points the method will work.
-- The InversionProblem w
-- ll report 0 if there was no
-- problem else it will give the i
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
ArrayDimension : Integer ;
Poles : in out Real ;
InversionProblem : out Integer) ;
---Purpose: Performs the interpolation of the data given in
-- the Poles array according to the requests in
-- ContactOrderArray that is : if
-- ContactOrderArray(i) has value d it means that
-- Poles(i) containes the dth derivative of the
-- function to be interpolated. The length L of the
-- following arrays must be the same :
-- Parameters, ContactOrderArray
-- The length of FlatKnots is Degree + L + 1
-- The PolesArray is an seen as an
-- Array[1..N][1..ArrayDimension] with N = tge length
-- of the parameters array
-- Warning:
-- the method used to do that interpolation is
-- gauss elimination WITHOUT pivoting. Thus if the
-- diagonal is not dominant there is no guarantee
-- that the algorithm will work. Nevertheless for
-- Cubic interpolation or interpolation at Scheonberg
-- points the method will work
-- The InversionProblem will report 0 if there was no
-- problem else it will give the index of the faulty
-- pivot
--
Interpolate(Degree : Integer ;
FlatKnots : Array1OfReal from TColStd ;
Parameters : Array1OfReal from TColStd ;
ContactOrderArray : Array1OfInteger from TColStd ;
ArrayDimension : Integer ;
Poles : in out Real ;
Weights : in out Real ;
InversionProblem : out Integer) ;
MovePoint(U : Real; -- parameter of the point
Displ : Vec2d from gp; -- translation vector of the point
Index1 : Integer; -- first movable pole
Index2 : Integer; -- last movable pole
Degree : Integer;
Rational : Boolean;
Poles : Array1OfPnt2d from TColgp;
Weights : Array1OfReal from TColStd;
FlatKnots : Array1OfReal from TColStd;
FirstIndex : in out Integer; -- first pole modified
LastIndex : in out Integer; -- last pole modified
NewPoles : in out Array1OfPnt2d from TColgp); -- new poles
---Purpose: Find the new poles which allows an old point (with a
-- given u as parameter) to reach a new position
-- Index1 and Index2 indicate the range of poles we can move
-- (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
-- don't enter (1,NbPoles) -> error: rigid move
-- (2, NbPoles-1) -> the ends are enforced
-- (3, NbPoles-2) -> the ends and the tangency are enforced
-- if Problem in BSplineBasis calculation, no change for the curve
-- and FirstIndex, LastIndex = 0
MovePoint(U : Real; -- parameter of the point
Displ : Vec from gp; -- translation vector of the point
Index1 : Integer; -- first movable pole
Index2 : Integer; -- last movable pole
Degree : Integer;
Rational : Boolean;
Poles : Array1OfPnt from TColgp;
Weights : Array1OfReal from TColStd;
FlatKnots : Array1OfReal from TColStd;
FirstIndex : in out Integer; -- first pole modified
LastIndex : in out Integer; -- last pole modified
NewPoles : in out Array1OfPnt from TColgp); -- new poles
---Purpose: Find the new poles which allows an old point (with a
-- given u as parameter) to reach a new position
-- Index1 and Index2 indicate the range of poles we can move
-- (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
-- don't enter (1,NbPoles) -> error: rigid move
-- (2, NbPoles-1) -> the ends are enforced
-- (3, NbPoles-2) -> the ends and the tangency are enforced
-- if Problem in BSplineBasis calculation, no change for the curve
-- and FirstIndex, LastIndex = 0
MovePointAndTangent(U : Real ;
ArrayDimension : Integer ;
Delta : in out Real ;
DeltaDerivative : in out Real ;
Tolerance : Real ;
Degree : Integer ;
Rational : Boolean ;
StartingCondition : Integer ;
EndingCondition : Integer ;
Poles : in out Real ;
Weights : Array1OfReal from TColStd;
FlatKnots : Array1OfReal from TColStd;
NewPoles : in out Real ;
ErrorStatus : in out Integer) ;
---Purpose: This is the dimension free version of the utility
-- U is the parameter must be within the first FlatKnots and the
-- last FlatKnots Delta is the amount the curve has to be moved
-- DeltaDerivative is the amount the derivative has to be moved.
-- Delta and DeltaDerivative must be array of dimension
-- ArrayDimension Degree is the degree of the BSpline and the
-- FlatKnots are the knots of the BSpline Starting Condition if =
-- -1 means the starting point of the curve can move
-- = 0 means the
-- starting point of the cuve cannot move but tangen starting
-- point of the curve cannot move
-- = 1 means the starting point and tangents cannot move
-- = 2 means the starting point tangent and curvature cannot move
-- = ...
-- Same holds for EndingCondition
-- Poles are the poles of the curve
-- Weights are the weights of the curve if Rational = Standard_True
-- NewPoles are the poles of the deformed curve
-- ErrorStatus will be 0 if no error happened
-- 1 if there are not enough knots/poles
-- the imposed conditions
-- The way to solve this problem is to add knots to the BSpline
-- If StartCondition = 1 and EndCondition = 1 then you need at least
-- 4 + 2 = 6 poles so for example to have a C1 cubic you will need
-- have at least 2 internal knots.
MovePointAndTangent(U : Real ;
Delta : Vec from gp ;
DeltaDerivative : Vec from gp ;
Tolerance : Real ;
Degree : Integer ;
Rational : Boolean ;
StartingCondition : Integer ;
EndingCondition : Integer ;
Poles : Array1OfPnt from TColgp ;
Weights : Array1OfReal from TColStd;
FlatKnots : Array1OfReal from TColStd;
NewPoles : in out Array1OfPnt from TColgp ;
ErrorStatus : in out Integer) ;
---Purpose: This is the dimension free version of the utility
-- U is the parameter must be within the first FlatKnots and the
-- last FlatKnots Delta is the amount the curve has to be moved
-- DeltaDerivative is the amount the derivative has to be moved.
-- Delta and DeltaDerivative must be array of dimension
-- ArrayDimension Degree is the degree of the BSpline and the
-- FlatKnots are the knots of the BSpline Starting Condition if =
-- -1 means the starting point of the curve can move
-- = 0 means the
-- starting point of the cuve cannot move but tangen starting
-- point of the curve cannot move
-- = 1 means the starting point and tangents cannot move
-- = 2 means the starting point tangent and curvature cannot move
-- = ...
-- Same holds for EndingCondition
-- Poles are the poles of the curve
-- Weights are the weights of the curve if Rational = Standard_True
-- NewPoles are the poles of the deformed curve
-- ErrorStatus will be 0 if no error happened
-- 1 if there are not enough knots/poles
-- the imposed conditions
-- The way to solve this problem is to add knots to the BSpline
-- If StartCondition = 1 and EndCondition = 1 then you need at least
-- 4 + 2 = 6 poles so for example to have a C1 cubic you will need
-- have at least 2 internal knots.
MovePointAndTangent(U : Real ;
Delta : Vec2d from gp ;
DeltaDerivative : Vec2d from gp ;
Tolerance : Real ;
Degree : Integer ;
Rational : Boolean ;
StartingCondition : Integer ;
EndingCondition : Integer ;
Poles : Array1OfPnt2d from TColgp ;
Weights : Array1OfReal from TColStd ;
FlatKnots : Array1OfReal from TColStd ;
NewPoles : in out Array1OfPnt2d from TColgp ;
ErrorStatus : in out Integer) ;
---Purpose: This is the dimension free version of the utility
-- U is the parameter must be within the first FlatKnots and the
-- last FlatKnots Delta is the amount the curve has to be moved
-- DeltaDerivative is the amount the derivative has to be moved.
-- Delta and DeltaDerivative must be array of dimension
-- ArrayDimension Degree is the degree of the BSpline and the
-- FlatKnots are the knots of the BSpline Starting Condition if =
-- -1 means the starting point of the curve can move
-- = 0 means the
-- starting point of the cuve cannot move but tangen starting
-- point of the curve cannot move
-- = 1 means the starting point and tangents cannot move
-- = 2 means the starting point tangent and curvature cannot move
-- = ...
-- Same holds for EndingCondition
-- Poles are the poles of the curve
-- Weights are the weights of the curve if Rational = Standard_True
-- NewPoles are the poles of the deformed curve
-- ErrorStatus will be 0 if no error happened
-- 1 if there are not enough knots/poles
-- the imposed conditions
-- The way to solve this problem is to add knots to the BSpline
-- If StartCondition = 1 and EndCondition = 1 then you need at least
-- 4 + 2 = 6 poles so for example to have a C1 cubic you will need
-- have at least 2 internal knots.
Resolution( PolesArray : in out Real ;
ArrayDimension : Integer ;
NumPoles : Integer ;
Weights : in Array1OfReal from TColStd;
FlatKnots : in Array1OfReal from TColStd;
Degree : in Integer;
Tolerance3D : Real from Standard ;
UTolerance : out Real from Standard) ;
---Purpose:
-- given a tolerance in 3D space returns a
-- tolerance in U parameter space such that
-- all u1 and u0 in the domain of the curve f(u)
-- | u1 - u0 | < UTolerance and
-- we have |f (u1) - f (u0)| < Tolerance3D
Resolution( Poles : in Array1OfPnt from TColgp ;
Weights : in Array1OfReal from TColStd ;
NumPoles : in Integer from Standard ;
FlatKnots : in Array1OfReal from TColStd ;
Degree : in Integer from Standard ;
Tolerance3D : Real from Standard ;
UTolerance : out Real from Standard) ;
---Purpose:
-- given a tolerance in 3D space returns a
-- tolerance in U parameter space such that
-- all u1 and u0 in the domain of the curve f(u)
-- | u1 - u0 | < UTolerance and
-- we have |f (u1) - f (u0)| < Tolerance3D
Resolution( Poles : in Array1OfPnt2d from TColgp ;
Weights : in Array1OfReal from TColStd ;
NumPoles : in Integer from Standard ;
FlatKnots : in Array1OfReal from TColStd ;
Degree : in Integer ;
Tolerance3D : Real from Standard ;
UTolerance : out Real from Standard) ;
---Purpose:
-- given a tolerance in 3D space returns a
-- tolerance in U parameter space such that
-- all u1 and u0 in the domain of the curve f(u)
-- | u1 - u0 | < UTolerance and
-- we have |f (u1) - f (u0)| < Tolerance3D
end BSplCLib;
|