summaryrefslogtreecommitdiff
path: root/src/Approx/Approx_Curve2d.cxx
blob: ff77d2eef89dc468a21c2650706a2f5d70be5f61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// File:	Approx_Curve2d.cxx
// Created:	Tue Oct 28 16:45:57 1997
// Author:	Roman BORISOV
//		<rbv@velox.nnov.matra-dtv.fr>


#include <Approx_Curve2d.ixx>
#include <AdvApprox_PrefAndRec.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <Precision.hxx>

//=======================================================================
//class : Approx_Curve2d_Eval
//purpose: evaluator class for approximation
//=======================================================================

class Approx_Curve2d_Eval : public AdvApprox_EvaluatorFunction
{
 public:
  Approx_Curve2d_Eval (const Handle(Adaptor2d_HCurve2d)& theFunc, 
                       Standard_Real First, Standard_Real Last)
    : fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
  
  virtual void Evaluate (Standard_Integer *Dimension,
		         Standard_Real     StartEnd[2],
                         Standard_Real    *Parameter,
                         Standard_Integer *DerivativeRequest,
                         Standard_Real    *Result, // [Dimension]
                         Standard_Integer *ErrorCode);
  
 private:
  Handle(Adaptor2d_HCurve2d) fonct;
  Standard_Real StartEndSav[2];
};

void Approx_Curve2d_Eval::Evaluate (Standard_Integer *Dimension,
                                    Standard_Real     StartEnd[2],
                                    Standard_Real    *Param, // Parameter at which evaluation
                                    Standard_Integer *Order, // Derivative Request
                                    Standard_Real    *Result,// [Dimension]
                                    Standard_Integer *ErrorCode)
{
  *ErrorCode = 0;
  Standard_Real par = *Param;

// Dimension is incorrect
  if (*Dimension!=2) {
    *ErrorCode = 1;
  }
// Parameter is incorrect
  if ( par < StartEnd[0] || par > StartEnd[1] ) {
    *ErrorCode = 2;
  }
  if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) 
    {
      fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
      StartEndSav[0]=StartEnd[0];
      StartEndSav[1]=StartEnd[1];
    }
  gp_Pnt2d pnt;
  gp_Vec2d v1, v2;

  switch (*Order) {
  case 0:
    pnt = fonct->Value(par);
    Result[0] = pnt.X();
    Result[1] = pnt.Y();
    break;
  case 1:
    fonct->D1(par, pnt, v1);
    Result[0] = v1.X();
    Result[1] = v1.Y();
    break;
  case 2:
    fonct->D2(par, pnt, v1, v2);
    Result[0] = v2.X();
    Result[1] = v2.Y();
    break;
  default:
    Result[0] = Result[1] = 0.;
    *ErrorCode = 3;
    break;
  }
}

 Approx_Curve2d::Approx_Curve2d(const Handle(Adaptor2d_HCurve2d)& C2D,const Standard_Real First,const Standard_Real Last,const Standard_Real TolU,const Standard_Real TolV,const GeomAbs_Shape Continuity,const Standard_Integer MaxDegree,const Standard_Integer MaxSegments)
{
  C2D->Trim(First,Last,Precision::PConfusion());

  Standard_Integer Num1DSS=2, Num2DSS=0, Num3DSS=0;
  Handle(TColStd_HArray1OfReal) TwoDTolNul, ThreeDTolNul; 
  Handle(TColStd_HArray1OfReal) OneDTol  = new TColStd_HArray1OfReal(1,Num1DSS);
  OneDTol->ChangeValue(1) = TolU;
  OneDTol->ChangeValue(2) = TolV;
  
  Standard_Integer NbInterv_C2 = C2D->NbIntervals(GeomAbs_C2);
  TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
  C2D->Intervals(CutPnts_C2, GeomAbs_C2);
  Standard_Integer NbInterv_C3 = C2D->NbIntervals(GeomAbs_C3);
  TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
  C2D->Intervals(CutPnts_C3, GeomAbs_C3);

  AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);

  myMaxError2dU = 0;
  myMaxError2dV = 0;

  Approx_Curve2d_Eval ev (C2D, First, Last);
  AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS, 
				     OneDTol, TwoDTolNul, ThreeDTolNul,
				     First, Last, Continuity,
				     MaxDegree, MaxSegments,
				     ev, CutTool);

  myIsDone = aApprox.IsDone();
  myHasResult = aApprox.HasResult();
  
  if (myHasResult) {
    TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles());
    TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles());
    aApprox.Poles1d(1, Poles1dU);
    TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles());
    aApprox.Poles1d(2, Poles1dV);
    for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++)
      Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i)));

    Handle(TColStd_HArray1OfReal)    Knots = aApprox.Knots();
    Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
    Standard_Integer Degree = aApprox.Degree();
    myCurve = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
    myMaxError2dU = aApprox.MaxError(1, 1);
    myMaxError2dV = aApprox.MaxError(1, 2);
  } 
}

 Standard_Boolean Approx_Curve2d::IsDone() const
{
  return myIsDone;
}

 Standard_Boolean Approx_Curve2d::HasResult() const
{
  return myHasResult;
}

 Handle(Geom2d_BSplineCurve) Approx_Curve2d::Curve() const
{
  return myCurve;
}

 Standard_Real Approx_Curve2d::MaxError2dU() const
{
  return myMaxError2dU;
}

 Standard_Real Approx_Curve2d::MaxError2dV() const
{
  return myMaxError2dV;
}