blob: 88a21a37e39f5db11f934207f0a589cc6165f29a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_SVD_HeaderFile
#define _math_SVD_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _math_Vector_HeaderFile
#include <math_Vector.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class Standard_DimensionError;
class math_Matrix;
class math_Vector;
//! SVD implements the solution of a set of N linear equations <br>
//! of M unknowns without condition on N or M. The Singular <br>
//! Value Decomposition algorithm is used. For singular or <br>
//! nearly singular matrices SVD is a better choice than Gauss <br>
//! or GaussLeastSquare. <br>
class math_SVD {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Given as input an n X m matrix A with n < m, n = m or n > m <br>
//! this constructor performs the Singular Value Decomposition. <br>
Standard_EXPORT math_SVD(const math_Matrix& A);
//! Returns true if the computations are successful, otherwise returns false. <br>
Standard_Boolean IsDone() const;
//! Given the input Vector B this routine solves the set of linear <br>
//! equations A . X = B. <br>
//! Exception NotDone is raised if the decomposition of A was not done <br>
//! successfully. <br>
//! Exception DimensionError is raised if the range of B is not <br>
//! equal to the rowrange of A. <br>
//! Exception DimensionError is raised if the range of X is not <br>
//! equal to the colrange of A. <br>
Standard_EXPORT void Solve(const math_Vector& B,math_Vector& X,const Standard_Real Eps = 1.0e-6) const;
//! Computes the inverse Inv of matrix A such as A * Inverse = Identity. <br>
//! Exceptions <br>
//! StdFail_NotDone if the algorithm fails (and IsDone returns false). <br>
//! Standard_DimensionError if the ranges of Inv are <br>
//! compatible with the ranges of A. <br>
Standard_EXPORT void PseudoInverse(math_Matrix& Inv,const Standard_Real Eps = 1.0e-6) const;
//! Prints information on the current state of the object. <br>
//! Is used to redefine the operator <<. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
private:
Standard_Boolean Done;
Standard_Boolean Singular;
math_Matrix U;
math_Matrix V;
math_Vector Diag;
Standard_Integer RowA;
};
#include <math_SVD.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|