1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_NewtonFunctionRoot_HeaderFile
#define _math_NewtonFunctionRoot_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_FunctionWithDerivative;
//! This class implements the calculation of a root of a function of <br>
//! a single variable starting from an initial near guess using the <br>
//! Newton algorithm. Knowledge of the derivative is required. <br>
class math_NewtonFunctionRoot {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! The Newton method is done to find the root of the function F <br>
//! from the initial guess Guess. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//! abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
Standard_EXPORT math_NewtonFunctionRoot(math_FunctionWithDerivative& F,const Standard_Real Guess,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Integer NbIterations = 100);
//! The Newton method is done to find the root of the function F <br>
//! from the initial guess Guess. <br>
//! The solution must be inside the interval [A, B]. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//! abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
Standard_EXPORT math_NewtonFunctionRoot(math_FunctionWithDerivative& F,const Standard_Real Guess,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Real A,const Standard_Real B,const Standard_Integer NbIterations = 100);
//! is used in a sub-class to initialize correctly all the fields <br>
//! of this class. <br>
Standard_EXPORT math_NewtonFunctionRoot(const Standard_Real A,const Standard_Real B,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Integer NbIterations = 100);
//! is used internally by the constructors. <br>
Standard_EXPORT void Perform(math_FunctionWithDerivative& F,const Standard_Real Guess) ;
//! Returns true if the computations are successful, otherwise returns false. <br>
Standard_Boolean IsDone() const;
//! Returns the value of the root of function <F>. <br>
//! Exception NotDone is raised if the root was not found. <br>
Standard_Real Root() const;
//! returns the value of the derivative at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
Standard_Real Derivative() const;
//! returns the value of the function at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
Standard_Real Value() const;
//! Returns the number of iterations really done on the <br>
//! computation of the Root. <br>
//! Exception NotDone is raised if the root was not found. <br>
Standard_Integer NbIterations() const;
//! Prints information on the current state of the object. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
private:
Standard_Boolean Done;
Standard_Real X;
Standard_Real Fx;
Standard_Real DFx;
Standard_Integer It;
Standard_Real EpsilonX;
Standard_Real EpsilonF;
Standard_Integer Itermax;
Standard_Real Binf;
Standard_Real Bsup;
};
#include <math_NewtonFunctionRoot.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|