summaryrefslogtreecommitdiff
path: root/inc/math_NewtonFunctionRoot.hxx
blob: 245881d8c5199d26ba3388884b1dfc252b72d2ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _math_NewtonFunctionRoot_HeaderFile
#define _math_NewtonFunctionRoot_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_FunctionWithDerivative;



//! This class implements the calculation of a root of a function of <br>
//! a single variable starting from an initial near guess using the <br>
//! Newton algorithm. Knowledge of the derivative is required. <br>
class math_NewtonFunctionRoot  {
public:

  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  
//! The Newton method is done to find the root of the function F <br>
//! from the initial guess Guess. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//!  abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
  Standard_EXPORT   math_NewtonFunctionRoot(math_FunctionWithDerivative& F,const Standard_Real Guess,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Integer NbIterations = 100);
  
//! The Newton method is done to find the root of the function F <br>
//! from the initial guess Guess. <br>
//! The solution must be inside the interval [A, B]. <br>
//! The tolerance required on the root is given by Tolerance. <br>
//! The solution is found when : <br>
//!  abs(Xi - Xi-1) <= EpsX and abs(F(Xi))<= EpsF <br>
//! The maximum number of iterations allowed is given by NbIterations. <br>
  Standard_EXPORT   math_NewtonFunctionRoot(math_FunctionWithDerivative& F,const Standard_Real Guess,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Real A,const Standard_Real B,const Standard_Integer NbIterations = 100);
  //! is used in a sub-class to initialize correctly all the fields <br>
//!          of this class. <br>
  Standard_EXPORT   math_NewtonFunctionRoot(const Standard_Real A,const Standard_Real B,const Standard_Real EpsX,const Standard_Real EpsF,const Standard_Integer NbIterations = 100);
  //! is used internally by the constructors. <br>
  Standard_EXPORT     void Perform(math_FunctionWithDerivative& F,const Standard_Real Guess) ;
  //! Returns true if the computations are successful, otherwise returns false. <br>
        Standard_Boolean IsDone() const;
  //! Returns the value of the root of function <F>. <br>
//! Exception NotDone is raised if the root was not found. <br>
        Standard_Real Root() const;
  //! returns the value of the derivative at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
        Standard_Real Derivative() const;
  //! returns the value of the function at the root. <br>
//! Exception NotDone is raised if the root was not found. <br>
        Standard_Real Value() const;
  //! Returns the number of iterations really done on the <br>
//! computation of the Root. <br>
//! Exception NotDone is raised if the root was not found. <br>
        Standard_Integer NbIterations() const;
  //! Prints information on the current state of the object. <br>
  Standard_EXPORT     void Dump(Standard_OStream& o) const;





protected:





private:



Standard_Boolean Done;
Standard_Real X;
Standard_Real Fx;
Standard_Real DFx;
Standard_Integer It;
Standard_Real EpsilonX;
Standard_Real EpsilonF;
Standard_Integer Itermax;
Standard_Real Binf;
Standard_Real Bsup;


};


#include <math_NewtonFunctionRoot.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif