blob: ce9454c4ae58e2818c7b8d3078fe747f986e91f0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_Crout_HeaderFile
#define _math_Crout_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_NotSquare;
class Standard_DimensionError;
class math_Matrix;
class math_Vector;
//! This class implements the Crout algorithm used to solve a <br>
//! system A*X = B where A is a symmetric matrix. It can be used to <br>
//! invert a symmetric matrix. <br>
//! This algorithm is similar to Gauss but is faster than Gauss. <br>
//! Only the inferior triangle of A and the diagonal can be given. <br>
class math_Crout {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Given an input matrix A, this algorithm inverts A by the <br>
//! Crout algorithm. The user can give only the inferior <br>
//! triangle for the implementation. <br>
//! A can be decomposed like this: <br>
//! A = L * D * T(L) where L is triangular inferior and D is <br>
//! diagonal. <br>
//! If one element of A is less than MinPivot, A is <br>
//! considered as singular. <br>
//! Exception NotSquare is raised if A is not a square matrix. <br>
Standard_EXPORT math_Crout(const math_Matrix& A,const Standard_Real MinPivot = 1.0e-20);
//! Returns True if all has been correctly done. <br>
Standard_Boolean IsDone() const;
//! Given an input vector <B>, this routine returns the <br>
//! solution of the set of linear equations A . X = B. <br>
//! Exception NotDone is raised if the decomposition was not <br>
//! done successfully. <br>
//! Exception DimensionError is raised if the range of B is <br>
//! not equal to the rowrange of A. <br>
Standard_EXPORT void Solve(const math_Vector& B,math_Vector& X) const;
//! returns the inverse matrix of A. Only the inferior <br>
//! triangle is returned. <br>
//! Exception NotDone is raised if NotDone. <br>
const math_Matrix& Inverse() const;
//! returns in Inv the inverse matrix of A. Only the inferior <br>
//! triangle is returned. <br>
//! Exception NotDone is raised if NotDone. <br>
void Invert(math_Matrix& Inv) const;
//! Returns the value of the determinant of the previously LU <br>
//! decomposed matrix A. Zero is returned if the matrix A is considered as singular. <br>
//! Exceptions <br>
//! StdFail_NotDone if the algorithm fails (and IsDone returns false). <br>
Standard_Real Determinant() const;
//! Prints on the stream o information on the current state <br>
//! of the object. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
private:
math_Matrix InvA;
Standard_Boolean Done;
Standard_Real Det;
};
#include <math_Crout.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|