summaryrefslogtreecommitdiff
path: root/inc/gp_Parab.hxx
blob: ab36995b04c5d3cb187f39daf328f78ee3778f8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Parab_HeaderFile
#define _gp_Parab_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _gp_Ax2_HeaderFile
#include <gp_Ax2.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _gp_Ax1_HeaderFile
#include <gp_Ax1.hxx>
#endif
#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class gp_Ax2;
class gp_Ax1;
class gp_Pnt;
class gp_Trsf;
class gp_Vec;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Parab);


//! Describes a parabola in 3D space. <br>
//! A parabola is defined by its focal length (that is, the <br>
//! distance between its focus and apex) and positioned in <br>
//! space with a coordinate system (a gp_Ax2 object) <br>
//! where: <br>
//! -   the origin of the coordinate system is on the apex of <br>
//!   the parabola, <br>
//! -   the "X Axis" of the coordinate system is the axis of <br>
//! symmetry; the parabola is on the positive side of this axis, and <br>
//! -   the origin, "X Direction" and "Y Direction" of the <br>
//!   coordinate system define the plane of the parabola. <br>
//! The equation of the parabola in this coordinate system, <br>
//! which is the "local coordinate system" of the parabola, is: <br>
//! Y**2 = (2*P) * X. <br>
//! where P, referred to as the parameter of the parabola, is <br>
//! the distance between the focus and the directrix (P is <br>
//! twice the focal length). <br>
//! The "main Direction" of the local coordinate system gives <br>
//! the normal vector to the plane of the parabola. <br>
//! See Also <br>
//! gce_MakeParab which provides functions for more <br>
//! complex parabola constructions <br>
//! Geom_Parabola which provides additional functions for <br>
//! constructing parabolas and works, in particular, with the <br>
//! parametric equations of parabolas <br>
class gp_Parab  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Creates an indefinite Parabola. <br>
      gp_Parab();
  
//!  Creates a parabola with its local coordinate system "A2" <br>
//!  and it's focal length "Focal". <br>
//!  The XDirection of A2 defines the axis of symmetry of the <br>
//!  parabola. The YDirection of A2 is parallel to the directrix <br>
//!  of the parabola. The Location point of A2 is the vertex of <br>
//!  the parabola <br>
//! Raises ConstructionError if Focal < 0.0 <br>//! Raised if Focal < 0.0 <br>
      gp_Parab(const gp_Ax2& A2,const Standard_Real Focal);
  
//!  D is the directrix of the parabola and F the focus point. <br>
//!  The symmetry axis (XAxis) of the parabola is normal to the <br>
//!  directrix and pass through the focus point F, but its <br>
//!  location point is the vertex of the parabola. <br>
//!  The YAxis of the parabola is parallel to D and its location <br>
//!  point is the vertex of the parabola. The normal to the plane <br>
//!  of the parabola is the cross product between the XAxis and the <br>
//!  YAxis. <br>
      gp_Parab(const gp_Ax1& D,const gp_Pnt& F);
  //! Modifies this parabola by redefining its local coordinate system so that <br>
//! -   its origin and "main Direction" become those of the <br>
//!   axis A1 (the "X Direction" and "Y Direction" are then <br>
//!   recomputed in the same way as for any gp_Ax2) <br>
//!  Raises ConstructionError if the direction of A1 is parallel to the previous <br>
//!  XAxis of the parabola. <br>
        void SetAxis(const gp_Ax1& A1) ;
  //! Changes the focal distance of the parabola. <br>
//!  Raises ConstructionError if Focal < 0.0 <br>
        void SetFocal(const Standard_Real Focal) ;
  
//!  Changes the location of the parabola. It is the vertex of <br>
//!  the parabola. <br>
        void SetLocation(const gp_Pnt& P) ;
  //! Changes the local coordinate system of the parabola. <br>
  Standard_EXPORT     void SetPosition(const gp_Ax2& A2) ;
  
//!  Returns the main axis of the parabola. <br>
//!  It is the axis normal to the plane of the parabola passing <br>
//!  through the vertex of the parabola. <br>
       const gp_Ax1& Axis() const;
  //! Computes the directrix of this parabola. <br>
//! The directrix is: <br>
//! -   a line parallel to the "Y Direction" of the local <br>
//!   coordinate system of this parabola, and <br>
//! -   located on the negative side of the axis of symmetry, <br>
//!   at a distance from the apex which is equal to the focal <br>
//!   length of this parabola. <br>
//! The directrix is returned as an axis (a gp_Ax1 object), <br>
//! the origin of which is situated on the "X Axis" of this parabola. <br>
        gp_Ax1 Directrix() const;
  
//!  Returns the distance between the vertex and the focus <br>
//!  of the parabola. <br>
        Standard_Real Focal() const;
  //! -   Computes the focus of the parabola. <br>
        gp_Pnt Focus() const;
  
//!  Returns the vertex of the parabola. It is the "Location" <br>
//!  point of the coordinate system of the parabola. <br>
       const gp_Pnt& Location() const;
  
//!  Computes the parameter of the parabola. <br>
//!  It is the distance between the focus and the directrix of <br>
//!  the parabola. This distance is twice the focal length. <br>
        Standard_Real Parameter() const;
  
//!  Returns the local coordinate system of the parabola. <br>
       const gp_Ax2& Position() const;
  
//!  Returns the symmetry axis of the parabola. The location point <br>
//!  of the axis is the vertex of the parabola. <br>
        gp_Ax1 XAxis() const;
  
//!  It is an axis parallel to the directrix of the parabola. <br>
//!  The location point of this axis is the vertex of the parabola. <br>
        gp_Ax1 YAxis() const;
  
  Standard_EXPORT     void Mirror(const gp_Pnt& P) ;
  
//!  Performs the symmetrical transformation of a parabola <br>
//!  with respect to the point P which is the center of the <br>
//!  symmetry. <br>
  Standard_EXPORT     gp_Parab Mirrored(const gp_Pnt& P) const;
  
  Standard_EXPORT     void Mirror(const gp_Ax1& A1) ;
  
//!  Performs the symmetrical transformation of a parabola <br>
//!  with respect to an axis placement which is the axis of <br>
//!  the symmetry. <br>
  Standard_EXPORT     gp_Parab Mirrored(const gp_Ax1& A1) const;
  
  Standard_EXPORT     void Mirror(const gp_Ax2& A2) ;
  
//!  Performs the symmetrical transformation of a parabola <br>
//!  with respect to a plane. The axis placement A2 locates <br>
//!  the plane of the symmetry (Location, XDirection, YDirection). <br>
  Standard_EXPORT     gp_Parab Mirrored(const gp_Ax2& A2) const;
  
        void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
  
//!  Rotates a parabola. A1 is the axis of the rotation. <br>
//!  Ang is the angular value of the rotation in radians. <br>
        gp_Parab Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
  
        void Scale(const gp_Pnt& P,const Standard_Real S) ;
  
//!  Scales a parabola. S is the scaling value. <br>
//!  If S is negative the direction of the symmetry axis <br>
//!  XAxis is reversed and the direction of the YAxis too. <br>
        gp_Parab Scaled(const gp_Pnt& P,const Standard_Real S) const;
  
        void Transform(const gp_Trsf& T) ;
  
//!  Transforms a parabola with the transformation T from class Trsf. <br>
        gp_Parab Transformed(const gp_Trsf& T) const;
  
        void Translate(const gp_Vec& V) ;
  
//!  Translates a parabola in the direction of the vector V. <br>
//!  The magnitude of the translation is the vector's magnitude. <br>
        gp_Parab Translated(const gp_Vec& V) const;
  
        void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
  
//!  Translates a parabola from the point P1 to the point P2. <br>
        gp_Parab Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
    const gp_Ax2& _CSFDB_Getgp_Parabpos() const { return pos; }
    Standard_Real _CSFDB_Getgp_ParabfocalLength() const { return focalLength; }
    void _CSFDB_Setgp_ParabfocalLength(const Standard_Real p) { focalLength = p; }



protected:




private: 


gp_Ax2 pos;
Standard_Real focalLength;


};


#include <gp_Parab.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif