1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Cone_HeaderFile
#define _gp_Cone_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _gp_Ax3_HeaderFile
#include <gp_Ax3.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _gp_Pnt_HeaderFile
#include <gp_Pnt.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _gp_Ax1_HeaderFile
#include <gp_Ax1.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class gp_Ax3;
class gp_Ax1;
class gp_Pnt;
class gp_Ax2;
class gp_Trsf;
class gp_Vec;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Cone);
//! Defines an infinite conical surface. <br>
//! A cone is defined by its half-angle at the apex and <br>
//! positioned in space with a coordinate system (a gp_Ax3 <br>
//! object) and a "reference radius" where: <br>
//! - the "main Axis" of the coordinate system is the axis of revolution of the cone, <br>
//! - the plane defined by the origin, the "X Direction" and <br>
//! the "Y Direction" of the coordinate system is the <br>
//! reference plane of the cone; the intersection of the <br>
//! cone with this reference plane is a circle of radius <br>
//! equal to the reference radius, <br>
//! if the half-angle is positive, the apex of the cone is on <br>
//! the negative side of the "main Axis" of the coordinate <br>
//! system. If the half-angle is negative, the apex is on the positive side. <br>
//! This coordinate system is the "local coordinate system" of the cone. <br>
//! Note: when a gp_Cone cone is converted into a <br>
//! Geom_ConicalSurface cone, some implicit properties of <br>
//! its local coordinate system are used explicitly: <br>
//! - its origin, "X Direction", "Y Direction" and "main <br>
//! Direction" are used directly to define the parametric <br>
//! directions on the cone and the origin of the parameters, <br>
//! - its implicit orientation (right-handed or left-handed) <br>
//! gives the orientation (direct or indirect) of the <br>
//! Geom_ConicalSurface cone. <br>
//! See Also <br>
//! gce_MakeCone which provides functions for more <br>
//! complex cone constructions <br>
//! Geom_ConicalSurface which provides additional <br>
//! functions for constructing cones and works, in particular, <br>
//! with the parametric equations of cones gp_Ax3 <br>
class gp_Cone {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Creates an indefinite Cone. <br>
gp_Cone();
//! Creates an infinite conical surface. A3 locates the cone <br>
//! in the space and defines the reference plane of the surface. <br>
//! Ang is the conical surface semi-angle between 0 and PI/2 radians. <br>
//! Radius is the radius of the circle in the reference plane of <br>
//! the cone. <br>
//! Raises ConstructionError <br>
//! . if Radius is lower than 0.0 <br>
//! . Ang < Resolution from gp or Ang >= (PI/2) - Resolution. <br>
gp_Cone(const gp_Ax3& A3,const Standard_Real Ang,const Standard_Real Radius);
//! Changes the symmetry axis of the cone. Raises ConstructionError <br>
//! the direction of A1 is parallel to the "XDirection" <br>
//! of the coordinate system of the cone. <br>
void SetAxis(const gp_Ax1& A1) ;
//! Changes the location of the cone. <br>
void SetLocation(const gp_Pnt& Loc) ;
//! Changes the local coordinate system of the cone. <br>
//! This coordinate system defines the reference plane of the cone. <br>
void SetPosition(const gp_Ax3& A3) ;
//! Changes the radius of the cone in the reference plane of <br>
//! the cone. <br>//! Raised if R < 0.0 <br>
void SetRadius(const Standard_Real R) ;
//! Changes the semi-angle of the cone. <br>
//! Ang is the conical surface semi-angle ]0,PI/2[. <br>
//! Raises ConstructionError if Ang < Resolution from gp or Ang >= PI/2 - Resolution <br>
void SetSemiAngle(const Standard_Real Ang) ;
//! Computes the cone's top. The Apex of the cone is on the <br>
//! negative side of the symmetry axis of the cone. <br>
gp_Pnt Apex() const;
//! Reverses the U parametrization of the cone <br>
//! reversing the YAxis. <br>
void UReverse() ;
//! Reverses the V parametrization of the cone reversing the ZAxis. <br>
void VReverse() ;
//! Returns true if the local coordinate system of this cone is right-handed. <br>
Standard_Boolean Direct() const;
//! returns the symmetry axis of the cone. <br>
const gp_Ax1& Axis() const;
//! Computes the coefficients of the implicit equation of the quadric <br>
//! in the absolute cartesian coordinates system : <br>
//! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + <br>
//! 2.(C1.X + C2.Y + C3.Z) + D = 0.0 <br>
Standard_EXPORT void Coefficients(Standard_Real& A1,Standard_Real& A2,Standard_Real& A3,Standard_Real& B1,Standard_Real& B2,Standard_Real& B3,Standard_Real& C1,Standard_Real& C2,Standard_Real& C3,Standard_Real& D) const;
//! returns the "Location" point of the cone. <br>
const gp_Pnt& Location() const;
//! Returns the local coordinates system of the cone. <br>
const gp_Ax3& Position() const;
//! Returns the radius of the cone in the reference plane. <br>
Standard_Real RefRadius() const;
//! Returns the half-angle at the apex of this cone. <br>
Standard_Real SemiAngle() const;
//! Returns the XAxis of the reference plane. <br>
gp_Ax1 XAxis() const;
//! Returns the YAxis of the reference plane. <br>
gp_Ax1 YAxis() const;
Standard_EXPORT void Mirror(const gp_Pnt& P) ;
//! Performs the symmetrical transformation of a cone <br>
//! with respect to the point P which is the center of the <br>
//! symmetry. <br>
Standard_EXPORT gp_Cone Mirrored(const gp_Pnt& P) const;
Standard_EXPORT void Mirror(const gp_Ax1& A1) ;
//! Performs the symmetrical transformation of a cone with <br>
//! respect to an axis placement which is the axis of the <br>
//! symmetry. <br>
Standard_EXPORT gp_Cone Mirrored(const gp_Ax1& A1) const;
Standard_EXPORT void Mirror(const gp_Ax2& A2) ;
//! Performs the symmetrical transformation of a cone with respect <br>
//! to a plane. The axis placement A2 locates the plane of the <br>
//! of the symmetry : (Location, XDirection, YDirection). <br>
Standard_EXPORT gp_Cone Mirrored(const gp_Ax2& A2) const;
void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
//! Rotates a cone. A1 is the axis of the rotation. <br>
//! Ang is the angular value of the rotation in radians. <br>
gp_Cone Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
void Scale(const gp_Pnt& P,const Standard_Real S) ;
//! Scales a cone. S is the scaling value. <br>
//! The absolute value of S is used to scale the cone <br>
gp_Cone Scaled(const gp_Pnt& P,const Standard_Real S) const;
void Transform(const gp_Trsf& T) ;
//! Transforms a cone with the transformation T from class Trsf. <br>
gp_Cone Transformed(const gp_Trsf& T) const;
void Translate(const gp_Vec& V) ;
//! Translates a cone in the direction of the vector V. <br>
//! The magnitude of the translation is the vector's magnitude. <br>
gp_Cone Translated(const gp_Vec& V) const;
void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
//! Translates a cone from the point P1 to the point P2. <br>
gp_Cone Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
const gp_Ax3& _CSFDB_Getgp_Conepos() const { return pos; }
Standard_Real _CSFDB_Getgp_Coneradius() const { return radius; }
void _CSFDB_Setgp_Coneradius(const Standard_Real p) { radius = p; }
Standard_Real _CSFDB_Getgp_ConesemiAngle() const { return semiAngle; }
void _CSFDB_Setgp_ConesemiAngle(const Standard_Real p) { semiAngle = p; }
protected:
private:
gp_Ax3 pos;
Standard_Real radius;
Standard_Real semiAngle;
};
#include <gp_Cone.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|