summaryrefslogtreecommitdiff
path: root/inc/Geom_BSplineSurface.hxx
blob: 17299405564a644d83db8d8d282375fdca4ca773 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _Geom_BSplineSurface_HeaderFile
#define _Geom_BSplineSurface_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineHandle_HeaderFile
#include <Standard_DefineHandle.hxx>
#endif
#ifndef _Handle_Geom_BSplineSurface_HeaderFile
#include <Handle_Geom_BSplineSurface.hxx>
#endif

#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _GeomAbs_BSplKnotDistribution_HeaderFile
#include <GeomAbs_BSplKnotDistribution.hxx>
#endif
#ifndef _GeomAbs_Shape_HeaderFile
#include <GeomAbs_Shape.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Handle_TColgp_HArray2OfPnt_HeaderFile
#include <Handle_TColgp_HArray2OfPnt.hxx>
#endif
#ifndef _Handle_TColStd_HArray2OfReal_HeaderFile
#include <Handle_TColStd_HArray2OfReal.hxx>
#endif
#ifndef _Handle_TColStd_HArray1OfReal_HeaderFile
#include <Handle_TColStd_HArray1OfReal.hxx>
#endif
#ifndef _Handle_TColStd_HArray1OfInteger_HeaderFile
#include <Handle_TColStd_HArray1OfInteger.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Geom_BoundedSurface_HeaderFile
#include <Geom_BoundedSurface.hxx>
#endif
#ifndef _Handle_Geom_Curve_HeaderFile
#include <Handle_Geom_Curve.hxx>
#endif
#ifndef _Handle_Geom_Geometry_HeaderFile
#include <Handle_Geom_Geometry.hxx>
#endif
class TColgp_HArray2OfPnt;
class TColStd_HArray2OfReal;
class TColStd_HArray1OfReal;
class TColStd_HArray1OfInteger;
class Standard_ConstructionError;
class Standard_DimensionError;
class Standard_DomainError;
class Standard_OutOfRange;
class Standard_NoSuchObject;
class Standard_RangeError;
class Geom_UndefinedDerivative;
class TColgp_Array2OfPnt;
class TColStd_Array1OfReal;
class TColStd_Array1OfInteger;
class TColStd_Array2OfReal;
class gp_Pnt;
class TColgp_Array1OfPnt;
class gp_Vec;
class Geom_Curve;
class gp_Trsf;
class Geom_Geometry;


//! Describes a BSpline surface. <br>
//! In each parametric direction, a BSpline surface can be: <br>
//! - uniform or non-uniform, <br>
//! - rational or non-rational, <br>
//! - periodic or non-periodic. <br>
//! A BSpline surface is defined by: <br>
//! - its degrees, in the u and v parametric directions, <br>
//! - its periodic characteristic, in the u and v parametric directions, <br>
//! - a table of poles, also called control points (together <br>
//!   with the associated weights if the surface is rational), and <br>
//! - a table of knots, together with the associated multiplicities. <br>
//!   The degree of a Geom_BSplineSurface is limited to <br>
//! a value (25) which is defined and controlled by the <br>
//! system. This value is returned by the function MaxDegree. <br>
//!       Poles and Weights <br>
//! Poles and Weights are manipulated using two associative double arrays: <br>
//! - the poles table, which is a double array of gp_Pnt points, and <br>
//! - the weights table, which is a double array of reals. <br>
//! The bounds of the poles and weights arrays are: <br>
//! - 1 and NbUPoles for the row bounds (provided <br>
//!   that the BSpline surface is not periodic in the u <br>
//!   parametric direction), where NbUPoles is the <br>
//!   number of poles of the surface in the u parametric direction, and <br>
//! - 1 and NbVPoles for the column bounds (provided <br>
//!   that the BSpline surface is not periodic in the v <br>
//!   parametric direction), where NbVPoles is the <br>
//!   number of poles of the surface in the v parametric direction. <br>
//!   The poles of the surface are the points used to shape <br>
//! and reshape the surface. They comprise a rectangular network. <br>
//! If the surface is not periodic: <br>
//! - The points (1, 1), (NbUPoles, 1), (1, <br>
//!   NbVPoles), and (NbUPoles, NbVPoles) <br>
//!   are the four parametric "corners" of the surface. <br>
//! - The first column of poles and the last column of <br>
//!   poles define two BSpline curves which delimit the <br>
//!   surface in the v parametric direction. These are the <br>
//!   v isoparametric curves corresponding to the two <br>
//!   bounds of the v parameter. <br>
//! - The first row of poles and the last row of poles <br>
//!   define two BSpline curves which delimit the surface <br>
//!   in the u parametric direction. These are the u <br>
//!   isoparametric curves corresponding to the two bounds of the u parameter. <br>
//! If the surface is periodic, these geometric properties are not verified. <br>
//! It is more difficult to define a geometrical significance <br>
//! for the weights. However they are useful for <br>
//! representing a quadric surface precisely. Moreover, if <br>
//! the weights of all the poles are equal, the surface has <br>
//! a polynomial equation, and hence is a "non-rational surface". <br>
//! The non-rational surface is a special, but frequently <br>
//! used, case, where all poles have identical weights. <br>
//! The weights are defined and used only in the case of <br>
//! a rational surface. The rational characteristic is <br>
//! defined in each parametric direction. A surface can be <br>
//! rational in the u parametric direction, and <br>
//! non-rational in the v parametric direction. <br>
//!        Knots and Multiplicities <br>
//! For a Geom_BSplineSurface the table of knots is <br>
//! made up of two increasing sequences of reals, without <br>
//! repetition, one for each parametric direction. The <br>
//! multiplicities define the repetition of the knots. <br>
//! A BSpline surface comprises multiple contiguous <br>
//! patches, which are themselves polynomial or rational <br>
//! surfaces. The knots are the parameters of the <br>
//! isoparametric curves which limit these contiguous <br>
//! patches. The multiplicity of a knot on a BSpline <br>
//! surface (in a given parametric direction) is related to <br>
//! the degree of continuity of the surface at that knot in <br>
//! that parametric direction: <br>
//! Degree of continuity at knot(i) = Degree - Multi(i) where: <br>
//! - Degree is the degree of the BSpline surface in <br>
//!   the given parametric direction, and <br>
//! - Multi(i) is the multiplicity of knot number i in <br>
//!   the given parametric direction. <br>
//! There are some special cases, where the knots are <br>
//! regularly spaced in one parametric direction (i.e. the <br>
//! difference between two consecutive knots is a constant). <br>
//! - "Uniform": all the multiplicities are equal to 1. <br>
//! - "Quasi-uniform": all the multiplicities are equal to 1, <br>
//!   except for the first and last knots in this parametric <br>
//!   direction, and these are equal to Degree + 1. <br>
//! - "Piecewise Bezier": all the multiplicities are equal to <br>
//!   Degree except for the first and last knots, which <br>
//!   are equal to Degree + 1. This surface is a <br>
//!   concatenation of Bezier patches in the given <br>
//!   parametric direction. <br>
//! If the BSpline surface is not periodic in a given <br>
//! parametric direction, the bounds of the knots and <br>
//! multiplicities tables are 1 and NbKnots, where <br>
//! NbKnots is the number of knots of the BSpline <br>
//! surface in that parametric direction. <br>
//! If the BSpline surface is periodic in a given parametric <br>
//! direction, and there are k periodic knots and p <br>
//! periodic poles in that parametric direction: <br>
//! - the period is such that: <br>
//! period = Knot(k+1) - Knot(1), and <br>
//! - the poles and knots tables in that parametric <br>
//!   direction can be considered as infinite tables, such that: <br>
//! Knot(i+k) = Knot(i) + period, and <br>
//! Pole(i+p) = Pole(i) <br>
//! Note: The data structure tables for a periodic BSpline <br>
//! surface are more complex than those of a non-periodic one. <br>
//! References : <br>
//!  . A survey of curve and surface methods in CADG Wolfgang BOHM <br>
//!    CAGD 1 (1984) <br>
//!  . On de Boor-like algorithms and blossoming Wolfgang BOEHM <br>
//!    cagd 5 (1988) <br>
//!  . Blossoming and knot insertion algorithms for B-spline curves <br>
//!    Ronald N. GOLDMAN <br>
//!  . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA <br>
//!  . Curves and Surfaces for Computer Aided Geometric Design, <br>
//!    a practical guide Gerald Farin <br>
class Geom_BSplineSurface : public Geom_BoundedSurface {

public:

  //! Creates  a non-rational b-spline surface (weights <br>
//!         default value is 1.). <br>//! The following conditions must be verified. <br>
//!   0 < UDegree <= MaxDegree. <br>
//!   UKnots.Length() == UMults.Length() >= 2 <br>
//!   UKnots(i) < UKnots(i+1) (Knots are increasing) <br>
//!   1 <= UMults(i) <= UDegree <br>
//!   On a   non  uperiodic   surface    the  first and    last <br>
//!   umultiplicities  may  be     UDegree+1  (this   is   even <br>
//!   recommanded if you want the curve  to start and finish on <br>
//!   the first and last pole). <br>
//!   On a uperiodic     surface  the first    and   the   last <br>
//!   umultiplicities must be the same. <br>
//!   on non-uperiodic surfaces <br>
//!     Poles.ColLength() == Sum(UMults(i)) - UDegree - 1 >= 2 <br>
//!   on uperiodic surfaces <br>
//!   Poles.ColLength() == Sum(UMults(i)) except the first or last <br>
//!   The previous conditions for U holds  also for V, with the <br>
//!   RowLength of the poles. <br>
  Standard_EXPORT   Geom_BSplineSurface(const TColgp_Array2OfPnt& Poles,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean UPeriodic = Standard_False,const Standard_Boolean VPeriodic = Standard_False);
  //! Creates  a non-rational b-spline surface (weights <br>
//!         default value is 1.). <br>
//! <br>//! The following conditions must be verified. <br>
//!  0 < UDegree <= MaxDegree. <br>
//! <br>
//!  UKnots.Length() == UMults.Length() >= 2 <br>
//! <br>
//!  UKnots(i) < UKnots(i+1) (Knots are increasing) <br>
//!  1 <= UMults(i) <= UDegree <br>
//! <br>
//!   On a   non  uperiodic   surface    the  first and    last <br>
//!   umultiplicities  may  be     UDegree+1  (this   is   even <br>
//!   recommanded if you want the curve  to start and finish on <br>
//!   the first and last pole). <br>
//! <br>
//!   On a uperiodic     surface  the first    and   the   last <br>
//!   umultiplicities must be the same. <br>
//! <br>
//!   on non-uperiodic surfaces <br>
//! <br>
//!     Poles.ColLength() == Sum(UMults(i)) - UDegree - 1 >= 2 <br>
//! <br>
//!   on uperiodic surfaces <br>
//! <br>
//!     Poles.ColLength() == Sum(UMults(i)) except the first or <br>
//!     last <br>
//! <br>
//! <br>
//!   The previous conditions for U holds  also for V, with the <br>
//!   RowLength of the poles. <br>
  Standard_EXPORT   Geom_BSplineSurface(const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean UPeriodic = Standard_False,const Standard_Boolean VPeriodic = Standard_False);
  //! Exchanges the u and v parametric directions on <br>
//! this BSpline surface. <br>
//! As a consequence: <br>
//! - the poles and weights tables are transposed, <br>
//! - the knots and multiplicities tables are exchanged, <br>
//! - degrees of continuity, and rational, periodic and <br>
//!   uniform characteristics are exchanged, and <br>
//! - the orientation of the surface is inverted. <br>
  Standard_EXPORT     void ExchangeUV() ;
  //! Sets the surface U periodic. <br>
  Standard_EXPORT     void SetUPeriodic() ;
  //!  Modifies this surface to be periodic in the u (or v) <br>
//! parametric direction. <br>
//! To become periodic in a given parametric direction a <br>
//! surface must be closed in that parametric direction, <br>
//! and the knot sequence relative to that direction must be periodic. <br>
//! To generate this periodic sequence of knots, the <br>
//! functions FirstUKnotIndex and LastUKnotIndex (or <br>
//! FirstVKnotIndex and LastVKnotIndex) are used to <br>
//! compute I1 and I2. These are the indexes, in the <br>
//! knot array associated with the given parametric <br>
//! direction, of the knots that correspond to the first and <br>
//! last parameters of this BSpline surface in the given <br>
//! parametric direction. Hence the period is: <br>
//! Knots(I1) - Knots(I2) <br>
//! As a result, the knots and poles tables are modified. <br>
//! Exceptions <br>
//! Standard_ConstructionError if the surface is not <br>
//! closed in the given parametric direction. <br>
  Standard_EXPORT     void SetVPeriodic() ;
  //! returns the parameter normalized within <br>
//!         the period if the surface is periodic : otherwise <br>
//!         does not do anything <br>
  Standard_EXPORT     void PeriodicNormalization(Standard_Real& U,Standard_Real& V) const;
  //! Assigns the knot of index Index in the knots table in <br>
//! the corresponding parametric direction to be the <br>
//! origin of this periodic BSpline surface. As a <br>
//! consequence, the knots and poles tables are modified. <br>
//! Exceptions <br>
//! Standard_NoSuchObject if this BSpline surface is <br>
//! not periodic in the given parametric direction. <br>
//! Standard_DomainError if Index is outside the <br>
//! bounds of the knots table in the given parametric direction. <br>
  Standard_EXPORT     void SetUOrigin(const Standard_Integer Index) ;
  //! Assigns the knot of index Index in the knots table in <br>
//! the corresponding parametric direction to be the <br>
//! origin of this periodic BSpline surface. As a <br>
//! consequence, the knots and poles tables are modified. <br>
//! Exceptions <br>
//! Standard_NoSuchObject if this BSpline surface is <br>
//! not periodic in the given parametric direction. <br>
//! Standard_DomainError if Index is outside the <br>
//! bounds of the knots table in the given parametric direction. <br>
  Standard_EXPORT     void SetVOrigin(const Standard_Integer Index) ;
  
  Standard_EXPORT     void SetUNotPeriodic() ;
  //! Modifies this surface to be periodic in the u (or v) parametric direction. <br>
//! To become periodic in a given parametric direction a <br>
//! surface must be closed in that parametric direction, <br>
//! and the knot sequence relative to that direction must be periodic. <br>
//! To generate this periodic sequence of knots, the <br>
//! functions FirstUKnotIndex and LastUKnotIndex (or <br>
//! FirstVKnotIndex and LastVKnotIndex) are used to <br>
//! compute I1 and I2. These are the indexes, in the <br>
//! knot array associated with the given parametric <br>
//! direction, of the knots that correspond to the first and <br>
//! last parameters of this BSpline surface in the given <br>
//! parametric direction. Hence the period is: <br>
//! Knots(I1) - Knots(I2) <br>
//! As a result, the knots and poles tables are modified. <br>
//! Exceptions <br>
//! Standard_ConstructionError if the surface is not <br>
//! closed in the given parametric direction. <br>
  Standard_EXPORT     void SetVNotPeriodic() ;
  
  Standard_EXPORT     void UReverse() ;
  //! Changes the orientation of this BSpline surface in the <br>
//! u (or v) parametric direction. The bounds of the <br>
//! surface are not changed but the given parametric <br>
//! direction is reversed. Hence the orientation of the <br>
//! surface is reversed. <br>
//! The knots and poles tables are modified. <br>
  Standard_EXPORT     void VReverse() ;
  
  Standard_EXPORT     Standard_Real UReversedParameter(const Standard_Real U) const;
  //! Computes the u (or v) parameter on the modified <br>
//! surface, produced by reversing its u (or v) parametric <br>
//! direction, for the point of u parameter U, (or of v <br>
//! parameter V) on this BSpline surface. <br>
//! For a BSpline surface, these functions return respectively: <br>
//! - UFirst + ULast - U, or <br>
//! - VFirst + VLast - V, <br>
//! where UFirst, ULast, VFirst and VLast are <br>
//! the values of the first and last parameters of this <br>
//! BSpline surface, in the u and v parametric directions. <br>
  Standard_EXPORT     Standard_Real VReversedParameter(const Standard_Real V) const;
  //! Increases the degrees of this BSpline surface to <br>
//! UDegree and VDegree in the u and v parametric <br>
//! directions respectively. As a result, the tables of poles, <br>
//! weights and multiplicities are modified. The tables of <br>
//! knots is not changed. <br>
//! Note: Nothing is done if the given degree is less than <br>
//! or equal to the current degree in the corresponding <br>
//! parametric direction. <br>
//! Exceptions <br>
//! Standard_ConstructionError if UDegree or <br>
//! VDegree is greater than <br>
//! Geom_BSplineSurface::MaxDegree(). <br>
  Standard_EXPORT     void IncreaseDegree(const Standard_Integer UDegree,const Standard_Integer VDegree) ;
  
  Standard_EXPORT     void InsertUKnots(const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,const Standard_Real ParametricTolerance = 0.0,const Standard_Boolean Add = Standard_True) ;
  //! Inserts into the knots table for the corresponding <br>
//! parametric direction of this BSpline surface: <br>
//! - the value U, or V, with the multiplicity M (defaulted to 1), or <br>
//! - the values of the array Knots, with their respective <br>
//! multiplicities, Mults. <br>
//! If the knot value to insert already exists in the table, its multiplicity is: <br>
//! - increased by M, if Add is true (the default), or <br>
//! - increased to M, if Add is false. <br>
//! The tolerance criterion used to check the equality of <br>
//! the knots is the larger of the values ParametricTolerance and <br>
//! Standard_Real::Epsilon(val), where val is the knot value to be inserted. <br>
//! Warning <br>
//! - If a given multiplicity coefficient is null, or negative, nothing is done. <br>
//! - The new multiplicity of a knot is limited to the degree of this BSpline surface in the <br>
//!   corresponding parametric direction. <br>
//! Exceptions <br>
//! Standard_ConstructionError if a knot value to <br>
//! insert is outside the bounds of this BSpline surface in <br>
//! the specified parametric direction. The comparison <br>
//! uses the precision criterion ParametricTolerance. <br>
  Standard_EXPORT     void InsertVKnots(const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,const Standard_Real ParametricTolerance = 0.0,const Standard_Boolean Add = Standard_True) ;
  
  Standard_EXPORT     Standard_Boolean RemoveUKnot(const Standard_Integer Index,const Standard_Integer M,const Standard_Real Tolerance) ;
  //! Reduces to M the multiplicity of the knot of index <br>
//! Index in the given parametric direction. If M is 0, the knot is removed. <br>
//! With a modification of this type, the table of poles is also modified. <br>
//! Two different algorithms are used systematically to <br>
//! compute the new poles of the surface. For each <br>
//! pole, the distance between the pole calculated <br>
//! using the first algorithm and the same pole <br>
//! calculated using the second algorithm, is checked. If <br>
//! this distance is less than Tolerance it ensures that <br>
//! the surface is not modified by more than Tolerance. <br>
//! Under these conditions, the function returns true; <br>
//! otherwise, it returns false. <br>
//! A low tolerance prevents modification of the <br>
//! surface. A high tolerance "smoothes" the surface. <br>
//! Exceptions <br>
//! Standard_OutOfRange if Index is outside the <br>
//! bounds of the knots table of this BSpline surface. <br>
  Standard_EXPORT     Standard_Boolean RemoveVKnot(const Standard_Integer Index,const Standard_Integer M,const Standard_Real Tolerance) ;
  
//!  Increases the multiplicity of the knot of range UIndex <br>
//!  in the UKnots sequence. <br>
//!  M is the new multiplicity. M must be greater than the <br>
//!  previous multiplicity and lower or equal to the degree <br>
//!  of the surface in the U parametric direction. <br>//! Raised if M is not in the range [1, UDegree] <br>
//!  Raised if UIndex is not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] given by the methods with the same name. <br>
  Standard_EXPORT     void IncreaseUMultiplicity(const Standard_Integer UIndex,const Standard_Integer M) ;
  
//!  Increases until order M the multiplicity of the set of knots <br>
//!  FromI1,...., ToI2 in the U direction. This method can be used <br>
//!  to make a B_spline surface into a PiecewiseBezier B_spline <br>
//!  surface. <br>
//!  If <me> was uniform, it can become non uniform. <br>
//!  Raised if FromI1 or ToI2 is out of the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex]. <br>
//!  M should be greater than the previous multiplicity of the <br>
//!  all the knots FromI1,..., ToI2 and lower or equal to the <br>
//!   Degree of the surface in the U parametric direction. <br>
  Standard_EXPORT     void IncreaseUMultiplicity(const Standard_Integer FromI1,const Standard_Integer ToI2,const Standard_Integer M) ;
  
//!  Increments the multiplicity of the consecutives uknots FromI1..ToI2 <br>
//!  by step.   The multiplicity of each knot FromI1,.....,ToI2 must be <br>
//!  lower or equal to the UDegree of the B_spline. <br>
//!  Raised if FromI1 or ToI2 is not in the range <br>
//!  [FirstUKnotIndex, LastUKnotIndex] <br>
//!  Raised if one knot has a multiplicity greater than UDegree. <br>
  Standard_EXPORT     void IncrementUMultiplicity(const Standard_Integer FromI1,const Standard_Integer ToI2,const Standard_Integer Step) ;
  
//!  Increases the multiplicity of a knot in the V direction. <br>
//!  M is the new multiplicity. <br>
//!  M should be greater than the previous multiplicity and lower <br>
//!  than the degree of the surface in the V parametric direction. <br>
//!  Raised if VIndex is not in the range [FirstVKnotIndex, <br>
//!  LastVKnotIndex] given by the methods with the same name. <br>
  Standard_EXPORT     void IncreaseVMultiplicity(const Standard_Integer VIndex,const Standard_Integer M) ;
  
//!  Increases until order M the multiplicity of the set of knots <br>
//!  FromI1,...., ToI2 in the V direction. This method can be used to <br>
//!  make a BSplineSurface into a PiecewiseBezier B_spline <br>
//!  surface. If <me> was uniform, it can become non-uniform. <br>
//!  Raised if FromI1 or ToI2 is out of the range [FirstVKnotIndex, <br>
//!  LastVKnotIndex] given by the methods with the same name. <br>
//!  M should be greater than the previous multiplicity of the <br>
//!  all the knots FromI1,..., ToI2 and lower or equal to the <br>
//!  Degree of the surface in the V parametric direction. <br>
  Standard_EXPORT     void IncreaseVMultiplicity(const Standard_Integer FromI1,const Standard_Integer ToI2,const Standard_Integer M) ;
  
//!  Increments the multiplicity of the consecutives vknots FromI1..ToI2 <br>
//!  by step.  The multiplicity of each knot FromI1,.....,ToI2 must be <br>
//!  lower or equal to the VDegree of the B_spline. <br>
//!  Raised if FromI1 or ToI2 is not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
//!  Raised if one knot has a multiplicity greater than VDegree. <br>
  Standard_EXPORT     void IncrementVMultiplicity(const Standard_Integer FromI1,const Standard_Integer ToI2,const Standard_Integer Step) ;
  
//!  Inserts a knot value in the sequence of UKnots. If U is a knot <br>
//!  value this method increases the multiplicity of the knot if the <br>
//!  previous multiplicity was lower than M else it does nothing. The <br>
//!  tolerance criterion is ParametricTolerance. ParametricTolerance <br>
//!  should be greater or equal than Resolution from package gp. <br>
//!  Raised if U is out of the bounds [U1, U2] given by the methods <br>
//!  Bounds, the criterion ParametricTolerance is used. <br>
//!  Raised if M is not in the range [1, UDegree]. <br>
  Standard_EXPORT     void InsertUKnot(const Standard_Real U,const Standard_Integer M,const Standard_Real ParametricTolerance,const Standard_Boolean Add = Standard_True) ;
  
//!  Inserts a knot value in the sequence of VKnots. If V is a knot <br>
//!  value this method increases the multiplicity of the knot if the <br>
//!  previous multiplicity was lower than M otherwise it does nothing. <br>
//!  The tolerance criterion is ParametricTolerance. <br>
//!  ParametricTolerance should be greater or equal than Resolution <br>
//!  from package gp. <br>
//!  raises if V is out of the Bounds [V1, V2] given by the methods <br>
//!  Bounds, the criterion ParametricTolerance is used. <br>
//!  raises if M is not in the range [1, VDegree]. <br>
  Standard_EXPORT     void InsertVKnot(const Standard_Real V,const Standard_Integer M,const Standard_Real ParametricTolerance,const Standard_Boolean Add = Standard_True) ;
  
//!  Segments the surface between U1 and U2 in the U-Direction. <br>
//!                       between V1 and V2 in the V-Direction. <br>
//!  The control points are modified, the first and the last point <br>
//!  are not the same. <br>
//! Warnings : <br>
//!  Even if <me> is not closed it can become closed after the <br>
//!  segmentation for example if U1 or U2 are out of the bounds <br>
//!  of the surface <me> or if the surface makes loop. <br>//! raises if U2 < U1 or V2 < V1 <br>
  Standard_EXPORT     void Segment(const Standard_Real U1,const Standard_Real U2,const Standard_Real V1,const Standard_Real V2) ;
  
//!  Segments the surface between U1 and U2 in the U-Direction. <br>
//!                       between V1 and V2 in the V-Direction. <br>
//! <br>
//!  same as Segment but do nothing if U1 and U2 (resp. V1 and V2) are <br>
//!  equal to the bounds in U (resp. in V) of <me>. <br>
//!  For example, if <me> is periodic in V, it will be always periodic <br>
//!  in V after the segmentation if the bounds in V are unchanged <br>
//! <br>
//! Warnings : <br>
//!  Even if <me> is not closed it can become closed after the <br>
//!  segmentation for example if U1 or U2 are out of the bounds <br>
//!  of the surface <me> or if the surface makes loop. <br>//! raises if U2 < U1 or V2 < V1 <br>
  Standard_EXPORT     void CheckAndSegment(const Standard_Real U1,const Standard_Real U2,const Standard_Real V1,const Standard_Real V2) ;
  //!  Substitutes the UKnots of range UIndex with K. <br>
//!  Raised if UIndex < 1 or UIndex > NbUKnots <br>
//!  Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1) <br>
  Standard_EXPORT     void SetUKnot(const Standard_Integer UIndex,const Standard_Real K) ;
  //!  Changes all the U-knots of the surface. <br>
//!  The multiplicity of the knots are not modified. <br>
//!  Raised if there is an index such that UK (Index+1) <= UK (Index). <br>
//!  Raised if  UK.Lower() < 1 or UK.Upper() > NbUKnots <br>
  Standard_EXPORT     void SetUKnots(const TColStd_Array1OfReal& UK) ;
  
//!  Changes the value of the UKnots of range UIndex and <br>
//!  increases its multiplicity. <br>
//!  Raised if UIndex is not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] given by the methods with the same name. <br>
//!  Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1) <br>
//!  M must be lower than UDegree and greater than the previous <br>
//!  multiplicity of the knot of range UIndex. <br>
  Standard_EXPORT     void SetUKnot(const Standard_Integer UIndex,const Standard_Real K,const Standard_Integer M) ;
  //!  Substitutes the VKnots of range VIndex with K. <br>
//!  Raised if VIndex < 1 or VIndex > NbVKnots <br>
//!  Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1) <br>
  Standard_EXPORT     void SetVKnot(const Standard_Integer VIndex,const Standard_Real K) ;
  //!  Changes all the V-knots of the surface. <br>
//!  The multiplicity of the knots are not modified. <br>
//!  Raised if there is an index such that VK (Index+1) <= VK (Index). <br>
//!  Raised if  VK.Lower() < 1 or VK.Upper() > NbVKnots <br>
  Standard_EXPORT     void SetVKnots(const TColStd_Array1OfReal& VK) ;
  
//!  Changes the value of the VKnots of range VIndex and increases <br>
//!  its multiplicity. <br>
//!  Raised if VIndex is not in the range [FirstVKnotIndex, <br>
//!  LastVKnotIndex] given by the methods with the same name. <br>
//!  Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1) <br>
//!  M must be lower than VDegree and greater than the previous <br>
//!  multiplicity of the knot of range VIndex. <br>
  Standard_EXPORT     void SetVKnot(const Standard_Integer VIndex,const Standard_Real K,const Standard_Integer M) ;
  
//!  Locates the parametric value U in the sequence of UKnots. <br>
//!  If "WithKnotRepetition" is True we consider the knot's <br>
//!  representation with repetition of multiple knot value, <br>
//!  otherwise  we consider the knot's representation with <br>
//!  no repetition of multiple knot values. <br>
//!  UKnots (I1) <= U <= UKnots (I2) <br>
//!  . if I1 = I2  U is a knot value (the tolerance criterion <br>
//!    ParametricTolerance is used). <br>
//!  . if I1 < 1  => U < UKnots(1) - Abs(ParametricTolerance) <br>
//!  . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance) <br>
  Standard_EXPORT     void LocateU(const Standard_Real U,const Standard_Real ParametricTolerance,Standard_Integer& I1,Standard_Integer& I2,const Standard_Boolean WithKnotRepetition = Standard_False) const;
  
//!  Locates the parametric value U in the sequence of knots. <br>
//!  If "WithKnotRepetition" is True we consider the knot's <br>
//!  representation with repetition of multiple knot value, <br>
//!  otherwise  we consider the knot's representation with <br>
//!  no repetition of multiple knot values. <br>
//!  VKnots (I1) <= V <= VKnots (I2) <br>
//!  . if I1 = I2  V is a knot value (the tolerance criterion <br>
//!    ParametricTolerance is used). <br>
//!  . if I1 < 1  => V < VKnots(1) - Abs(ParametricTolerance) <br>
//!  . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) <br>//!  poles insertion and removing <br>
//!  The following methods are available only if the surface <br>
//!  is Uniform or QuasiUniform in the considered direction <br>
//!  The knot repartition is modified. <br>
  Standard_EXPORT     void LocateV(const Standard_Real V,const Standard_Real ParametricTolerance,Standard_Integer& I1,Standard_Integer& I2,const Standard_Boolean WithKnotRepetition = Standard_False) const;
  
//!  Substitutes the pole of range (UIndex, VIndex) with P. <br>
//!  If the surface is rational the weight of range (UIndex, VIndex) <br>
//!  is not modified. <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or <br>
//!  VIndex > NbVPoles. <br>
  Standard_EXPORT     void SetPole(const Standard_Integer UIndex,const Standard_Integer VIndex,const gp_Pnt& P) ;
  
//!  Substitutes the pole and the weight of range (UIndex, VIndex) <br>
//!  with P and W. <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or <br>
//!  VIndex > NbVPoles. <br>//! Raised if Weight <= Resolution from package gp. <br>
  Standard_EXPORT     void SetPole(const Standard_Integer UIndex,const Standard_Integer VIndex,const gp_Pnt& P,const Standard_Real Weight) ;
  
//!  Changes a column of poles or a part of this column. <br>//! Raised if Vindex < 1 or VIndex > NbVPoles. <br>
//!  Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles. <br>
  Standard_EXPORT     void SetPoleCol(const Standard_Integer VIndex,const TColgp_Array1OfPnt& CPoles) ;
  
//!  Changes a column of poles or a part of this column with the <br>
//!  corresponding weights. If the surface was rational it can <br>
//!  become non rational. If the surface was non rational it can <br>
//!  become rational. <br>//! Raised if Vindex < 1 or VIndex > NbVPoles. <br>
//!  Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles <br>
//!  Raised if the bounds of CPoleWeights are not the same as the <br>
//!  bounds of CPoles. <br>
//!  Raised if one of the weight value of CPoleWeights is lower or <br>
//!  equal to Resolution from package gp. <br>
  Standard_EXPORT     void SetPoleCol(const Standard_Integer VIndex,const TColgp_Array1OfPnt& CPoles,const TColStd_Array1OfReal& CPoleWeights) ;
  
//!  Changes a row of poles or a part of this row with the <br>
//!  corresponding weights. If the surface was rational it can <br>
//!  become non rational. If the surface was non rational it can <br>
//!  become rational. <br>//! Raised if Uindex < 1 or UIndex > NbUPoles. <br>
//!  Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles <br>
//!  raises if the bounds of CPoleWeights are not the same as the <br>
//!  bounds of CPoles. <br>
//!  Raised if one of the weight value of CPoleWeights is lower or <br>
//!  equal to Resolution from package gp. <br>
  Standard_EXPORT     void SetPoleRow(const Standard_Integer UIndex,const TColgp_Array1OfPnt& CPoles,const TColStd_Array1OfReal& CPoleWeights) ;
  
//!  Changes a row of poles or a part of this row. <br>//! Raised if Uindex < 1 or UIndex > NbUPoles. <br>
//!  Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles. <br>
  Standard_EXPORT     void SetPoleRow(const Standard_Integer UIndex,const TColgp_Array1OfPnt& CPoles) ;
  
//!  Changes the weight of the pole of range UIndex, VIndex. <br>
//!  If the surface was non rational it can become rational. <br>
//!  If the surface was rational it can become non rational. <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or <br>
//!  VIndex > NbVPoles <br>
//!  Raised if weight is lower or equal to Resolution from <br>
//!  package gp <br>
  Standard_EXPORT     void SetWeight(const Standard_Integer UIndex,const Standard_Integer VIndex,const Standard_Real Weight) ;
  
//!  Changes a column of weights of a part of this column. <br>
//!  Raised if VIndex < 1 or VIndex > NbVPoles <br>
//!  Raised if CPoleWeights.Lower() < 1 or <br>
//!            CPoleWeights.Upper() > NbUPoles. <br>
//!  Raised if a weight value is lower or equal to Resolution <br>
//!  from package gp. <br>
  Standard_EXPORT     void SetWeightCol(const Standard_Integer VIndex,const TColStd_Array1OfReal& CPoleWeights) ;
  
//!  Changes a row of weights or a part of this row. <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles <br>
//!  Raised if CPoleWeights.Lower() < 1 or <br>
//!            CPoleWeights.Upper() > NbVPoles. <br>
//!  Raised  if a weight value is lower or equal to Resolution <br>
//!  from package gp. <br>
  Standard_EXPORT     void SetWeightRow(const Standard_Integer UIndex,const TColStd_Array1OfReal& CPoleWeights) ;
  //! Move a point with parameter U and V to P. <br>
//!          given u,v  as parameters)  to  reach a  new position <br>
//!          UIndex1, UIndex2, VIndex1, VIndex2: <br>
//!                  indicates the poles which can be moved <br>
//!          if Problem in BSplineBasis calculation, no change <br>
//!          for the curve and <br>
//!              UFirstIndex, VLastIndex = 0 <br>
//!              VFirstIndex, VLastIndex = 0 <br>
//!  Raised if UIndex1 < UIndex2 or VIndex1 < VIndex2 or <br>
//!            UIndex1 < 1 || UIndex1 > NbUPoles or <br>
//!            UIndex2 < 1 || UIndex2 > NbUPoles <br>
//!            VIndex1 < 1 || VIndex1 > NbVPoles or <br>
//!            VIndex2 < 1 || VIndex2 > NbVPoles <br>//! characteristics of the surface <br>
  Standard_EXPORT     void MovePoint(const Standard_Real U,const Standard_Real V,const gp_Pnt& P,const Standard_Integer UIndex1,const Standard_Integer UIndex2,const Standard_Integer VIndex1,const Standard_Integer VIndex2,Standard_Integer& UFirstIndex,Standard_Integer& ULastIndex,Standard_Integer& VFirstIndex,Standard_Integer& VLastIndex) ;
  
//!  Returns true if the first control points row and the last <br>
//!  control points row are identical. The tolerance criterion <br>
//!  is Resolution from package gp. <br>
  Standard_EXPORT     Standard_Boolean IsUClosed() const;
  
//!  Returns true if the first control points column and the <br>
//!  last last control points column are identical. <br>
//!  The tolerance criterion is Resolution from package gp. <br>
  Standard_EXPORT     Standard_Boolean IsVClosed() const;
  
//!  Returns True if the order of continuity of the surface in the <br>
//!  U direction  is N. <br>//! Raised if N < 0. <br>
  Standard_EXPORT     Standard_Boolean IsCNu(const Standard_Integer N) const;
  
//!  Returns True if the order of continuity of the surface <br>
//!  in the V direction  is N. <br>//! Raised if N < 0. <br>
  Standard_EXPORT     Standard_Boolean IsCNv(const Standard_Integer N) const;
  
//!  Returns True if the surface is closed in the U direction <br>
//!  and if the B-spline has been turned into a periodic surface <br>
//!  using the function SetUPeriodic. <br>
  Standard_EXPORT     Standard_Boolean IsUPeriodic() const;
  
//!  Returns False if for each row of weights all the weights <br>
//!  are identical. <br>
//!  The tolerance criterion is resolution from package gp. <br>
//!  Example : <br>
//!                 |1.0, 1.0, 1.0| <br>
//!   if Weights =  |0.5, 0.5, 0.5|   returns False <br>
//!                 |2.0, 2.0, 2.0| <br>
  Standard_EXPORT     Standard_Boolean IsURational() const;
  
//!  Returns True if the surface is closed in the V direction <br>
//!  and if the B-spline has been turned into a periodic <br>
//!  surface using the function SetVPeriodic. <br>
  Standard_EXPORT     Standard_Boolean IsVPeriodic() const;
  
//!  Returns False if for each column of weights all the weights <br>
//!  are identical. <br>
//!  The tolerance criterion is resolution from package gp. <br>
//! Examples : <br>
//!                 |1.0, 2.0, 0.5| <br>
//!   if Weights =  |1.0, 2.0, 0.5|   returns False <br>
//!                 |1.0, 2.0, 0.5| <br>
  Standard_EXPORT     Standard_Boolean IsVRational() const;
  
//!           Tells whether the Cache is valid for the <br>
//!           given parameter <br>
//! Warnings : the parameter must be normalized within <br>
//! the period if the curve is periodic. Otherwise <br>
//! the answer will be false <br>
//! <br>
  Standard_EXPORT     Standard_Boolean IsCacheValid(const Standard_Real UParameter,const Standard_Real VParameter) const;
  
//!  Returns the parametric bounds of the surface. <br>
//! Warnings : <br>
//!  These parametric values are the bounds of the array of <br>
//!  knots UKnots and VKnots only if the first knots and the <br>
//!  last knots have a multiplicity equal to UDegree + 1 or <br>
//!  VDegree + 1 <br>
  Standard_EXPORT     void Bounds(Standard_Real& U1,Standard_Real& U2,Standard_Real& V1,Standard_Real& V2) const;
  
//!  Returns the continuity of the surface : <br>
//!  C0 : only geometric continuity, <br>
//!  C1 : continuity of the first derivative all along the Surface, <br>
//!  C2 : continuity of the second derivative all along the Surface, <br>
//!  C3 : continuity of the third derivative all along the Surface, <br>
//!  CN : the order of continuity is infinite. <br>
//!  A B-spline surface is infinitely continuously differentiable <br>
//!  for the couple of parameters U, V such thats U != UKnots(i) <br>
//!  and V != VKnots(i). The continuity of the surface at a knot <br>
//!  value depends on the multiplicity of this knot. <br>
//! Example : <br>
//!  If the surface is C1 in the V direction and C2 in the U <br>
//!  direction this function returns Shape = C1. <br>
  Standard_EXPORT     GeomAbs_Shape Continuity() const;
  
//!  Computes the Index of the UKnots which gives the first <br>
//!  parametric value of the surface in the U direction. <br>
//!  The UIso curve corresponding to this value is a <br>
//!  boundary curve of the surface. <br>
  Standard_EXPORT     Standard_Integer FirstUKnotIndex() const;
  
//!  Computes the Index of the VKnots which gives the <br>
//!  first parametric value of the surface in the V direction. <br>
//!  The VIso curve corresponding to this knot is a boundary <br>
//!  curve of the surface. <br>
  Standard_EXPORT     Standard_Integer FirstVKnotIndex() const;
  
//!  Computes the Index of the UKnots which gives the <br>
//!  last parametric value of the surface in the U direction. <br>
//!  The UIso curve corresponding to this knot is a boundary <br>
//!  curve of the surface. <br>
  Standard_EXPORT     Standard_Integer LastUKnotIndex() const;
  
//!  Computes the Index of the VKnots which gives the <br>
//!  last parametric value of the surface in the V direction. <br>
//!  The VIso curve corresponding to this knot is a <br>
//!  boundary curve of the surface. <br>
  Standard_EXPORT     Standard_Integer LastVKnotIndex() const;
  //!  Returns the number of knots in the U direction. <br>
  Standard_EXPORT     Standard_Integer NbUKnots() const;
  //! Returns number of poles in the U direction. <br>
  Standard_EXPORT     Standard_Integer NbUPoles() const;
  //! Returns the number of knots in the V direction. <br>
  Standard_EXPORT     Standard_Integer NbVKnots() const;
  //! Returns the number of poles in the V direction. <br>
  Standard_EXPORT     Standard_Integer NbVPoles() const;
  
//!  Returns the pole of range (UIndex, VIndex). <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or <br>
//!  VIndex > NbVPoles. <br>
  Standard_EXPORT     gp_Pnt Pole(const Standard_Integer UIndex,const Standard_Integer VIndex) const;
  //! Returns the poles of the B-spline surface. <br>
//!  Raised if the length of P in the U and V direction <br>
//!  is not equal to NbUpoles and NbVPoles. <br>
  Standard_EXPORT     void Poles(TColgp_Array2OfPnt& P) const;
  
//!  Returns the degree of the normalized B-splines Ni,n in the U <br>
//!  direction. <br>
  Standard_EXPORT     Standard_Integer UDegree() const;
  
//!  Returns the Knot value of range UIndex. <br>//! Raised if UIndex < 1 or UIndex > NbUKnots <br>
  Standard_EXPORT     Standard_Real UKnot(const Standard_Integer UIndex) const;
  
//!  Returns NonUniform or Uniform or QuasiUniform or <br>
//!  PiecewiseBezier.  If all the knots differ by a <br>
//!  positive constant from the preceding knot in the U <br>
//!  direction the B-spline surface can be : <br>
//!  - Uniform if all the knots are of multiplicity 1, <br>
//!  - QuasiUniform if all the knots are of multiplicity 1 <br>
//!    except for the first and last knot which are of <br>
//!    multiplicity Degree + 1, <br>
//!  - PiecewiseBezier if the first and last knots have <br>
//!    multiplicity Degree + 1 and if interior knots have <br>
//!    multiplicity Degree <br>
//!  otherwise the surface is non uniform in the U direction <br>
//!  The tolerance criterion is Resolution from package gp. <br>
  Standard_EXPORT     GeomAbs_BSplKnotDistribution UKnotDistribution() const;
  //! Returns the knots in the U direction. <br>
//!  Raised if the length of Ku is not equal to the number of knots <br>
//!  in the U direction. <br>
  Standard_EXPORT     void UKnots(TColStd_Array1OfReal& Ku) const;
  //! Returns the uknots sequence. <br>
//!  In this sequence the knots with a multiplicity greater than 1 <br>
//!  are repeated. <br>
//! Example : <br>
//!  Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4} <br>
//!  Raised if the length of Ku is not equal to NbUPoles + UDegree + 1 <br>
  Standard_EXPORT     void UKnotSequence(TColStd_Array1OfReal& Ku) const;
  
//!  Returns the multiplicity value of knot of range UIndex in <br>
//!  the u direction. <br>//! Raised if UIndex < 1 or UIndex > NbUKnots. <br>
  Standard_EXPORT     Standard_Integer UMultiplicity(const Standard_Integer UIndex) const;
  
//!  Returns the multiplicities of the knots in the U direction. <br>
//!  Raised if the length of Mu is not equal to the number of <br>
//!  knots in the U direction. <br>
  Standard_EXPORT     void UMultiplicities(TColStd_Array1OfInteger& Mu) const;
  
//!  Returns the degree of the normalized B-splines Ni,d in the <br>
//!  V direction. <br>
  Standard_EXPORT     Standard_Integer VDegree() const;
  //! Returns the Knot value of range VIndex. <br>
  Standard_EXPORT     Standard_Real VKnot(const Standard_Integer VIndex) const;
  
//!  Returns NonUniform or Uniform or QuasiUniform or <br>
//!  PiecewiseBezier. If all the knots differ by a positive <br>
//!  constant from the preceding knot in the V direction the <br>
//!  B-spline surface can be : <br>
//!  - Uniform if all the knots are of multiplicity 1, <br>
//!  - QuasiUniform if all the knots are of multiplicity 1 <br>
//!    except for the first and last knot which are of <br>
//!    multiplicity Degree + 1, <br>
//!  - PiecewiseBezier if the first and last knots have <br>
//!    multiplicity  Degree + 1 and if interior knots have <br>
//!     multiplicity Degree <br>
//!  otherwise the surface is non uniform in the V direction. <br>
//!  The tolerance criterion is Resolution from package gp. <br>
  Standard_EXPORT     GeomAbs_BSplKnotDistribution VKnotDistribution() const;
  //! Returns the knots in the V direction. <br>
//!  Raised if the length of Kv is not equal to the number of <br>
//!  knots in the V direction. <br>
  Standard_EXPORT     void VKnots(TColStd_Array1OfReal& Kv) const;
  //! Returns the vknots sequence. <br>
//!  In this sequence the knots with a multiplicity greater than 1 <br>
//!  are repeated. <br>
//! Example : <br>
//!  Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4} <br>
//!  Raised if the length of Kv is not equal to NbVPoles + VDegree + 1 <br>
  Standard_EXPORT     void VKnotSequence(TColStd_Array1OfReal& Kv) const;
  
//!  Returns the multiplicity value of knot of range VIndex in <br>
//!  the v direction. <br>//! Raised if VIndex < 1 or VIndex > NbVKnots <br>
  Standard_EXPORT     Standard_Integer VMultiplicity(const Standard_Integer VIndex) const;
  
//!  Returns the multiplicities of the knots in the V direction. <br>
//!  Raised if the length of Mv is not equal to the number of <br>
//!  knots in the V direction. <br>
  Standard_EXPORT     void VMultiplicities(TColStd_Array1OfInteger& Mv) const;
  //! Returns the weight value of range UIndex, VIndex. <br>
//!  Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 <br>
//!  or VIndex > NbVPoles. <br>
  Standard_EXPORT     Standard_Real Weight(const Standard_Integer UIndex,const Standard_Integer VIndex) const;
  //! Returns the weights of the B-spline surface. <br>
//!  Raised if the length of W in the U and V direction is <br>
//!  not equal to NbUPoles and NbVPoles. <br>//! value and derivatives computation <br>
  Standard_EXPORT     void Weights(TColStd_Array2OfReal& W) const;
  
  Standard_EXPORT     void D0(const Standard_Real U,const Standard_Real V,gp_Pnt& P) const;
  //! Raised if the continuity of the surface is not C1. <br>
  Standard_EXPORT     void D1(const Standard_Real U,const Standard_Real V,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V) const;
  //! Raised if the continuity of the surface is not C2. <br>
  Standard_EXPORT     void D2(const Standard_Real U,const Standard_Real V,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V,gp_Vec& D2U,gp_Vec& D2V,gp_Vec& D2UV) const;
  //! Raised if the continuity of the surface is not C3. <br>
  Standard_EXPORT     void D3(const Standard_Real U,const Standard_Real V,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V,gp_Vec& D2U,gp_Vec& D2V,gp_Vec& D2UV,gp_Vec& D3U,gp_Vec& D3V,gp_Vec& D3UUV,gp_Vec& D3UVV) const;
  
//!  Nu is the order of derivation in the U parametric direction and <br>
//!  Nv is the order of derivation in the V parametric direction. <br>
//!  Raised if the continuity of the surface is not CNu in the U <br>
//!  direction and CNv in the V direction. <br>
//!  Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. <br>
//!  The following functions computes the point for the <br>
//!  parametric values (U, V) and the derivatives at <br>
//!  this point on the B-spline surface patch delimited <br>
//!  with the knots FromUK1, FromVK1 and the knots ToUK2, <br>
//!  ToVK2.  (U, V) can be out of these parametric bounds <br>
//!  but for the computation we only use the definition <br>
//!  of the surface between these knots. This method is <br>
//!  useful to compute local derivative, if the order of <br>
//!  continuity of the whole surface is not greater enough. <br>
//!  Inside the parametric knot's domain previously defined <br>
//!  the evaluations are the same as if we consider the whole <br>
//!  definition of the surface. Of course the evaluations are <br>
//!  different outside this parametric domain. <br>
  Standard_EXPORT     gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const;
  //! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     void LocalD0(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2,gp_Pnt& P) const;
  
//!  Raised if the local continuity of the surface is not C1 <br>
//!  between the knots FromUK1, ToUK2 and FromVK1, ToVK2. <br>//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     void LocalD1(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V) const;
  
//!  Raised if the local continuity of the surface is not C2 <br>
//!  between the knots FromUK1, ToUK2 and FromVK1, ToVK2. <br>//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     void LocalD2(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V,gp_Vec& D2U,gp_Vec& D2V,gp_Vec& D2UV) const;
  
//!  Raised if the local continuity of the surface is not C3 <br>
//!  between the knots FromUK1, ToUK2 and FromVK1, ToVK2. <br>//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     void LocalD3(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2,gp_Pnt& P,gp_Vec& D1U,gp_Vec& D1V,gp_Vec& D2U,gp_Vec& D2V,gp_Vec& D2UV,gp_Vec& D3U,gp_Vec& D3V,gp_Vec& D3UUV,gp_Vec& D3UVV) const;
  
//!  Raised if the local continuity of the surface is not CNu <br>
//!  between the knots FromUK1, ToUK2 and CNv between the knots <br>
//!  FromVK1, ToVK2. <br>//! Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     gp_Vec LocalDN(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2,const Standard_Integer Nu,const Standard_Integer Nv) const;
  
//!  Computes the point of parameter U, V on the BSpline surface patch <br>
//!  defines between the knots UK1 UK2, VK1, VK2. U can be out of the <br>
//!  bounds [Knot UK1, Knot UK2] and V can be outof the bounds <br>
//!  [Knot VK1, Knot VK2]  but for the computation we only use the <br>
//!  definition of the surface between these knot values. <br>//! Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2. <br>
//!  Raises if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, <br>
//!  LastUKnotIndex] or if FromVK1, ToVK2 are not in the range <br>
//!  [FirstVKnotIndex, LastVKnotIndex] <br>
  Standard_EXPORT     gp_Pnt LocalValue(const Standard_Real U,const Standard_Real V,const Standard_Integer FromUK1,const Standard_Integer ToUK2,const Standard_Integer FromVK1,const Standard_Integer ToVK2) const;
  
//!  Computes the U isoparametric curve. <br>
//!  A B-spline curve is returned. <br>
  Standard_EXPORT     Handle_Geom_Curve UIso(const Standard_Real U) const;
  
//!  Computes the V isoparametric curve. <br>
//!  A B-spline curve is returned. <br>
  Standard_EXPORT     Handle_Geom_Curve VIso(const Standard_Real V) const;
  
//!  Computes the U isoparametric curve. <br>
//!  If CheckRational=False, no try to make it non-rational. <br>
//!  A B-spline curve is returned. <br>
  Standard_EXPORT     Handle_Geom_Curve UIso(const Standard_Real U,const Standard_Boolean CheckRational) const;
  
//!  Computes the V isoparametric curve. <br>
//!  If CheckRational=False, no try to make it non-rational. <br>
//!  A B-spline curve is returned. <br>//! transformations <br>
  Standard_EXPORT     Handle_Geom_Curve VIso(const Standard_Real V,const Standard_Boolean CheckRational) const;
  //! Applies the transformation T to this BSpline surface. <br>
  Standard_EXPORT     void Transform(const gp_Trsf& T) ;
  
//!  Returns the value of the maximum degree of the normalized <br>
//!  B-spline basis functions in the u and v directions. <br>
  Standard_EXPORT   static  Standard_Integer MaxDegree() ;
  //! Computes two tolerance values for this BSpline <br>
//! surface, based on the given tolerance in 3D space <br>
//! Tolerance3D. The tolerances computed are: <br>
//! - UTolerance in the u parametric direction, and <br>
//! - VTolerance in the v parametric direction. <br>
//! If f(u,v) is the equation of this BSpline surface, <br>
//! UTolerance and VTolerance guarantee that : <br>
//!          | u1 - u0 | < UTolerance and <br>
//!          | v1 - v0 | < VTolerance <br>
//!          ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D <br>
  Standard_EXPORT     void Resolution(const Standard_Real Tolerance3D,Standard_Real& UTolerance,Standard_Real& VTolerance) ;
  //! Creates a new object which is a copy of this BSpline surface. <br>
  Standard_EXPORT     Handle_Geom_Geometry Copy() const;




  DEFINE_STANDARD_RTTI(Geom_BSplineSurface)

protected:




private: 

  //! Recompute  the  flatknots,  the knotsdistribution, the <br>
//!          continuity for U. <br>
  Standard_EXPORT     void UpdateUKnots() ;
  //! Recompute  the  flatknots,  the knotsdistribution, the <br>
//!          continuity for V. <br>
  Standard_EXPORT     void UpdateVKnots() ;
  //! Invalidates the cache. This has to be private this has to be private <br>
  Standard_EXPORT     void InvalidateCache() ;
  //! updates the cache and validates it <br>
  Standard_EXPORT     void ValidateCache(const Standard_Real UParameter,const Standard_Real VParameter) ;

Standard_Boolean urational;
Standard_Boolean vrational;
Standard_Boolean uperiodic;
Standard_Boolean vperiodic;
GeomAbs_BSplKnotDistribution uknotSet;
GeomAbs_BSplKnotDistribution vknotSet;
GeomAbs_Shape Usmooth;
GeomAbs_Shape Vsmooth;
Standard_Integer udeg;
Standard_Integer vdeg;
Handle_TColgp_HArray2OfPnt poles;
Handle_TColStd_HArray2OfReal weights;
Handle_TColStd_HArray1OfReal ufknots;
Handle_TColStd_HArray1OfReal vfknots;
Handle_TColStd_HArray1OfReal uknots;
Handle_TColStd_HArray1OfReal vknots;
Handle_TColStd_HArray1OfInteger umults;
Handle_TColStd_HArray1OfInteger vmults;
Handle_TColgp_HArray2OfPnt cachepoles;
Handle_TColStd_HArray2OfReal cacheweights;
Standard_Real ucacheparameter;
Standard_Real vcacheparameter;
Standard_Real ucachespanlenght;
Standard_Real vcachespanlenght;
Standard_Integer ucachespanindex;
Standard_Integer vcachespanindex;
Standard_Integer validcache;
Standard_Real umaxderivinv;
Standard_Real vmaxderivinv;
Standard_Boolean maxderivinvok;


};





// other Inline functions and methods (like "C++: function call" methods)


#endif