summaryrefslogtreecommitdiff
path: root/inc/Geom2d_BezierCurve.hxx
blob: 433822be3b3925f622ffd6435e0ad2e1a9f5bdf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _Geom2d_BezierCurve_HeaderFile
#define _Geom2d_BezierCurve_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineHandle_HeaderFile
#include <Standard_DefineHandle.hxx>
#endif
#ifndef _Handle_Geom2d_BezierCurve_HeaderFile
#include <Handle_Geom2d_BezierCurve.hxx>
#endif

#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Handle_TColgp_HArray1OfPnt2d_HeaderFile
#include <Handle_TColgp_HArray1OfPnt2d.hxx>
#endif
#ifndef _Handle_TColStd_HArray1OfReal_HeaderFile
#include <Handle_TColStd_HArray1OfReal.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Geom2d_BoundedCurve_HeaderFile
#include <Geom2d_BoundedCurve.hxx>
#endif
#ifndef _GeomAbs_Shape_HeaderFile
#include <GeomAbs_Shape.hxx>
#endif
#ifndef _Handle_Geom2d_Geometry_HeaderFile
#include <Handle_Geom2d_Geometry.hxx>
#endif
class TColgp_HArray1OfPnt2d;
class TColStd_HArray1OfReal;
class Standard_ConstructionError;
class Standard_DimensionError;
class Standard_RangeError;
class Standard_OutOfRange;
class TColgp_Array1OfPnt2d;
class TColStd_Array1OfReal;
class gp_Pnt2d;
class gp_Vec2d;
class gp_Trsf2d;
class Geom2d_Geometry;


//! Describes a rational or non-rational Bezier curve <br>
//! - a non-rational Bezier curve is defined by a table <br>
//!   of poles (also called control points), <br>
//! - a rational Bezier curve is defined by a table of <br>
//!   poles with varying weights. <br>
//! These data are manipulated by two parallel arrays: <br>
//! - the poles table, which is an array of gp_Pnt2d points, and <br>
//! - the weights table, which is an array of reals. <br>
//! The bounds of these arrays are 1 and "the number of poles" of the curve. <br>
//! The poles of the curve are "control points" used to deform the curve. <br>
//! The first pole is the start point of the curve, and the <br>
//! last pole is the end point of the curve. The segment <br>
//! which joins the first pole to the second pole is the <br>
//! tangent to the curve at its start point, and the <br>
//! segment which joins the last pole to the <br>
//! second-from-last pole is the tangent to the curve <br>
//! at its end point. <br>
//! It is more difficult to give a geometric signification <br>
//! to the weights but they are useful for providing <br>
//! exact representations of the arcs of a circle or <br>
//! ellipse. Moreover, if the weights of all the poles are <br>
//! equal, the curve is polynomial; it is therefore a <br>
//! non-rational curve. The non-rational curve is a <br>
//! special and frequently used case. The weights are <br>
//! defined and used only in case of a rational curve. <br>
//! The degree of a Bezier curve is equal to the <br>
//! number of poles, minus 1. It must be greater than or <br>
//! equal to 1. However, the degree of a <br>
//! Geom2d_BezierCurve curve is limited to a value <br>
//! (25) which is defined and controlled by the system. <br>
//! This value is returned by the function MaxDegree. <br>
//! The parameter range for a Bezier curve is [ 0, 1 ]. <br>
//! If the first and last control points of the Bezier <br>
//! curve are the same point then the curve is closed. <br>
//! For example, to create a closed Bezier curve with <br>
//! four control points, you have to give a set of control <br>
//! points P1, P2, P3 and P1. <br>
//! The continuity of a Bezier curve is infinite. <br>
//! It is not possible to build a Bezier curve with <br>
//! negative weights. We consider that a weight value <br>
//! is zero if it is less than or equal to <br>
//! gp::Resolution(). We also consider that <br>
//! two weight values W1 and W2 are equal if: <br>
//! |W2 - W1| <= gp::Resolution(). <br>
//!  Warning <br>
//! - When considering the continuity of a closed <br>
//!   Bezier curve at the junction point, remember that <br>
//!   a curve of this type is never periodic. This means <br>
//!   that the derivatives for the parameter u = 0 <br>
//!   have no reason to be the same as the <br>
//!   derivatives for the parameter u = 1 even if the curve is closed. <br>
//! - The length of a Bezier curve can be null. <br>
class Geom2d_BezierCurve : public Geom2d_BoundedCurve {

public:

  
//!  Creates a non rational Bezier curve with a set of poles : <br>
//!  CurvePoles.  The weights are defaulted to all being 1. <br>
//!    Raises ConstructionError if the number of poles is greater than MaxDegree + 1 <br>
//!  or lower than 2. <br>
  Standard_EXPORT   Geom2d_BezierCurve(const TColgp_Array1OfPnt2d& CurvePoles);
  
//!  Creates a rational Bezier curve with the set of poles <br>
//!  CurvePoles and the set of weights  PoleWeights . <br>
//!  If all the weights are identical the curve is considered <br>
//!  as non rational.  Raises ConstructionError if <br>
//!  the number of poles is greater than  MaxDegree + 1 or lower <br>
//!  than 2 or CurvePoles and CurveWeights have not the same length <br>
//!  or one weight value is lower or equal to Resolution from <br>
//!  package gp. <br>
  Standard_EXPORT   Geom2d_BezierCurve(const TColgp_Array1OfPnt2d& CurvePoles,const TColStd_Array1OfReal& PoleWeights);
  
//!  Increases the degree of a bezier curve. Degree is the new <br>
//!  degree of <me>. <br>
//!    raises ConstructionError if Degree is greater than MaxDegree or lower than 2 <br>
//!  or lower than the initial degree of <me>. <br>
  Standard_EXPORT     void Increase(const Standard_Integer Degree) ;
  
//!  Inserts a pole with its weight in the set of poles after the <br>
//!  pole of range Index. If the curve was non rational it can <br>
//!  become rational if all the weights are not identical. <br>//! Raised if Index is not in the range [0, NbPoles] <br>
//!  Raised if the resulting number of poles is greater than <br>
//!  MaxDegree + 1. <br>
  Standard_EXPORT     void InsertPoleAfter(const Standard_Integer Index,const gp_Pnt2d& P,const Standard_Real Weight = 1.0) ;
  
//!  Inserts a pole with its weight in the set of poles after <br>
//!  the pole of range Index. If the curve was non rational it <br>
//!  can become rational if all the weights are not identical. <br>//! Raised if Index is not in the range [1, NbPoles+1] <br>
//!  Raised if the resulting number of poles is greater than <br>
//!  MaxDegree + 1. <br>
  Standard_EXPORT     void InsertPoleBefore(const Standard_Integer Index,const gp_Pnt2d& P,const Standard_Real Weight = 1.0) ;
  //! Removes the pole of range Index. <br>
//!  If the curve was rational it can become non rational. <br>//! Raised if Index is not in the range [1, NbPoles] <br>
  Standard_EXPORT     void RemovePole(const Standard_Integer Index) ;
  
//!  Reverses the direction of parametrization of <me> <br>
//!  Value (NewU) =  Value (1 - OldU) <br>
  Standard_EXPORT     void Reverse() ;
  //! Returns the  parameter on the  reversed  curve for <br>
//!          the point of parameter U on <me>. <br>
//! <br>
//!          returns 1-U <br>
  Standard_EXPORT     Standard_Real ReversedParameter(const Standard_Real U) const;
  
//!  Segments the curve between U1 and U2 which can be out <br>
//!  of the bounds of the curve. The curve is oriented from U1 <br>
//!  to U2. <br>
//!  The control points are modified, the first and the last point <br>
//!  are not the same but the parametrization range is [0, 1] <br>
//!  else it could not be a Bezier curve. <br>
//! Warnings : <br>
//!  Even if <me> is not closed it can become closed after the <br>
//!  segmentation for example if U1 or U2 are out of the bounds <br>
//!  of the curve <me> or if the curve makes loop. <br>
//!  After the segmentation the length of a curve can be null. <br>
  Standard_EXPORT     void Segment(const Standard_Real U1,const Standard_Real U2) ;
  
//!  Substitutes the pole of range index with P. <br>
//!  If the curve <me> is rational the weight of range Index <br>
//!  is not modified. <br>//! raiseD if Index is not in the range [1, NbPoles] <br>
  Standard_EXPORT     void SetPole(const Standard_Integer Index,const gp_Pnt2d& P) ;
  
//!  Substitutes the pole and the weights of range Index. <br>
//!  If the curve <me> is not rational it can become rational <br>
//!  if all the weights are not identical. <br>
//!  If the curve was rational it can become non rational if <br>
//!  all the weights are identical. <br>//! Raised if Index is not in the range [1, NbPoles] <br>//! Raised if Weight <= Resolution from package gp <br>
  Standard_EXPORT     void SetPole(const Standard_Integer Index,const gp_Pnt2d& P,const Standard_Real Weight) ;
  
//!  Changes the weight of the pole of range Index. <br>
//!  If the curve <me> is not rational it can become rational <br>
//!  if all the weights are not identical. <br>
//!  If the curve was rational it can become non rational if <br>
//!  all the weights are identical. <br>//! Raised if Index is not in the range [1, NbPoles] <br>//! Raised if Weight <= Resolution from package gp <br>
  Standard_EXPORT     void SetWeight(const Standard_Integer Index,const Standard_Real Weight) ;
  
//!  Returns True if the distance between the first point <br>
//!  and the last point of the curve is lower or equal to <br>
//!  the Resolution from package gp. <br>
  Standard_EXPORT     Standard_Boolean IsClosed() const;
  //! Continuity of the curve, returns True. <br>
  Standard_EXPORT     Standard_Boolean IsCN(const Standard_Integer N) const;
  
//!  Returns False. A BezierCurve cannot be periodic in this <br>
//!  package <br>
  Standard_EXPORT     Standard_Boolean IsPeriodic() const;
  
//!  Returns false if all the weights are identical. The tolerance <br>
//!  criterion is Resolution from package gp. <br>
  Standard_EXPORT     Standard_Boolean IsRational() const;
  //!  Returns GeomAbs_CN, which is the continuity of any Bezier curve. <br>
  Standard_EXPORT     GeomAbs_Shape Continuity() const;
  
//!  Returns the polynomial degree of the curve. It is the number <br>
//!  of poles less one.  In this package the Degree of a Bezier <br>
//!  curve cannot be greater than "MaxDegree". <br>
  Standard_EXPORT     Standard_Integer Degree() const;
  
  Standard_EXPORT     void D0(const Standard_Real U,gp_Pnt2d& P) const;
  
  Standard_EXPORT     void D1(const Standard_Real U,gp_Pnt2d& P,gp_Vec2d& V1) const;
  
  Standard_EXPORT     void D2(const Standard_Real U,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2) const;
  
  Standard_EXPORT     void D3(const Standard_Real U,gp_Pnt2d& P,gp_Vec2d& V1,gp_Vec2d& V2,gp_Vec2d& V3) const;
  //!  For this Bezier curve, computes <br>
//! - the point P of parameter U, or <br>
//! - the point P and one or more of the following values: <br>
//!   - V1, the first derivative vector, <br>
//!   - V2, the second derivative vector, <br>
//!   - V3, the third derivative vector. <br>
//! Note: the parameter U can be outside the bounds of the curve. <br>
//!     Raises RangeError if N < 1. <br>
  Standard_EXPORT     gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const;
  //!    Returns the end point or start point of this Bezier curve. <br>
  Standard_EXPORT     gp_Pnt2d EndPoint() const;
  //! Returns the value of the first  parameter of this <br>
//! Bezier curve. This is  0.0, which gives the start point of this Bezier curve. <br>
  Standard_EXPORT     Standard_Real FirstParameter() const;
  //! Returns the value of the last  parameter of this <br>
//! Bezier curve. This is  1.0, which gives the end point of this Bezier curve. <br>
  Standard_EXPORT     Standard_Real LastParameter() const;
  //! Returns the number of poles for this Bezier curve. <br>
  Standard_EXPORT     Standard_Integer NbPoles() const;
  //! Returns the pole of range Index. <br>//! Raised if Index is not in the range [1, NbPoles] <br>
  Standard_EXPORT     gp_Pnt2d Pole(const Standard_Integer Index) const;
  //! Returns all the poles of the curve. <br>
//!  Raised if the length of P is not equal to the number of poles. <br>
  Standard_EXPORT     void Poles(TColgp_Array1OfPnt2d& P) const;
  
//!  Returns Value (U=1), it is the first control point <br>
//!  of the curve. <br>
  Standard_EXPORT     gp_Pnt2d StartPoint() const;
  //! Returns the weight of range Index. <br>//! Raised if Index is not in the range [1, NbPoles] <br>
  Standard_EXPORT     Standard_Real Weight(const Standard_Integer Index) const;
  //! Returns all the weights of the curve. <br>
//!  Raised if the length of W is not equal to the number of poles. <br>
  Standard_EXPORT     void Weights(TColStd_Array1OfReal& W) const;
  //! Applies the transformation T to this Bezier curve. <br>
  Standard_EXPORT     void Transform(const gp_Trsf2d& T) ;
  
//!  Returns the value of the maximum polynomial degree of a <br>
//!  BezierCurve. This value is 25. <br>
  Standard_EXPORT   static  Standard_Integer MaxDegree() ;
  //!  Computes for this Bezier curve the parametric <br>
//! tolerance UTolerance for a given tolerance <br>
//! Tolerance3D (relative to dimensions in the plane). <br>
//! If f(t) is the equation of this Bezier curve, <br>
//! UTolerance ensures that <br>
//!           | t1 - t0| < Utolerance ===> <br>
//!           |f(t1) - f(t0)| < ToleranceUV <br>
  Standard_EXPORT     void Resolution(const Standard_Real ToleranceUV,Standard_Real& UTolerance) ;
  //! Creates a new object which is a copy of this Bezier curve. <br>
  Standard_EXPORT     Handle_Geom2d_Geometry Copy() const;




  DEFINE_STANDARD_RTTI(Geom2d_BezierCurve)

protected:




private: 

  //! Set  poles  to  Poles,  weights to  Weights  (not <br>
//!         copied). If Weights is   null  the  curve is    non <br>
//!         rational. Create the arrays of coefficients.  Poles <br>
//!         and    Weights  are   assumed   to  have the  first <br>
//!         coefficient 1. <br>
//! <br>
//!         Update rational and closed. <br>
//! <br>
//! if nbpoles < 2 or nbboles > MaDegree + 1 <br>
  Standard_EXPORT     void Init(const Handle(TColgp_HArray1OfPnt2d)& Poles,const Handle(TColStd_HArray1OfReal)& Weights) ;
  //! returns true if the coefficients have been <br>
//!           computed with the right value of cacheparameter <br>
//!           for the given U value. <br>
//! <br>
  Standard_EXPORT     Standard_Boolean CoefficientsOK(const Standard_Real U) const;
  //! Recompute the coeficients. <br>
  Standard_EXPORT     void UpdateCoefficients(const Standard_Real U = 0.0) ;

Standard_Boolean rational;
Standard_Boolean closed;
Handle_TColgp_HArray1OfPnt2d poles;
Handle_TColStd_HArray1OfReal weights;
Handle_TColgp_HArray1OfPnt2d coeffs;
Handle_TColStd_HArray1OfReal wcoeffs;
Standard_Integer validcache;
Standard_Real parametercache;
Standard_Real spanlenghtcache;
Standard_Real maxderivinv;
Standard_Boolean maxderivinvok;


};





// other Inline functions and methods (like "C++: function call" methods)


#endif