1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _FairCurve_Newton_HeaderFile
#define _FairCurve_Newton_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _math_NewtonMinimum_HeaderFile
#include <math_NewtonMinimum.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
class math_MultipleVarFunctionWithHessian;
class math_Vector;
//! Algorithme of Optimization used to make "FairCurve" <br>
class FairCurve_Newton : public math_NewtonMinimum {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! -- Given the starting point StartingPoint, <br>
//! The tolerance required on the solution is given by <br>
//! Tolerance. <br>
//! Iteration are stopped if <br>
//! (!WithSingularity) and H(F(Xi)) is not definite <br>
//! positive (if the smaller eigenvalue of H < Convexity) <br>
//! or IsConverged() returns True for 2 successives Iterations. <br>
//! Warning: Obsolete Constructor (because IsConverged can not be redefined <br>
//! with this. ) <br>
Standard_EXPORT FairCurve_Newton(math_MultipleVarFunctionWithHessian& F,const math_Vector& StartingPoint,const Standard_Real SpatialTolerance = 1.0e-7,const Standard_Real CriteriumTolerance = 1.0e-2,const Standard_Integer NbIterations = 40,const Standard_Real Convexity = 1.0e-6,const Standard_Boolean WithSingularity = Standard_True);
//! The tolerance required on the solution is given by <br>
//! Tolerance. <br>
//! Iteration are stopped if <br>
//! (!WithSingularity) and H(F(Xi)) is not definite <br>
//! positive (if the smaller eigenvalue of H < Convexity) <br>
//! or IsConverged() returns True for 2 successives Iterations. <br>
//! Warning: This constructor do not computation <br>
Standard_EXPORT FairCurve_Newton(math_MultipleVarFunctionWithHessian& F,const Standard_Real SpatialTolerance = 1.0e-7,const Standard_Real Tolerance = 1.0e-7,const Standard_Integer NbIterations = 40,const Standard_Real Convexity = 1.0e-6,const Standard_Boolean WithSingularity = Standard_True);
//! This method is called at the end of each <br>
//! iteration to check the convergence : <br>
//! || Xi+1 - Xi || < SpatialTolerance/100 Or <br>
//! || Xi+1 - Xi || < SpatialTolerance and <br>
//! |F(Xi+1) - F(Xi)| < CriteriumTolerance * |F(xi)| <br>
//! It can be redefined in a sub-class to implement a specific test. <br>
Standard_EXPORT virtual Standard_Boolean IsConverged() const;
protected:
private:
Standard_Real mySpTol;
};
// other Inline functions and methods (like "C++: function call" methods)
#endif
|