1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _CPnts_MyRootFunction_HeaderFile
#define _CPnts_MyRootFunction_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _CPnts_MyGaussFunction_HeaderFile
#include <CPnts_MyGaussFunction.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _math_FunctionWithDerivative_HeaderFile
#include <math_FunctionWithDerivative.hxx>
#endif
#ifndef _CPnts_RealFunction_HeaderFile
#include <CPnts_RealFunction.hxx>
#endif
#ifndef _Standard_Address_HeaderFile
#include <Standard_Address.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
//! Implements a function for the Newton algorithm to find the <br>
//! solution of Integral(F) = L <br>
class CPnts_MyRootFunction : public math_FunctionWithDerivative {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
CPnts_MyRootFunction();
//! F is a pointer on a function D is a client data <br>
//! Order is the order of integration to use <br>
//! <br>
Standard_EXPORT void Init(const CPnts_RealFunction& F,const Standard_Address D,const Standard_Integer Order) ;
//! We want to solve Integral(X0,X,F(X,D)) = L <br>
Standard_EXPORT void Init(const Standard_Real X0,const Standard_Real L) ;
//! We want to solve Integral(X0,X,F(X,D)) = L <br>
//! with given tolerance <br>
Standard_EXPORT void Init(const Standard_Real X0,const Standard_Real L,const Standard_Real Tol) ;
//! This is Integral(X0,X,F(X,D)) - L <br>
Standard_EXPORT Standard_Boolean Value(const Standard_Real X,Standard_Real& F) ;
//! This is F(X,D) <br>
Standard_EXPORT Standard_Boolean Derivative(const Standard_Real X,Standard_Real& Df) ;
Standard_EXPORT Standard_Boolean Values(const Standard_Real X,Standard_Real& F,Standard_Real& Df) ;
protected:
private:
CPnts_MyGaussFunction myFunction;
Standard_Real myX0;
Standard_Real myL;
Standard_Integer myOrder;
Standard_Real myTol;
};
#include <CPnts_MyRootFunction.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|