1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _BSplSLib_HeaderFile
#define _BSplSLib_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _BSplSLib_EvaluatorFunction_HeaderFile
#include <BSplSLib_EvaluatorFunction.hxx>
#endif
class TColgp_Array2OfPnt;
class TColStd_Array2OfReal;
class TColStd_Array1OfReal;
class TColStd_Array1OfInteger;
class gp_Pnt;
class gp_Vec;
class TColgp_Array1OfPnt;
//! BSplSLib B-spline surface Library <br>
//! This package provides an implementation of geometric <br>
//! functions for rational and non rational, periodic and non <br>
//! periodic B-spline surface computation. <br>
//! <br>
//! this package uses the multi-dimensions splines methods <br>
//! provided in the package BSplCLib. <br>
//! <br>
//! In this package the B-spline surface is defined with : <br>
//! . its control points : Array2OfPnt Poles <br>
//! . its weights : Array2OfReal Weights <br>
//! . its knots and their multiplicity in the two parametric <br>
//! direction U and V : Array1OfReal UKnots, VKnots and <br>
//! Array1OfInteger UMults, VMults. <br>
//! . the degree of the normalized Spline functions : <br>
//! UDegree, VDegree <br>
//! <br>
//! . the Booleans URational, VRational to know if the weights <br>
//! are constant in the U or V direction. <br>
//! <br>
//! . the Booleans UPeriodic, VRational to know if the the <br>
//! surface is periodic in the U or V direction. <br>
//! <br>
//! Warnings : The bounds of UKnots and UMults should be the <br>
//! same, the bounds of VKnots and VMults should be the same, <br>
//! the bounds of Poles and Weights shoud be the same. <br>
class BSplSLib {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Computes the derivatives of a ratio of <br>
//! two-variables functions x(u,v) / w(u,v) at orders <br>
//! <N,M>, x(u,v) is a vector in dimension <br>
//! <3>. <br>
//! <br>
//! <Ders> is an array containing the values of the <br>
//! input derivatives from 0 to Min(<N>,<UDeg>), 0 to <br>
//! Min(<M>,<VDeg>). For orders higher than <br>
//! <UDeg,VDeg> the input derivatives are assumed to <br>
//! be 0. <br>
//! <br>
//! The <Ders> is a 2d array and the dimension of the <br>
//! lines is always (<VDeg>+1) * (<3>+1), even <br>
//! if <N> is smaller than <Udeg> (the derivatives <br>
//! higher than <N> are not used). <br>
//! <br>
//! Content of <Ders> : <br>
//! <br>
//! x(i,j)[k] means : the composant k of x derivated <br>
//! (i) times in u and (j) times in v. <br>
//! <br>
//! ... First line ... <br>
//! <br>
//! x[1],x[2],...,x[3],w <br>
//! x(0,1)[1],...,x(0,1)[3],w(1,0) <br>
//! ... <br>
//! x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg) <br>
//! <br>
//! ... Then second line ... <br>
//! <br>
//! x(1,0)[1],...,x(1,0)[3],w(1,0) <br>
//! x(1,1)[1],...,x(1,1)[3],w(1,1) <br>
//! ... <br>
//! x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg) <br>
//! <br>
//! ... <br>
//! <br>
//! ... Last line ... <br>
//! <br>
//! x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0) <br>
//! x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1) <br>
//! ... <br>
//! x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg) <br>
//! <br>
//! <br>
//! <br>
//! If <All> is false, only the derivative at order <br>
//! <N,M> is computed. <RDers> is an array of length <br>
//! 3 which will contain the result : <br>
//! <br>
//! x(1)/w , x(2)/w , ... derivated <N> <M> times <br>
//! <br>
//! If <All> is true multiples derivatives are <br>
//! computed. All the derivatives (i,j) with 0 <= i+j <br>
//! <= Max(N,M) are computed. <RDers> is an array of <br>
//! length 3 * (<N>+1) * (<M>+1) which will <br>
//! contains : <br>
//! <br>
//! x(1)/w , x(2)/w , ... <br>
//! x(1)/w , x(2)/w , ... derivated <0,1> times <br>
//! x(1)/w , x(2)/w , ... derivated <0,2> times <br>
//! ... <br>
//! x(1)/w , x(2)/w , ... derivated <0,N> times <br>
Standard_EXPORT static void RationalDerivative(const Standard_Integer UDeg,const Standard_Integer VDeg,const Standard_Integer N,const Standard_Integer M,Standard_Real& Ders,Standard_Real& RDers,const Standard_Boolean All = Standard_True) ;
Standard_EXPORT static void D0(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Pnt& P) ;
Standard_EXPORT static void D1(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer Degree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Pnt& P,gp_Vec& Vu,gp_Vec& Vv) ;
Standard_EXPORT static void D2(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Pnt& P,gp_Vec& Vu,gp_Vec& Vv,gp_Vec& Vuu,gp_Vec& Vvv,gp_Vec& Vuv) ;
Standard_EXPORT static void D3(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Pnt& P,gp_Vec& Vu,gp_Vec& Vv,gp_Vec& Vuu,gp_Vec& Vvv,gp_Vec& Vuv,gp_Vec& Vuuu,gp_Vec& Vvvv,gp_Vec& Vuuv,gp_Vec& Vuvv) ;
Standard_EXPORT static void DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Vec& Vn) ;
//! Computes the poles and weights of an isoparametric <br>
//! curve at parameter <Param> (UIso if <IsU> is True, <br>
//! VIso else). <br>
Standard_EXPORT static void Iso(const Standard_Real Param,const Standard_Boolean IsU,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,const Standard_Integer Degree,const Standard_Boolean Periodic,TColgp_Array1OfPnt& CPoles,TColStd_Array1OfReal& CWeights) ;
//! Reverses the array of poles. Last is the Index of <br>
//! the new first Row( Col) of Poles. <br>
//! On a non periodic surface Last is <br>
//! Poles.Upper(). <br>
//! On a periodic curve last is <br>
//! (number of flat knots - degree - 1) <br>
//! or <br>
//! (sum of multiplicities(but for the last) + degree <br>
//! - 1) <br>
Standard_EXPORT static void Reverse(TColgp_Array2OfPnt& Poles,const Standard_Integer Last,const Standard_Boolean UDirection) ;
//! Makes an homogeneous evaluation of Poles and Weights <br>
//! any and returns in P the Numerator value and <br>
//! in W the Denominator value if Weights are present <br>
//! otherwise returns 1.0e0 <br>
//! <br>
Standard_EXPORT static void HomogeneousD0(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,Standard_Real& W,gp_Pnt& P) ;
//! Makes an homogeneous evaluation of Poles and Weights <br>
//! any and returns in P the Numerator value and <br>
//! in W the Denominator value if Weights are present <br>
//! otherwise returns 1.0e0 <br>
//! <br>
Standard_EXPORT static void HomogeneousD1(const Standard_Real U,const Standard_Real V,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,gp_Pnt& N,gp_Vec& Nu,gp_Vec& Nv,Standard_Real& D,Standard_Real& Du,Standard_Real& Dv) ;
//! Reverses the array of weights. <br>
Standard_EXPORT static void Reverse(TColStd_Array2OfReal& Weights,const Standard_Integer Last,const Standard_Boolean UDirection) ;
//! Returns False if all the weights of the array <Weights> <br>
//! in the area [I1,I2] * [J1,J2] are identic. <br>
//! Epsilon is used for comparing weights. <br>
//! If Epsilon is 0. the Epsilon of the first weight is used. <br>
Standard_EXPORT static Standard_Boolean IsRational(const TColStd_Array2OfReal& Weights,const Standard_Integer I1,const Standard_Integer I2,const Standard_Integer J1,const Standard_Integer J2,const Standard_Real Epsilon = 0.0) ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array2OfPnt& Poles,TColStd_Array1OfReal& FP,const Standard_Boolean UDirection) ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,TColStd_Array1OfReal& FP,const Standard_Boolean UDirection) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array2OfPnt& Poles,const Standard_Boolean UDirection) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array2OfPnt& Poles,TColStd_Array2OfReal& Weights,const Standard_Boolean UDirection) ;
//! Find the new poles which allows an old point (with a <br>
//! given u,v as parameters) to reach a new position <br>
//! UIndex1,UIndex2 indicate the range of poles we can <br>
//! move for U <br>
//! (1, UNbPoles-1) or (2, UNbPoles) -> no constraint <br>
//! for one side in U <br>
//! (2, UNbPoles-1) -> the ends are enforced for U <br>
//! don't enter (1,NbPoles) and (1,VNbPoles) <br>
//! -> error: rigid move <br>
//! if problem in BSplineBasis calculation, no change <br>
//! for the curve and <br>
//! UFirstIndex, VLastIndex = 0 <br>
//! VFirstIndex, VLastIndex = 0 <br>
Standard_EXPORT static void MovePoint(const Standard_Real U,const Standard_Real V,const gp_Vec& Displ,const Standard_Integer UIndex1,const Standard_Integer UIndex2,const Standard_Integer VIndex1,const Standard_Integer VIndex2,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean Rational,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UFlatKnots,const TColStd_Array1OfReal& VFlatKnots,Standard_Integer& UFirstIndex,Standard_Integer& ULastIndex,Standard_Integer& VFirstIndex,Standard_Integer& VLastIndex,TColgp_Array2OfPnt& NewPoles) ;
Standard_EXPORT static void InsertKnots(const Standard_Boolean UDirection,const Standard_Integer Degree,const Standard_Boolean Periodic,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,const TColStd_Array1OfReal& AddKnots,const TColStd_Array1OfInteger& AddMults,TColgp_Array2OfPnt& NewPoles,TColStd_Array2OfReal& NewWeights,TColStd_Array1OfReal& NewKnots,TColStd_Array1OfInteger& NewMults,const Standard_Real Epsilon,const Standard_Boolean Add = Standard_True) ;
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Boolean UDirection,const Standard_Integer Index,const Standard_Integer Mult,const Standard_Integer Degree,const Standard_Boolean Periodic,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,TColgp_Array2OfPnt& NewPoles,TColStd_Array2OfReal& NewWeights,TColStd_Array1OfReal& NewKnots,TColStd_Array1OfInteger& NewMults,const Standard_Real Tolerance) ;
Standard_EXPORT static void IncreaseDegree(const Standard_Boolean UDirection,const Standard_Integer Degree,const Standard_Integer NewDegree,const Standard_Boolean Periodic,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& Knots,const TColStd_Array1OfInteger& Mults,TColgp_Array2OfPnt& NewPoles,TColStd_Array2OfReal& NewWeights,TColStd_Array1OfReal& NewKnots,TColStd_Array1OfInteger& NewMults) ;
Standard_EXPORT static void Unperiodize(const Standard_Boolean UDirection,const Standard_Integer Degree,const TColStd_Array1OfInteger& Mults,const TColStd_Array1OfReal& Knots,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,TColStd_Array1OfInteger& NewMults,TColStd_Array1OfReal& NewKnots,TColgp_Array2OfPnt& NewPoles,TColStd_Array2OfReal& NewWeights) ;
//! Used as argument for a non rational curve. <br>
//! <br>
static TColStd_Array2OfReal& NoWeights() ;
//! Perform the evaluation of the Taylor expansion <br>
//! of the Bspline normalized between 0 and 1. <br>
//! If rational computes the homogeneous Taylor expension <br>
//! for the numerator and stores it in CachePoles <br>
//! <br>
//! <br>
Standard_EXPORT static void BuildCache(const Standard_Real U,const Standard_Real V,const Standard_Real USpanDomain,const Standard_Real VSpanDomain,const Standard_Boolean UPeriodicFlag,const Standard_Boolean VPeriodicFlag,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Integer UIndex,const Standard_Integer VIndex,const TColStd_Array1OfReal& UFlatKnots,const TColStd_Array1OfReal& VFlatKnots,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,TColgp_Array2OfPnt& CachePoles,TColStd_Array2OfReal& CacheWeights) ;
//! Perform the evaluation of the of the cache <br>
//! the parameter must be normalized between <br>
//! the 0 and 1 for the span. <br>
//! The Cache must be valid when calling this <br>
//! routine. Geom Package will insure that. <br>
//! and then multiplies by the weights <br>
//! this just evaluates the current point <br>
//! the CacheParameter is where the Cache was <br>
//! constructed the SpanLength is to normalize <br>
//! the polynomial in the cache to avoid bad conditioning <br>
//! effects <br>
//! <br>
Standard_EXPORT static void CacheD0(const Standard_Real U,const Standard_Real V,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Real UCacheParameter,const Standard_Real VCacheParameter,const Standard_Real USpanLenght,const Standard_Real VSpanLength,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point) ;
//! Calls CacheD0 for Bezier Surfaces Arrays computed with <br>
//! the method PolesCoefficients. <br>
//! Warning: To be used for BezierSurfaces ONLY!!! <br>
static void CoefsD0(const Standard_Real U,const Standard_Real V,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point) ;
//! Perform the evaluation of the of the cache <br>
//! the parameter must be normalized between <br>
//! the 0 and 1 for the span. <br>
//! The Cache must be valid when calling this <br>
//! routine. Geom Package will insure that. <br>
//! and then multiplies by the weights <br>
//! this just evaluates the current point <br>
//! the CacheParameter is where the Cache was <br>
//! constructed the SpanLength is to normalize <br>
//! the polynomial in the cache to avoid bad conditioning <br>
//! effects <br>
//! <br>
Standard_EXPORT static void CacheD1(const Standard_Real U,const Standard_Real V,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Real UCacheParameter,const Standard_Real VCacheParameter,const Standard_Real USpanLenght,const Standard_Real VSpanLength,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point,gp_Vec& VecU,gp_Vec& VecV) ;
//! Calls CacheD0 for Bezier Surfaces Arrays computed with <br>
//! the method PolesCoefficients. <br>
//! Warning: To be used for BezierSurfaces ONLY!!! <br>
static void CoefsD1(const Standard_Real U,const Standard_Real V,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point,gp_Vec& VecU,gp_Vec& VecV) ;
//! Perform the evaluation of the of the cache <br>
//! the parameter must be normalized between <br>
//! the 0 and 1 for the span. <br>
//! The Cache must be valid when calling this <br>
//! routine. Geom Package will insure that. <br>
//! and then multiplies by the weights <br>
//! this just evaluates the current point <br>
//! the CacheParameter is where the Cache was <br>
//! constructed the SpanLength is to normalize <br>
//! the polynomial in the cache to avoid bad conditioning <br>
//! effects <br>
//! <br>
Standard_EXPORT static void CacheD2(const Standard_Real U,const Standard_Real V,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Real UCacheParameter,const Standard_Real VCacheParameter,const Standard_Real USpanLenght,const Standard_Real VSpanLength,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point,gp_Vec& VecU,gp_Vec& VecV,gp_Vec& VecUU,gp_Vec& VecUV,gp_Vec& VecVV) ;
//! Calls CacheD0 for Bezier Surfaces Arrays computed with <br>
//! the method PolesCoefficients. <br>
//! Warning: To be used for BezierSurfaces ONLY!!! <br>
static void CoefsD2(const Standard_Real U,const Standard_Real V,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,gp_Pnt& Point,gp_Vec& VecU,gp_Vec& VecV,gp_Vec& VecUU,gp_Vec& VecUV,gp_Vec& VecVV) ;
//! Warning! To be used for BezierSurfaces ONLY!!! <br>
static void PolesCoefficients(const TColgp_Array2OfPnt& Poles,TColgp_Array2OfPnt& CachePoles) ;
//! Encapsulation of BuildCache to perform the <br>
//! evaluation of the Taylor expansion for beziersurfaces <br>
//! at parameters 0.,0.; <br>
//! Warning: To be used for BezierSurfaces ONLY!!! <br>
//! <br>
Standard_EXPORT static void PolesCoefficients(const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,TColgp_Array2OfPnt& CachePoles,TColStd_Array2OfReal& CacheWeights) ;
//! Given a tolerance in 3D space returns two <br>
//! tolerances, one in U one in V such that for <br>
//! all (u1,v1) and (u0,v0) in the domain of <br>
//! the surface f(u,v) we have : <br>
//! | u1 - u0 | < UTolerance and <br>
//! | v1 - v0 | < VTolerance <br>
//! we have |f (u1,v1) - f (u0,v0)| < Tolerance3D <br>
Standard_EXPORT static void Resolution(const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UKnots,const TColStd_Array1OfReal& VKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Boolean URat,const Standard_Boolean VRat,const Standard_Boolean UPer,const Standard_Boolean VPer,const Standard_Real Tolerance3D,Standard_Real& UTolerance,Standard_Real& VTolerance) ;
//! Performs the interpolation of the data points given in <br>
//! the Poles array in the form <br>
//! [1,...,RL][1,...,RC][1...PolesDimension] . The <br>
//! ColLength CL and the Length of UParameters must be the <br>
//! same. The length of VFlatKnots is VDegree + CL + 1. <br>
//! <br>
//! The RowLength RL and the Length of VParameters must be <br>
//! the same. The length of VFlatKnots is Degree + RL + 1. <br>
//! <br>
//! Warning: the method used to do that interpolation <br>
//! is gauss elimination WITHOUT pivoting. Thus if the <br>
//! diagonal is not dominant there is no guarantee that <br>
//! the algorithm will work. Nevertheless for Cubic <br>
//! interpolation at knots or interpolation at Scheonberg <br>
//! points the method will work. The InversionProblem <br>
//! will report 0 if there was no problem else it will <br>
//! give the index of the faulty pivot <br>
Standard_EXPORT static void Interpolate(const Standard_Integer UDegree,const Standard_Integer VDegree,const TColStd_Array1OfReal& UFlatKnots,const TColStd_Array1OfReal& VFlatKnots,const TColStd_Array1OfReal& UParameters,const TColStd_Array1OfReal& VParameters,TColgp_Array2OfPnt& Poles,TColStd_Array2OfReal& Weights,Standard_Integer& InversionProblem) ;
//! Performs the interpolation of the data points given in <br>
//! the Poles array. <br>
//! The ColLength CL and the Length of UParameters must be <br>
//! the same. The length of VFlatKnots is VDegree + CL + 1. <br>
//! <br>
//! The RowLength RL and the Length of VParameters must be <br>
//! the same. The length of VFlatKnots is Degree + RL + 1. <br>
//! <br>
//! Warning: the method used to do that interpolation <br>
//! is gauss elimination WITHOUT pivoting. Thus if the <br>
//! diagonal is not dominant there is no guarantee that <br>
//! the algorithm will work. Nevertheless for Cubic <br>
//! interpolation at knots or interpolation at Scheonberg <br>
//! points the method will work. The InversionProblem <br>
//! will report 0 if there was no problem else it will <br>
//! give the index of the faulty pivot <br>
Standard_EXPORT static void Interpolate(const Standard_Integer UDegree,const Standard_Integer VDegree,const TColStd_Array1OfReal& UFlatKnots,const TColStd_Array1OfReal& VFlatKnots,const TColStd_Array1OfReal& UParameters,const TColStd_Array1OfReal& VParameters,TColgp_Array2OfPnt& Poles,Standard_Integer& InversionProblem) ;
//! this will multiply a given BSpline numerator N(u,v) <br>
//! and denominator D(u,v) defined by its <br>
//! U/VBSplineDegree and U/VBSplineKnots, and <br>
//! U/VMults. Its Poles and Weights are arrays which are <br>
//! coded as array2 of the form <br>
//! [1..UNumPoles][1..VNumPoles] by a function a(u,v) <br>
//! which is assumed to satisfy the following : 1. <br>
//! a(u,v) * N(u,v) and a(u,v) * D(u,v) is a polynomial <br>
//! BSpline that can be expressed exactly as a BSpline of <br>
//! degree U/VNewDegree on the knots U/VFlatKnots 2. the range <br>
//! of a(u,v) is the same as the range of N(u,v) <br>
//! or D(u,v) <br>
//! ---Warning: it is the caller's responsability to <br>
//! insure that conditions 1. and 2. above are satisfied <br>
//! : no check whatsoever is made in this method -- <br>
//! Status will return 0 if OK else it will return the <br>
//! pivot index -- of the matrix that was inverted to <br>
//! compute the multiplied -- BSpline : the method used <br>
//! is interpolation at Schoenenberg -- points of <br>
//! a(u,v)* N(u,v) and a(u,v) * D(u,v) <br>
//! Status will return 0 if OK else it will return the pivot index <br>
//! of the matrix that was inverted to compute the multiplied <br>
//! BSpline : the method used is interpolation at Schoenenberg <br>
//! points of a(u,v)*F(u,v) <br>
//! -- <br>
//! <br>
Standard_EXPORT static void FunctionMultiply(const BSplSLib_EvaluatorFunction& Function,const Standard_Integer UBSplineDegree,const Standard_Integer VBSplineDegree,const TColStd_Array1OfReal& UBSplineKnots,const TColStd_Array1OfReal& VBSplineKnots,const TColStd_Array1OfInteger& UMults,const TColStd_Array1OfInteger& VMults,const TColgp_Array2OfPnt& Poles,const TColStd_Array2OfReal& Weights,const TColStd_Array1OfReal& UFlatKnots,const TColStd_Array1OfReal& VFlatKnots,const Standard_Integer UNewDegree,const Standard_Integer VNewDegree,TColgp_Array2OfPnt& NewNumerator,TColStd_Array2OfReal& NewDenominator,Standard_Integer& Status) ;
protected:
private:
};
#include <BSplSLib.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|