summaryrefslogtreecommitdiff
path: root/inc/AppParCurves_BSpGradient.gxx
blob: b30a55b22fa047ea72062ac3a621bb82a300184f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// File AppParCurves_BSpGradient.gxx
// lpa, le 11/09/91


// Application de la methode du gradient corrige pour minimiser 
// F  = somme(||C(ui, Poles(ui)) - ptli||2.
// La methode de gradient conjugue est programmee dans la bibliotheque 
// mathematique: math_BFGS.


#define No_Standard_RangeError
#define No_Standard_OutOfRange

#include <AppParCurves_Constraint.hxx>
#include <AppParCurves_ConstraintCouple.hxx>
#include <math_BFGS.hxx>
#include <StdFail_NotDone.hxx>
#include <AppParCurves_MultiPoint.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_Array1OfVec2d.hxx>

#include <OSD_Chronometer.hxx>

static OSD_Chronometer chr1;


static Standard_Boolean islambdadefined = Standard_False;



static AppParCurves_Constraint FirstConstraint
  (const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
   const Standard_Integer FirstPoint)
{
  Standard_Integer i, myindex;
  Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
  AppParCurves_ConstraintCouple mycouple;
  AppParCurves_Constraint Cons = AppParCurves_NoConstraint;

  for (i = low; i <= upp; i++) {
    mycouple = TheConstraints->Value(i);
    Cons = mycouple.Constraint();
    myindex = mycouple.Index();
    if (myindex == FirstPoint) {
      break;
    }
  }
  return Cons;
}


static AppParCurves_Constraint LastConstraint
  (const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
   const Standard_Integer LastPoint)
{
  Standard_Integer i, myindex;
  Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
  AppParCurves_ConstraintCouple mycouple;
  AppParCurves_Constraint Cons = AppParCurves_NoConstraint;

  for (i = low; i <= upp; i++) {
    mycouple = TheConstraints->Value(i);
    Cons = mycouple.Constraint();
    myindex = mycouple.Index();
    if (myindex == LastPoint) {
      break;
    }
  }
  return Cons;
}





AppParCurves_BSpGradient::
   AppParCurves_BSpGradient(const MultiLine& SSP,
         const Standard_Integer FirstPoint,
         const Standard_Integer LastPoint,
	 const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
         math_Vector& Parameters,
	 const TColStd_Array1OfReal& Knots,
	 const TColStd_Array1OfInteger& Mults,
         const Standard_Integer Deg,
	 const Standard_Real Tol3d,
	 const Standard_Real Tol2d,
	 const Standard_Integer NbIterations):
	 ParError(FirstPoint, LastPoint,0.0) 
{
  Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters, 
	  Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
}


AppParCurves_BSpGradient::
   AppParCurves_BSpGradient(const MultiLine& SSP,
         const Standard_Integer FirstPoint,
         const Standard_Integer LastPoint,
	 const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
         math_Vector& Parameters,
	 const TColStd_Array1OfReal& Knots,
	 const TColStd_Array1OfInteger& Mults,
         const Standard_Integer Deg,
	 const Standard_Real Tol3d,
	 const Standard_Real Tol2d,
	 const Standard_Integer NbIterations,
	 const Standard_Real lambda1,
	 const Standard_Real lambda2):
	 ParError(FirstPoint, LastPoint,0.0) 
{
  mylambda1 = lambda1;
  mylambda2 = lambda2;
  islambdadefined = Standard_True;
  Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters, 
	  Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
}







void AppParCurves_BSpGradient::
  Perform(const MultiLine& SSP,
         const Standard_Integer FirstPoint,
         const Standard_Integer LastPoint,
	 const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
         math_Vector& Parameters,
	 const TColStd_Array1OfReal& Knots,
	 const TColStd_Array1OfInteger& Mults,
         const Standard_Integer Deg,
	 const Standard_Real Tol3d,
	 const Standard_Real Tol2d,
	 const Standard_Integer NbIterations)
{

//  Standard_Boolean grad = Standard_True;
  Standard_Integer i, j, k, i2, l;
  Standard_Real UF, DU, Fval = 0.0, FU, DFU;
  Standard_Integer nbP3d = ToolLine::NbP3d(SSP);
  Standard_Integer nbP2d = ToolLine::NbP2d(SSP);
  Standard_Integer mynbP3d=nbP3d, mynbP2d=nbP2d;
  Standard_Integer nbP = nbP3d + nbP2d;
//  gp_Pnt Pt, P1, P2;
  gp_Pnt Pt;
//  gp_Pnt2d Pt2d, P12d, P22d;
  gp_Pnt2d Pt2d;
//  gp_Vec V1, V2, MyV;
  gp_Vec V1, MyV;
//  gp_Vec2d V12d, V22d, MyV2d;
  gp_Vec2d V12d, MyV2d;
  Done = Standard_False;
  
  if (nbP3d == 0) mynbP3d = 1;
  if (nbP2d == 0) mynbP2d = 1;
  TColgp_Array1OfPnt TabP(1, mynbP3d);
  TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
  TColgp_Array1OfVec TabV(1, mynbP3d);
  TColgp_Array1OfVec2d TabV2d(1, mynbP2d);

  // Calcul de la fonction F= somme(||C(ui)-Ptli||2):
  // Appel a une fonction heritant de MultipleVarFunctionWithGradient
  // pour calculer F et grad_F.
  // ================================================================

  Standard_Integer nbpoles = -Deg -1;
  for (i = Mults.Lower() ;i <= Mults.Upper(); i++) {
    nbpoles += Mults(i);
  }

  TColgp_Array1OfPnt   TabPole(1, nbpoles);
  TColgp_Array1OfPnt2d TabPole2d(1, nbpoles);
  TColgp_Array1OfPnt    ThePoles(1, (nbpoles)*mynbP3d);
  TColgp_Array1OfPnt2d  ThePoles2d(1, (nbpoles)*mynbP2d);


  AppParCurves_Constraint 
    FirstCons = FirstConstraint(TheConstraints, FirstPoint), 
    LastCons  = LastConstraint(TheConstraints, LastPoint);


  AppParCurves_BSpParFunction MyF(SSP, FirstPoint,LastPoint, TheConstraints, 
				  Parameters, Knots, Mults, nbpoles);



  if (FirstCons >= AppParCurves_TangencyPoint ||
      LastCons >= AppParCurves_TangencyPoint) {

    if (!islambdadefined) {
      AppParCurves_BSpParLeastSquare thefitt(SSP, Knots, Mults, FirstPoint,
					     LastPoint, FirstCons, LastCons, 
					     Parameters, nbpoles);
      if (FirstCons >= AppParCurves_TangencyPoint) {
	mylambda1 = thefitt.FirstLambda();
	MyF.SetFirstLambda(mylambda1);
      }
      if (LastCons >= AppParCurves_TangencyPoint) {
	mylambda2 = thefitt.LastLambda();
	MyF.SetLastLambda(mylambda2);
      }
    }
    else {
      MyF.SetFirstLambda(mylambda1);
      MyF.SetLastLambda(mylambda2);
    }
  }


  MyF.Value(Parameters, Fval);
  MError3d = MyF.MaxError3d();
  MError2d = MyF.MaxError2d();
  SCU = MyF.CurveValue();

  if (MError3d > Tol3d || MError2d > Tol2d) {

    // Stockage des Poles des courbes pour projeter:
    // ============================================
    i2 = 0;
    for (k = 1; k <= nbP3d; k++) {
      SCU.Curve(k, TabPole);
      for (j=1; j<=nbpoles; j++) ThePoles(j+i2) = TabPole(j);
      i2 += nbpoles;
    }
    i2 = 0;
    for (k = 1; k <= nbP2d; k++) {
      SCU.Curve(nbP3d+k, TabPole2d);
      for (j=1; j<=nbpoles; j++) ThePoles2d(j+i2) = TabPole2d(j);
      i2 += nbpoles;
    }
    
    //  Une iteration rapide de projection est faite par la methode de 
    //  Rogers & Fog 89, methode equivalente a Hoschek 88 qui ne necessite pas
    //  le calcul de D2.
    
    const math_Matrix& A = MyF.FunctionMatrix();
    const math_Matrix& DA = MyF.DerivativeFunctionMatrix();
    const math_IntegerVector& Index = MyF.Index();
    Standard_Real aa, da, a, b, c, d , e , f, px, py, pz;
    Standard_Integer indexdeb, indexfin;

    for (j = FirstPoint+1; j <= LastPoint-1; j++) {
      
      UF = Parameters(j);
      if (nbP3d != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP, TabP2d);
      else if (nbP2d != 0)          ToolLine::Value(SSP, j, TabP2d);
      else                          ToolLine::Value(SSP, j, TabP);
      
      FU = 0.0;
      DFU = 0.0;
      i2 = 0;
      
      indexdeb = Index(j) + 1;
      indexfin = indexdeb + Deg;

      for (k = 1; k <= nbP3d; k++) {
	a = b = c = d = e = f = 0.0;
	for (l = indexdeb; l <= indexfin; l++) {
	  Pt = ThePoles(l+i2); 
	  px = Pt.X(); py = Pt.Y(); pz = Pt.Z();
	  aa = A(j, l); da = DA(j, l);
	  a += aa* px; d += da* px;
	  b += aa* py; e += da* py;
	  c += aa* pz; f += da* pz;
	}
	Pt.SetCoord(a, b, c);
	V1.SetCoord(d, e, f);
	i2 += nbpoles;

	MyV = gp_Vec(Pt, TabP(k));
	FU += MyV*V1;
	DFU += V1.SquareMagnitude();
      }
      i2 = 0;
      for (k = 1; k <= nbP2d; k++) {
	a = b = d = e = 0.0;
	for (l = indexdeb; l <= indexfin; l++) {
	  Pt2d = ThePoles2d(l+i2); 
	  px = Pt2d.X(); py = Pt2d.Y();
	  aa = A(j, l); da = DA(j, l);
	  a += aa* px; d += da* px;
	  b += aa* py; e += da* py;
	}
	Pt2d.SetCoord(a, b);
	V12d.SetCoord(d, e);
	i2 += nbpoles;

	MyV2d = gp_Vec2d(Pt2d, TabP2d(k));
	FU += MyV2d*V12d;
	DFU += V12d.SquareMagnitude();
      }
      
      if (DFU >= RealEpsilon()) {
	DU = FU/DFU;
	DU = Sign(Min(5.e-02, Abs(DU)), DU);
	UF += DU;
	Parameters(j) = UF;
      }
    }
    
    MyF.Value(Parameters, Fval);
    MError3d = MyF.MaxError3d();
    MError2d = MyF.MaxError2d();
  }


  if (MError3d<= Tol3d && MError2d <= Tol2d) {
    Done = Standard_True;
  }
  else if (NbIterations != 0) {
    // NbIterations de gradient conjugue:
    // =================================
    Standard_Real Eps = 1.e-07;
    AppParCurves_BSpGradient_BFGS FResol(MyF, Parameters, Tol3d, 
					 Tol2d, Eps, NbIterations);
  }

  SCU = MyF.CurveValue();


  AvError = 0.;
  for (j = FirstPoint; j <= LastPoint; j++) {  
    Parameters(j) = MyF.NewParameters()(j);
    // Recherche des erreurs maxi et moyenne a un index donne:
    for (k = 1; k <= nbP; k++) {
      ParError(j) = Max(ParError(j), MyF.Error(j, k));
    }
    AvError += ParError(j);
  }
  AvError = AvError/(LastPoint-FirstPoint+1);


  MError3d = MyF.MaxError3d();
  MError2d = MyF.MaxError2d();
  if (MError3d <= Tol3d && MError2d <= Tol2d) {
    Done = Standard_True;
  }

}



AppParCurves_MultiBSpCurve AppParCurves_BSpGradient::Value() const {
  return SCU;
}


Standard_Boolean AppParCurves_BSpGradient::IsDone() const {
  return Done;
}


Standard_Real AppParCurves_BSpGradient::Error(const Standard_Integer Index) const {
  return ParError(Index);
}

Standard_Real AppParCurves_BSpGradient::AverageError() const {
  return AvError;
}

Standard_Real AppParCurves_BSpGradient::MaxError3d() const {
  return MError3d;
}

Standard_Real AppParCurves_BSpGradient::MaxError2d() const {
  return MError2d;
}