summaryrefslogtreecommitdiff
path: root/cad/src/outtakes/Peptide.py
blob: ac7312e2bc3abede05155110940726a7a69c3165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# Copyright 2004-2008 Nanorex, Inc.  See LICENSE file for details.
"""
Peptide.py -- Peptide generator helper classes, based on empirical data.

@author: Mark Sims
@version: $Id$
@copyright: 2004-2008 Nanorex, Inc.  See LICENSE file for details.

History:

Mark 2008-03-09:
- Created (incorporating some code from Will's older file PeptideGenerator.py).
"""

import foundation.env as env

from math import sin, cos, pi
from math import atan2
from Numeric import dot, argmax, argmin, sqrt

from model.chem import Atom
from model.bonds import bond_atoms
from model.bond_constants import V_GRAPHITE, V_SINGLE
from model.bond_constants import atoms_are_bonded

from utilities.Log import greenmsg
from utilities.debug import Stopwatch

from geometry.VQT import Q, V, angleBetween, cross, vlen, norm
from geometry.geometryUtilities import matrix_putting_axis_at_z
from model.chunk import Chunk
from model.elements import PeriodicTable

from model.bonds import CC_GRAPHITIC_BONDLENGTH, BN_GRAPHITIC_BONDLENGTH

ntTypes = ["Carbon", "Boron Nitride"]
ntEndings = ["Hydrogen", "None"] # "Capped" NIY. "Nitrogen" removed. --mark
ntBondLengths = [CC_GRAPHITIC_BONDLENGTH, BN_GRAPHITIC_BONDLENGTH]
sqrt3 = 3 ** 0.5

class Peptide:
    """
    Peptide class. Supports both Carbon Peptides (CNTs) or Boron Nitride
    Peptides (BNNT).
    """
    n = 5
    m = 5
    type = "Carbon"
    endPoint1 = None
    endPoint2 = None
    endings = "Hydrogen" # "Hydrogen" or "None". "Capped" NIY.

    zdist  = 0.0 # Angstroms
    xydist = 0.0 # Angstroms
    twist  = 0   # Degrees/Angstrom
    bend   = 0   # Degrees
    numwalls = 1 # Single
    spacing  = 2.46 # Spacing b/w MWNT in Angstroms

    def __init__(self):
        """
        Constructor. Creates an instance of a Peptide.

        By default, the Peptide is a 5x5 Carbon Peptide. Use the set methods
        to change the Peptide's chirality and type (i.e. Boron Nitride).
        """
        self.setBondLength()
        self._computeRise() # Assigns default rise value.
        self._update()

    def _update(self):
        """
        Private method.

        Updates all chirality parameters whenever the following attrs are
        changed via their set methods:
        - n, m,
        - type
        - bond_length
        """
        n, m = self.getChirality()
        type = self.getType()
        bond_length = self.getBondLength()

        self.maxlen = maxlen = 1.2 * bond_length
        self.maxlensq = maxlen**2

        x = (n + 0.5 * m) * sqrt3
        y = 1.5 * m
        angle = atan2(y, x)
        twoPiRoverA = (x**2 + y**2) ** .5
        AoverR = (2 * pi) / twoPiRoverA
        self.__cos = cos(angle)
        self.__sin = sin(angle)
        # time to get the constants
        s, t = self.x1y1(0,0)
        u, v = self.x1y1(1./3, 1./3)
        w, x = self.x1y1(0,1)
        F = (t - v)**2
        G = 2 * (1 - cos(AoverR * (s - u)))
        H = (v - x)**2
        J = 2 * (1 - cos(AoverR * (u - w)))
        denom = F * J - G * H
        self.R = (bond_length**2 * (F - H) / denom) ** .5
        self.B = (bond_length**2 * (J - G) / denom) ** .5
        self.A = self.R * AoverR

        if 0:
            print "--------------"
            print "angle =", angle
            print "A =", self.A
            print "B =", self.B
            print "R =", self.R

    def x1y1(self, n, m):
        c, s = self.__cos, self.__sin
        x = (n + .5*m) * sqrt3
        y = 1.5 * m
        x1 = x * c + y * s
        y1 = -x * s + y * c
        return (x1, y1)

    def mlimits(self, z3min, z3max, n):
        if z3max < z3min:
            z3min, z3max = z3max, z3min
        B, c, s = self.B, self.__cos, self.__sin
        P = sqrt3 * B * s
        Q = 1.5 * B * (c - s / sqrt3)
        m1, m2 = (z3min + P * n) / Q, (z3max + P * n) / Q
        return int(m1-1.5), int(m2+1.5) # REVIEW: should this use intRound?

    def xyz(self, n, m):
        x1, y1 = self.x1y1(n, m)
        x2, y2 = self.A * x1, self.B * y1
        R = self.R
        x3 = R * sin(x2/R)
        y3 = R * cos(x2/R)
        z3 = y2
        return (x3, y3, z3)

    def setChirality(self, n, m):
        """
        Set the n,m chiral integers of self.

        Two restrictions are maintained:
        - n >= 2
        - 0 <= m <= n

        @param n: chiral integer I{n}
        @type  n: int

        @param m: chiral integer I{m}
        @type  m: int

        @return: The chiral integers n, m.
        @rtype:  tuple of two ints (n, m).

        @warning: n and/or m may be changed to maintain the restrictions.
        """
        if n < 2:
            n = 2
        if m != self.m:
            # m changed. If m became larger than n, make n bigger.
            if m > n:
                n = m
        elif n != self.n:
            # n changed. If n became smaller than m, make m smaller.
            if m > n:
                m = n
        self.n = n
        self.m = m

        self._update()

        return self.getChirality()

    def getChirality(self):
        """
        Returns the n,m chirality of self.

        @return: n, m
        @rtype:  int, int
        """
        return (self.n, self.m)

    def getChiralityN(self):
        """
        Returns the n chirality of self.

        @return: n
        @rtype:  int
        """
        return self.n

    def getChiralityM(self):
        """
        Returns the m chirality of self.

        @return: m
        @rtype:  int
        """
        return self.m

    def setType(self, type):
        """
        Sets the type of Peptide.

        @param type: the type of Peptide, either "Carbon" or "Boron Nitride"
        @type  type: string

        @warning: This resets the bond length based on type.
        """
        assert type in ntTypes
        self.type = type
        self.setBondLength() # Calls _update().
        return

    def getType(self):
        """
        Return the type of Peptide.

        @return: the type of Peptide.
        @rtype:  string
        """
        return self.type

    def getRadius(self):
        """
        Returns the radius of the Peptide.

        @return: The radius in Angstroms.
        @rtype: float
        """
        return self.R

    def getDiameter(self):
        """
        Returns the diameter of the Peptide.

        @return: The diameter in Angstroms.
        @rtype: float
        """
        return self.R * 2.0

    def setBondLength(self, bond_length = None):
        """
        Sets the I{bond length} between two neighboring atoms in self.

        @param bond_length: The bond length in Angstroms. If None, it will be
                            assigned a default value based on the current
                            Peptide type.
        @type  bond_length: float
        """
        if bond_length:
            self.bond_length = bond_length
        else:
            self.bond_length = ntBondLengths[ntTypes.index(self.type)]
        self._update()
        return

    def getBondLength(self):
        """
        Returns the bond length between atoms in the Peptide.

        @return: The bond length in Angstroms.
        @rtype: float
        """
        return self.bond_length

    def setEndings(self, endings):
        """
        Sets the type of I{endings} of the Peptide self.

        @param endings: Either "Hydrogen" or "None".
        @type  endings: string

        @note: "Capped" endings are not implemented yet.
        """
        assert endings in ntEndings
        self.endings = endings

    def getEndings(self):
        """
        Returns the type of I{endings} of the Peptide self.

        @return: Either "Hydrogen" or "None".
        @rtype : string

        @note: "Capped" endings are not implemented yet.
        """
        return self.endings

    def setEndPoints(self, endPoint1, endPoint2, trimEndPoint2 = False):
        """
        Sets endpoints to I{endPoint1} and I{endPoint2}.

        @param endPoint1: point
        @type  endPoint1: V

        @param endPoint2: point
        @type  endPoint2: V

        @param trimEndPoint2: If true, endPoint2 will be trimmed to a point in
                              which the length of the Peptide is an integral
                              of the Peptide rise. This is not implemented yet.
        @type trimEndPoint2: boolean

        @attention: trimEndPoint2 argument is ignored (NIY).
        """
        # See drawPeptideLadder() for math needed to implement trimEndPoint2.
        self.endPoint1 = endPoint1
        self.endPoint2 = endPoint2

    def getEndPoints(self):
        """
        Return endpoints.
        """
        return (self.endPoint1, self.endPoint2)

    def getParameters(self):
        """
        Returns all the parameters needed to (re) build the Peptide using
        build().
        @return: The parameters of the Peptide segment.
                These parameters are retreived via
                L{PeptideSegment.getProps()}, called from
                L{PeptideSegment_EditCommand.editStructure()}.

                Parameters:
                - n, m (chirality)
                - type (i.e. carbon or boron nitride)
                - endings (none, hydrogen, nitrogen)
                - endpoints (endPoint1, endPoint2)
        @rtype: list (n, m), type, endings, (endPoint1, endPoint2)
        """
        return (self.getChirality(),
                self.getType(),
                self.getEndings(),
                self.getEndPoints())

    def computeEndPointsFromChunk(self, chunk, update = True):
        """
        Derives and returns the endpoints and radius of a Peptide chunk.
        @param chunk: a Peptide chunk
        @type  chunk: Chunk
        @return: endPoint1, endPoint2 and radius
        @rtype: Point, Point and float

        @note: computing the endpoints works fine when n=m or m=0. Otherwise,
               the endpoints can be slightly off the central axis, especially
               if the Peptide is short.
        @attention: endPoint1 and endPoint2 may not be the original endpoints,
                    and they may be flipped (opposites of) the original
                    endpoints.
        """
        # Since chunk.axis is not always one of the vectors chunk.evecs
        # (actually chunk.poly_evals_evecs_axis[2]), it's best to just use
        # the axis and center, then recompute a bounding cylinder.
        if not chunk.atoms:
            return None

        axis = chunk.axis
        axis = norm(axis) # needed
        center = chunk._get_center()
        points = chunk.atpos - center # not sure if basepos points are already centered
        # compare following Numeric Python code to findAtomUnderMouse and its caller
        matrix = matrix_putting_axis_at_z(axis)
        v = dot( points, matrix)
        # compute xy distances-squared between axis line and atom centers
        r_xy_2 = v[:,0]**2 + v[:,1]**2

        # to get radius, take maximum -- not sure if max(r_xy_2) would use Numeric code, but this will for sure:
        i = argmax(r_xy_2)
        max_xy_2 = r_xy_2[i]
        radius = sqrt(max_xy_2)
        # to get limits along axis (since we won't assume center is centered between them), use min/max z:
        z = v[:,2]
        min_z = z[argmin(z)]
        max_z = z[argmax(z)]

        # Adjust the endpoints such that the ladder rungs (rings) will fall
        # on the ring segments.
        # TO DO: Fix drawPeptideLadder() to offset the first ring, then I can
        # remove this adjustment. --Mark 2008-04-12
        z_adjust = self.getEndPointZOffset()
        min_z += z_adjust
        max_z -= z_adjust

        endpoint1 = center + min_z * axis
        endpoint2 = center + max_z * axis

        if update:
            #print "Original endpoints:", self.getEndPoints()
            self.setEndPoints(endpoint1, endpoint2)
            #print "New endpoints:", self.getEndPoints()

        return (endpoint1, endpoint2, radius)

    def getEndPointZOffset(self):
        """
        Returns the z offset, determined by the endings.

        @note: Offset distances are not exact, but approximated, which is good
        in this case. Providing exact offset values will result in the last
        ladder ring from being drawn by drawPeptideLadder().
        """
        endings = self.getEndings()
        if endings == "Hydrogen":
            return 0.8
        elif endings == "Nitrogen":
            # Nitrogen endings option removed from PM. 2008-05-02 --Mark
            return 1.1
        else:
            return 0.5

    def _computeRise(self): #@ See Python get/set attr builtin methods.
        """
        Private method.

        Sets the rise. This needs to be called anytime a parameter of self
        changes.

        This is primarlity used for determining the distance between ladder
        rungs when drawing the Peptide ladder, during interactive drawing.

        @attention: The computed rise is a hack. Feel free to fix.
        """

        # Need formula to compute rise.
        # I'm sure this is doable, but I need to research it further to learn
        # how to compute rise from these params. --Mark 2008-03-12
        self.rise = 2.5 # default
        if self.m == 0:
            self.rise = 2.146
        if self.m == 5:
            self.rise = 2.457

    def getRise(self):
        """
        Returns the Peptide U{rise}.

        This is primarlity used for determining the distance between ladder
        rungs when drawing the Peptide ladder, during interactive drawing.

        @return: The rise in Angstroms.
        @rtype: float
        """
        return self.rise

    def getLengthFromNumberOfCells(self, numberOfCells):
        """
        Returns the Peptide length (in Angstroms) given the number of cells.

        @param numberOfCells: The number of cells in the Peptide.
        @type  numberOfCells: int

        @return: The length of the Peptide in Angstroms.
        @rtype: float
        """
        assert numberOfCells >= 0
        return self.rise * (numberOfCells - 1)

    def getLength(self):
        """
        Returns the length of the Peptide.
        """
        endPoint1, endPoint2 = self.getEndPoints()
        return vlen(endPoint1 - endPoint2)

    def populate(self, mol, length):
        """
        Populates a chunk (mol) with the atoms.
        """

        def add(element, x, y, z, atomtype='sp2'):
            atm = Atom(element, V(x, y, z), mol)
            atm.set_atomtype_but_dont_revise_singlets(atomtype)
            return atm

        evenAtomDict = { }
        oddAtomDict = { }
        bondDict = { }
        mfirst = [ ]
        mlast = [ ]

        for n in range(self.n):
            mmin, mmax = self.mlimits(-.5 * length, .5 * length, n)
            mfirst.append(mmin)
            mlast.append(mmax)
            for m in range(mmin, mmax+1):
                x, y, z = self.xyz(n, m)
                if self.type == "Carbon":
                    atm = add("C", x, y, z) # CNT
                else:
                    atm = add("B", x, y, z) # BNNT
                evenAtomDict[(n,m)] = atm
                bondDict[atm] = [(n,m)]
                x, y, z = self.xyz(n + 1.0 / 3, m + 1.0 / 3 )
                if self.type == "Carbon":
                    atm = add("C", x, y, z) # CNT
                else:
                    atm = add("N", x, y, z, 'sp3') # BNNT
                oddAtomDict[(n,m)] = atm
                bondDict[atm] = [(n + 1, m), (n, m + 1)]

        # m goes axially along the Peptide, n spirals around the tube
        # like a barber pole, with slope depending on chirality. If we
        # stopped making bonds now, there'd be a spiral strip of
        # missing bonds between the n=self.n-1 row and the n=0 row.
        # So we need to connect those. We don't know how the m values
        # will line up, so the first time, we need to just hunt for the
        # m offset. But then we can apply that constant m offset to the
        # remaining atoms along the strip.
        n = self.n - 1
        mmid = (mfirst[n] + mlast[n]) / 2
        atm = oddAtomDict[(n, mmid)]
        class FoundMOffset(Exception): pass
        try:
            for m2 in range(mfirst[0], mlast[0] + 1):
                atm2 = evenAtomDict[(0, m2)]
                diff = atm.posn() - atm2.posn()
                if dot(diff, diff) < self.maxlensq:
                    moffset = m2 - mmid
                    # Given the offset, zipping up the rows is easy.
                    for m in range(mfirst[n], mlast[n]+1):
                        atm = oddAtomDict[(n, m)]
                        bondDict[atm].append((0, m + moffset))
                    raise FoundMOffset()
            # If we get to this point, we never found m offset.
            # If this ever happens, it indicates a bug.
            raise Exception, "can't find m offset"
        except FoundMOffset:
            pass

        # Use the bond information to bond the atoms
        for (dict1, dict2) in [(evenAtomDict, oddAtomDict),
                               (oddAtomDict, evenAtomDict)]:
            for n, m in dict1.keys():
                atm = dict1[(n, m)]
                for n2, m2 in bondDict[atm]:
                    try:
                        atm2 = dict2[(n2, m2)]
                        if not atoms_are_bonded(atm, atm2):
                            if self.type == "Carbon":
                                bond_atoms(atm, atm2, V_GRAPHITE) # CNT
                            else:
                                bond_atoms(atm, atm2, V_SINGLE) # BNNT
                    except KeyError:
                        pass

    def build(self, name, assy, position, mol = None, createPrinted = False):
        """
        Build a Peptide from the parameters in the Property Manger dialog.
        """
        endPoint1, endPoint2 = self.getEndPoints()
        cntAxis = endPoint2 - endPoint1
        length = vlen(cntAxis)

        # This can take a few seconds. Inform the user.
        # 100 is a guess. --Mark 051103.
        if not createPrinted:
            # If it's a multi-wall tube, only print the "Creating" message once.
            if length > 100.0:
                env.history.message("This may take a moment...")
        PROFILE = False
        if PROFILE:
            sw = Stopwatch()
            sw.start()
        xyz = self.xyz
        if mol == None:
            mol = Chunk(assy, name)
        atoms = mol.atoms
        mlimits = self.mlimits
        # populate the tube with some extra carbons on the ends
        # so that we can trim them later
        self.populate(mol, length + 4 * self.maxlen)

        # Apply twist and distortions. Bends probably would come
        # after this point because they change the direction for the
        # length. I'm worried about Z distortion because it will work
        # OK for stretching, but with compression it can fail. BTW,
        # "Z distortion" is a misnomer, we're stretching in the Y
        # direction.
        for atm in atoms.values():
            # twist
            x, y, z = atm.posn()
            twistRadians = self.twist * z
            c, s = cos(twistRadians), sin(twistRadians)
            x, y = x * c + y * s, -x * s + y * c
            atm.setposn(V(x, y, z))
        for atm in atoms.values():
            # z distortion
            x, y, z = atm.posn()
            z *= (self.zdist + length) / length
            atm.setposn(V(x, y, z))
        length += self.zdist
        for atm in atoms.values():
            # xy distortion
            x, y, z = atm.posn()
            radius = self.getRadius()
            x *= (radius + 0.5 * self.xydist) / radius
            y *= (radius - 0.5 * self.xydist) / radius
            atm.setposn(V(x, y, z))

        # Judgement call: because we're discarding carbons with funky
        # valences, we will necessarily get slightly more ragged edges
        # on Peptides. This is a parameter we can fiddle with to
        # adjust the length. My thought is that users would prefer a
        # little extra length, because it's fairly easy to trim the
        # ends, but much harder to add new atoms on the end.
        LENGTH_TWEAK = self.getBondLength()

        # trim all the carbons that fall outside our desired length
        # by doing this, we are introducing new singlets
        for atm in atoms.values():
            x, y, z = atm.posn()
            if (z > .5 * (length + LENGTH_TWEAK) or
                z < -.5 * (length + LENGTH_TWEAK)):
                atm.kill()

        # Apply bend. Equations are anomalous for zero bend.
        if abs(self.bend) > pi / 360:
            R = length / self.bend
            for atm in atoms.values():
                x, y, z = atm.posn()
                theta = z / R
                x, z = R - (R - x) * cos(theta), (R - x) * sin(theta)
                atm.setposn(V(x, y, z))

        def trimCarbons():
            """
            Trim all the carbons that only have one carbon neighbor.
            """
            for i in range(2):
                for atm in atoms.values():
                    if not atm.is_singlet() and len(atm.realNeighbors()) == 1:
                        atm.kill()

        trimCarbons()

        # If we're not picky about endings, we don't need to trim carbons
        if self.endings == "Capped":
            # buckyball endcaps
            addEndcap(mol, length, self.getRadius())
        if self.endings == "Hydrogen":
            # hydrogen terminations
            for atm in atoms.values():
                atm.Hydrogenate()
        elif self.endings == "Nitrogen":
            # nitrogen terminations.
            # This option has been removed from the "Endings" combo box
            # in the PM. 2008-05-02 --mark
            dstElem = PeriodicTable.getElement('N')
            atomtype = dstElem.find_atomtype('sp2')
            for atm in atoms.values():
                if len(atm.realNeighbors()) == 2:
                    atm.Transmute(dstElem, force=True, atomtype=atomtype)

        # Translate structure to desired position
        for atm in atoms.values():
            v = atm.posn()
            atm.setposn(v + position)

        if PROFILE:
            t = sw.now()
            env.history.message(greenmsg("%g seconds to build %d atoms" %
                                         (t, len(atoms.values()))))

        if self.numwalls > 1:
            n += int(self.spacing * 3 + 0.5)  # empirical tinkering
            self.build(name, assy,
                       endPoint1, endPoint2,
                       position,
                       mol = mol, createPrinted = True)

        # Orient the Peptide.
        if self.numwalls == 1:
            # This condition ensures that MWCTs get oriented only once.
            self._orient(mol, endPoint1, endPoint2)

        return mol
    pass # End build()

    def _postProcess(self, cntCellList):
        pass

    def _orient(self, cntChunk, pt1, pt2):
        """
        Orients the CNT I{cntChunk} based on two points. I{pt1} is
        the first endpoint (origin) of the Peptide. The vector I{pt1}, I{pt2}
        defines the direction and central axis of the Peptide.

        @param pt1: The starting endpoint (origin) of the Peptide.
        @type  pt1: L{V}

        @param pt2: The second point of a vector defining the direction
                    and central axis of the Peptide.
        @type  pt2: L{V}
        """

        a = V(0.0, 0.0, -1.0)
        # <a> is the unit vector pointing down the center axis of the default
        # DNA structure which is aligned along the Z axis.
        bLine = pt2 - pt1
        bLength = vlen(bLine)
        b = bLine/bLength
        # <b> is the unit vector parallel to the line (i.e. pt1, pt2).
        axis = cross(a, b)
        # <axis> is the axis of rotation.
        theta = angleBetween(a, b)
        # <theta> is the angle (in degress) to rotate about <axis>.
        scalar = bLength * 0.5
        rawOffset = b * scalar

        if 0: # Debugging code.
            print ""
            print "uVector  a = ", a
            print "uVector  b = ", b
            print "cross(a,b) =", axis
            print "theta      =", theta
            print "cntRise   =", self.getCntRise()
            print "# of cells =", self.getNumberOfCells()
            print "scalar     =", scalar
            print "rawOffset  =", rawOffset

        if theta == 0.0 or theta == 180.0:
            axis = V(0, 1, 0)
            # print "Now cross(a,b) =", axis

        rot =  (pi / 180.0) * theta  # Convert to radians
        qrot = Q(axis, rot) # Quat for rotation delta.

        # Move and rotate the Peptide into final orientation.
        cntChunk.move(qrot.rot(cntChunk.center) - cntChunk.center + rawOffset + pt1)
        cntChunk.rot(qrot)

        # Bruce suggested I add this. It works here, but not if its
        # before move() and rot() above. Mark 2008-04-11
        cntChunk.full_inval_and_update()

    pass