summaryrefslogtreecommitdiff
path: root/cad/src/experimental/finite-element/jello.py
blob: f3371821ebe96944429d9e9009c70754b41193f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/python

# Copyright 2006-2007 Nanorex, Inc.  See LICENSE file for details.
from jelloGui import *
import sys
import random
import time
import types
import string
from math import cos, sin, sqrt

PROFILING = True
if PROFILING:
    import hotshot, hotshot.stats

GOT_PYREX = False
try:
    import comp
    GOT_PYREX = True
except ImportError:
    pass

N = 4

# milliseconds
ANIMATION_DELAY = 50

"""I think this is the correct way to
scale stiffness and viscosity.
"""
RADIUS = 15 / N**.5
MASS = 3.0e-6 / N**2
DT = 3.0e-3
STIFFNESS = 1.0e-8 * N
VISCOSITY = 3.0e-9 * N
DTM = (DT ** 2) / MASS
TIME_STEP = 0.2
MAXTIME = 1.0e20

A = 3.0e-8

def addvec(u, v):
    return (u[0] + v[0], u[1] + v[1])
def subvec(u, v):
    return (u[0] - v[0], u[1] - v[1])
def scalevec(u, k):
    return (u[0] * k, u[1] * k)

# Keep the old, current and new versions of u
# in here, along with x.
class Computronium:
    def __init__(self, owner):
        self.owner = owner
        self.u = u = N**2 * [ (0.0, 0.0) ]
        self.u_old = N**2 * [ (0.0, 0.0) ]
        self.u_new = N**2 * [ (0.0, 0.0) ]
        self.x = x = [ ]  # nominal positions
        for i in range(N):
            for j in range(N):
                x.append((1. * j / N,
                          1. * i / N))
        self.forceTerms = [ ]
        # set up the force terms
        for i in range(N):
            for j in range(N - 1):
                self.forceTerms.append((i * N + j,
                                        i * N + j + 1))
        for i in range(N - 1):
            for j in range(N):
                self.forceTerms.append((i * N + j,
                                        (i + 1) * N + j))
        self.simTime = 0.0

    def internalForces(self):
        forces = self.zeroForces()
        u, o = self.u, self.u_old
        for i1, i2 in self.forceTerms:
            D = subvec(u[i2], u[i1]) # relative displacement
            P = subvec(o[i2], o[i1]) # previous relative displacement
            f = addvec(scalevec(D, STIFFNESS),
                       scalevec(subvec(D, P), VISCOSITY / DT))
            forces[i1] = addvec(forces[i1], f)
            forces[i2] = subvec(forces[i2], f)
        self.applyForces(forces)

    def verletMomentum(self):
        self_u, self_uold, self_unew = self.u, self.u_old, self.u_new
        for i in range(N**2):
                self_unew[i] = subvec(scalevec(self_u[i], 2),
                                      self_uold[i])

    def applyForces(self, f):
        self_unew = self.u_new
        index = 0
        for i in range(N**2):
            unew = self_unew[i]
            fi = f[i]
            self_unew[i] = (unew[0] + DTM * fi[0],
                            unew[1] + DTM * fi[1])

    def zeroForces(self):
        return N**2 * [ (0.0, 0.0) ]

    def draw(self, cb, h, w):
        # x is nominal position
        # u is displacement
        p = [ ]
        a = 0.6
        b = .5 * (1 - a)
        for i in range(N**2):
            xvec = self.x[i]
            uvec = self.u[i]
            cb(h * (a * (xvec[0] + uvec[0]) + b),
               w * (a * (xvec[1] + uvec[1]) + b))

    def rotate(self):
        tmp = self.u_old
        self.u_old = self.u
        self.u = self.u_new
        self.u_new = tmp


if GOT_PYREX:
    # Keep the old, current and new versions of u
    # in here, along with x.
    class ComputroniumWithPyrex(Computronium):
        def __init__(self, owner):
            self.owner = owner
            comp._setup(N)

        def internalForces(self):
            comp._internalForces(STIFFNESS, VISCOSITY/DT, DTM)

        def verletMomentum(self):
            comp._verletMomentum()

        def applyForces(self, f):
            comp._applyForces(f, DTM)

        def draw(self, cb, h, w):
            return comp._draw(cb, h, w)

        def rotate(self):
            return comp._rotate()

    Computronium = ComputroniumWithPyrex


class Jello(JelloGui):

    COLOR_CHOICES = (
        QColor(Qt.red), QColor(Qt.yellow),
        QColor(Qt.green), QColor(Qt.blue)
        )

    def __init__(self):
        JelloGui.__init__(self, parent=None, name=None, modal=0, fl=0)
        size = self.frame1.size()
        self.width, self.height = size.width(), size.height()
        self.comp = Computronium(self)

        self.simTime = 0.0

        self.timer = QTimer(self)
        self.connect(self.timer, SIGNAL('timeout()'), self.timeout)
        self.lastTime = time.time()
        self.timer.start(ANIMATION_DELAY)

        self.push = self.comp.zeroForces()
        for i in range(N/2):
            f = A * (.5*N - i) / (.5*N)
            self.push[i] = (-f, f)
            self.push[N*N-1 - i] = (f, -f)
        self.painter = QPainter()

    def pushButton1_clicked(self):
        self.quit()

    def quit(self):
        self.app.quit()

    def timeout(self):
        try:
            self.oneFrame()
        except AssertionError, e:
            import traceback
            traceback.print_exc()
            self.quit()
        if self.simTime > MAXTIME:
            self.app.quit()

    def oneFrame(self):
        # On each step we do verlet, using u_old and u to compute
        # u_new. Then we move each particle from u to u_new. Then
        # we move u to u_old, and u_new to u.
        for i in range(int(TIME_STEP / DT)):
            self.equationsOfMotion()
        self.paintEvent(None)

    def paintEvent(self, e):
        p = self.painter
        w, h = self.width, self.height
        p.begin(self.frame1)
        p.eraseRect(0, 0, w, h)
        p.setPen(QPen(Qt.black))
        p.setBrush(QBrush(Qt.blue))
        def draw(x, y, de=p.drawEllipse, r=RADIUS):
            de(x, y, r, r)
        #self.comp.draw(draw, w, h)
        self.comp.draw(draw, h, h)
        p.end()

    def equationsOfMotion(self):
        comp = self.comp
        t = self.simTime
        self.simTime += DT
        pushTime = 1.0
        comp.verletMomentum()
        comp.internalForces()
        if t < pushTime:
            comp.applyForces(self.push)
        comp.rotate()

def main(n, maxTime=1.0e20):
    global N, RADIUS, MAXTIME
    N = n
    RADIUS = 15 / n**.5
    MAXTIME = maxTime
    app = QApplication(sys.argv)
    cr = Jello()
    cr.app = app
    app.setMainWidget(cr)
    cr.show()
    cr.update()
    app.exec_loop()

if __name__ == "__main__":
    if PROFILING:
        prof = hotshot.Profile("jello.prof")
        def m():
            main(4, maxTime=30.0)
        prof.runcall(m)
        prof.close()
        print 'Profiling run is finished, figuring out stats'
        stats = hotshot.stats.load("jello.prof")
        stats.strip_dirs()
        stats.sort_stats('time', 'calls')
        stats.print_stats(20)
        sys.exit(0)
    try:
        n = string.atoi(sys.argv[1])
    except:
        n = 10
    main(n)