summaryrefslogtreecommitdiff
path: root/cad/src/dna/generators/Dna_Generator.py
blob: 020601ab5f3d14257bc06893160e99eed951ea19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
# Copyright 2004-2008 Nanorex, Inc.  See LICENSE file for details.
"""
DnaDuplex.py -- DNA duplex generator helper classes, based on empirical data.

@author: Mark Sims
@version: $Id$
@copyright: 2004-2008 Nanorex, Inc.  See LICENSE file for details.

History:

Mark 2007-10-18:
- Created. Major rewrite of DnaGenHelper.py.
"""

import foundation.env as env
import os

from math    import sin, cos, pi
from utilities.debug import print_compact_traceback, print_compact_stack
from platform_dependent.PlatformDependent import find_plugin_dir
from files.mmp.files_mmp import readmmp
from geometry.VQT import Q, V, angleBetween, cross, vlen
from commands.Fuse.fusechunksMode import fusechunksBase
from utilities.Log      import orangemsg
from utilities.exception_classes import PluginBug
from utilities.constants import gensym
from utilities.prefs_constants import dnaDefaultStrand1Color_prefs_key
from utilities.prefs_constants import dnaDefaultStrand2Color_prefs_key
from utilities.prefs_constants import dnaDefaultSegmentColor_prefs_key

from dna.model.Dna_Constants import getDuplexBasesPerTurn

##from dna.updater.dna_updater_prefs import pref_dna_updater_convert_to_PAM3plus5

from simulation.sim_commandruns import adjustSinglet
from model.elements import PeriodicTable
from model.Line import Line

from model.chem import Atom_prekill_prep
Element_Ae3 = PeriodicTable.getElement('Ae3')

from dna.model.Dna_Constants import basesDict, dnaDict
from dna.model.dna_model_constants import LADDER_END0

basepath_ok, basepath = find_plugin_dir("DNA")
if not basepath_ok:
    env.history.message(orangemsg("The cad/plugins/DNA directory is missing."))

RIGHT_HANDED = -1
LEFT_HANDED  =  1


from geometry.VQT import V, Q, norm, cross
from geometry.VQT import  vlen
from Numeric import dot

from utilities.debug import print_compact_stack
from model.bonds import bond_at_singlets


class Dna_Generator:
    """
    Dna_Generator base class. It is inherited by B_Dna and Z_Dna subclasses.

    @ivar baseRise: The rise (spacing) between base-pairs along the helical
                    (Z) axis.
    @type baseRise: float

    @ivar handedness: Right-handed (B and A forms) or left-handed (Z form).
    @type handedness: int

    @ivar model: The model representation, where:
                    - "PAM3" = PAM3 reduced model.
                    - "PAM5" = PAM5 reduced model.

    @type model: str

    @ivar numberOfBasePairs: The number of base-pairs in the duplex.
    @type numberOfBasePairs: int

    @note: Atomistic models are not supported.
    @TODO: This classe's attribute 'assy' (self.assy) is determined in self.make
           Its okay because callers only call dna.make() first. If assy object
           is going to remain constant,(hopefully is the case) the caller should
           pass it to the costructor of this class. (not defined as of
           2008-03-17.

    """
    #initialize sel.assy to None. This is determined each time in self.make()
    #using the 'group' argument of that method.
    assy = None
    #The following is a list bases inserted in to the model while generating
    #dna. see self.make()
    baseList = []

    strandA_atom_end1 = None

    def modify(self,
               group,
               resizeEndAxisAtom,
               numberOfBasePairs,
               basesPerTurn,
               duplexRise,
               endPoint1,
               endPoint2 ,
               resizeEndStrandAtom = None
               ):
        """
        Modify the original (double or single stranded) dna with the
        new dna. It creats a raw dna (single or double stranded) OR removes
        bases from the oridinal dna if resizing
        operation is to lengthen or shorten the original dna respctively.
        If it is lengthening operation, then after creating a raw duplex
        it does a basic orientation to align new dna axis with original one
        and then a final orientation to make the end strand and axis atoms
        fusable with the resize end.

        AVAILABLE AS A DEBUG PREFERENCE ONLY AS OF 2008-04-02.
        NEED CLEANUP , LOTS OF DOCUMENTATION AND RENAMING.
        @see: self._fuse_new_dna_with_original_duplex
        @see: self.orient_for_modify()
        @see: B-Dna_PAM3_singleStrand
        TODO:
        - the optional argument resizeEndStrandAtom and assignment of
          self.resizeEndStrand1Atom needs to be cleaned up.
        - refactoring cleanup and more renaming etc planned post FNANO
        - See also comments in B_Dna_PAM3_SingleStrand_Generator
        """
        self.assy               =  group.assy
        assy                    =  group.assy
        #Make sure to clear self.baseList each time self.modify() is called
        self.baseList           =  []

        self.setNumberOfBasePairs(abs(numberOfBasePairs))
        self.setBaseRise(duplexRise)

        #@TODO: See a note in DnaSegment_EditCommand._createStructure(). Should
        #the parentGroup object <group> be assigned properties such as
        #duplexRise, basesPerTurn in this method itself? to be decided
        self.setBasesPerTurn(basesPerTurn)

        #End axis atom at end1. i.e. the first mouse click point from which
        #user started resizing the dna duplex (rubberband line). This is initially
        #set to None. When we start creating the duplex and read in the first
        #mmp file:  MiddleBasePair.mmp, we assign the appropriate atom to this
        #variable. See self._determine_axis_and_strandA_endAtoms_at_end_1()
        self.axis_atom_end1 = None

        #The strand base atom of Strand-A, connected to the self.axis_atom_end1
        #The vector between self.axis_atom_end1 and self.strandA_atom_end1
        #is used to determine the final orientation of the created duplex.
        #that aligns this vector such that it is parallel to the screen.
        #see self._orient_to_position_first_strandA_base_in_axis_plane() for
        #more details.
        self.strandA_atom_end1 = None


        #The end strand base-atom of the original structure (segment) being
        #resized. This and the corresponding axis end atom ot the original
        #structure will be used to orient the new bases we will create and fuse
        #to the original structure.
        self._resizeEndStrand1Atom = resizeEndStrandAtom

        #The axis end base atom of the original structure (at the resize end)
        self._resizeEndAxisAtom = None

        #Do a safety check. If number of base pairs to add or subtract is 0,
        #don't proceed further.
        if numberOfBasePairs == 0:
            print "Duplex not created. The number of base pairs are unchanged"
            return

        #If the number of base pairs supplied by the caller are negative, it
        #means the caller wants to delete those from the original structure
        #(duplex).
        if numberOfBasePairs < 0:
            numberOfBasePairsToRemove = abs(numberOfBasePairs)
            self._remove_bases_from_dna(group,
                                           resizeEndAxisAtom,
                                           numberOfBasePairsToRemove)
            return

        #Create a raw duplex first in Z direction. Using reference mmp basefiles
        #Later we will reorient this duplex and then fuse it with the original
        #duplex (which is being resized)
        self._create_raw_duplex(group,
                                numberOfBasePairs,
                                basesPerTurn,
                                duplexRise )


        # Orient the duplex.

        #Do the basic orientation so that axes of the newly created raw duplex
        #aligns with the original duplex
        self._orient(self.baseList, resizeEndAxisAtom.posn(), endPoint2)

        #Now determine the the strand1-end and axis-endAtoms at the resize
        #end of the *original structure*. We will use this information
        #for final orientation of the new duplex and also for fusing the new
        #duplex with the original one.

        #find out dna ladder to which the end axis atom of the original duplex
        #belongs to
        ladder = resizeEndAxisAtom.molecule.ladder

        #list of end base atoms of the original duplex, at the resize end.
        #This list includes the axis end atom and strand end base atoms
        #(so for a double stranded dna, this will return 3 atoms whereas
        #for a single stranded dna, it will return 2 atoms
        endBaseAtomList  = ladder.get_endBaseAtoms_containing_atom(resizeEndAxisAtom)

        #As of 2008-03-26, we support onlu double stranded dna case
        #So endBaseAtomList should have atleast 3 atoms to proceed further.
        if endBaseAtomList and len(endBaseAtomList) > 2:
            if not resizeEndStrandAtom:
                self._resizeEndStrand1Atom = endBaseAtomList[0]

            self._resizeEndAxisAtom = endBaseAtomList[1]

            self._resizeEndStrand2Atom = None
            if endBaseAtomList[2] not in (None, self._resizeEndStrand1Atom):
                self._resizeEndStrand2Atom = endBaseAtomList[2]

            #Run full dna update so that the newly created duplex represents
            #one in dna data model. Do it before calling self._orient_for_modify
            #The dna updater run will help us use dna model features such as
            #dna ladder, rail. These will be used in final orientation
            #of the new duplex and later fusing it with the original duplex
            #REVIEW: Wheather dna updater should be run without
            #calling assy.update_parts... i.e. only running a local update
            #than the whole on -- Ninad 2008-03-26
            self.assy.update_parts()

            #Do the final orientation of the new duplex. i.e rotate the new
            #duplex around its own axis such that its then fusable with the
            #original duplex.
            self._orient_for_modify(endPoint1, endPoint2)

            #new_ladder is the dna ladder of the newly generated duplex.
            new_ladder = self.axis_atom_end1.molecule.ladder

            #REFACTOR: Reset the dnaBaseNames of the atoms to 'X'
            #replacing the original dnaBaseNames 'a' or 'b'. Do not do it
            #inside self._postProcess because that method is also used by
            #self.make that calls self._create_atomLists_for_regrouping
            #after calling self._postProcess
            for m in new_ladder.all_chunks():
                for atm in m.atoms.values():
                    if atm.element.symbol in ('Ss3') and atm.getDnaBaseName() in ('a','b'):
                        atm.setDnaBaseName('X')

            #Find out the 'end' of the new ladder i.e. whether it is end0 or
            #end1, that contains the first end axis base atom of the new duplex
            #i.e. atom self.axis_atom_end1)
            new_ladder_end = new_ladder.get_ladder_end(self.axis_atom_end1)

            #Find out three the end base atoms list of the new duplex

            endBaseAtomList_generated_duplex = new_ladder.get_endBaseAtoms_containing_atom(self.axis_atom_end1)

            #strandA atom should be first in the list. If it is not,
            #make sure that this list includes end atoms in this order:
            #[strand1, axis, strand2]
            if self.strandA_atom_end1 in endBaseAtomList_generated_duplex and \
               self.strandA_atom_end1 != endBaseAtomList_generated_duplex[0]:
                endBaseAtomList_generated_duplex.reverse()


            #Note that after orienting the duplex the first set of end base atoms
            #in endBaseAtomList_generated_duplex will be killed. Why? because
            #the corrsponding atoms are already present on the original duplex
            #We just used this new set for proper orientation.


            #As we will be deleting the first set of
            #endBaseAtomList_generated_duplex, et a set of base atoms connected
            #to) the end base atoms in endBaseAtomList_generated_duplex. This
            #will become our new end base atoms

            new_endBaseAtomList = []
            for atm in endBaseAtomList_generated_duplex:
                if atm is not None:
                    rail = atm.molecule.get_ladder_rail()
                    baseindex = rail.baseatoms.index(atm)

                    next_atm = None
                    if len(rail.baseatoms) == 1:
                        for bond_direction in (1, -1):
                            next_atm = atm.next_atom_in_bond_direction(bond_direction)
                    else:
                        if new_ladder_end == 0:
                            #@@@BUG 2008-03-21. Handle special case when len(rail.baseatoms == 1)
                            next_atm = rail.baseatoms[1]
                        elif new_ladder_end == 1:
                            next_atm = rail.baseatoms[-2]

                    assert next_atm is not None
                    new_endBaseAtomList.append(next_atm)

            DEBUG_FUSE = True

            if DEBUG_FUSE:
                #@@REVIEW This doesn't invalidate the ladder. We just delete
                #all the atoms and then the dna updater runs.
                for atm in endBaseAtomList_generated_duplex:
                    if atm is not None:
                        atm.kill()

                #Run dna updater again
                self.assy.update_parts()

                self.axis_atom_end1 = None




                self._fuse_new_dna_with_original_duplex(new_endBaseAtomList,
                                                        endBaseAtomList)



        self.assy.update_parts()


    def _replace_overlapping_axisAtoms_of_new_dna(self, new_endBaseAtomList):
        """
        @see: B_Dna_PAM3_SingleStrand_Generator._replace_overlapping_axisAtoms_of_new_dna()
        """
        pass

    def _bond_bare_strandAtoms_with_orig_axisAtoms(self,
                                                   new_endBaseAtomList):
        pass




    def _fuse_new_dna_with_original_duplex(self,
                                           new_endBaseAtomList,
                                           endBaseAtomList):
        """
        Fuse the new dna strand (and axxis) end atom to the original dna

        TODO: method needs to be renamed The original dna may be a single stranded
        dna or a duplex. Until 2008-04-02 ,it was possible to create or modify
        only a duplex and thats why the name 'duplex'

        @see: self.modify()
        @see: B_Dna_PAM3_SingleStrand_Generator._fuse_new_dna_with_original_duplex()
        """


        #FUSE new duplex with the original duplex

        #strand1 chunks
        chunkList1 = \
                   [ new_endBaseAtomList[0].molecule,
                     self._resizeEndStrand1Atom.molecule]

        #Axis chunks
        chunkList2 = \
                   [ new_endBaseAtomList[1].molecule,
                     self._resizeEndAxisAtom.molecule]

        if endBaseAtomList[2]:
            #strand2 chunks
            chunkList3 = \
                       [new_endBaseAtomList[2].molecule,
                        endBaseAtomList[2].molecule]
        else:
            chunkList3 = []

        #Set the chunk color and chunk display of the new duplex such that
        #it matches with the original duplex chunk color and display
        #Actually, fusing the chunks should have taken care of this, but
        #for some unknown reasons, its not happening. May be because
        #chunks are not 'merged'?  ... Setting display and color for new
        #duplex chunk is explicitely done below. Fixes bug 2711
        for chunkPair in (chunkList1, chunkList2, chunkList3):
            if chunkPair:
                display = chunkPair[1].display
                color   = chunkPair[1].color
                chunkPair[0].setDisplayStyle(display)
                if color:
                    chunkPair[0].setcolor(color)


        #Original implementation which relied on  on fuse chunks for finding
        #bondable atom pairs within a tolerance limit. This is no longer
        #used and can be removed after more testing of explicit bonding
        #done in self._bond_atoms_in_atomPairs() (called below)
        #-- Ninad 2008-04-14
        ##self.fuseBasePairChunks(chunkList1)
        ##self.fuseBasePairChunks(chunkList2, fuseTolerance = 1.5)
        ##if chunkList3:
            ##self.fuseBasePairChunks(chunkList3)

        strandPairsToBond =   [ (new_endBaseAtomList[0],
                                 self._resizeEndStrand1Atom)]

        if endBaseAtomList[2]:
            strandPairsToBond.append((new_endBaseAtomList[2],
                                      endBaseAtomList[2]))

        axisAtomPairsToBond = [  (new_endBaseAtomList[1],
                                  self._resizeEndAxisAtom)]


        self._bond_strandAtom_pairs(strandPairsToBond)

        #Create explicit bonds between the end base atoms
        #(like done in self._bond_bare_strandAtoms_with_orig_axisAtoms())
        #instead of relying on fuse chunks (which relies on finding
        #bondable atom pairs within a tolerance limit. This fixes bug 2798
        #-- Ninad 2008-04-14
        self._bond_atoms_in_atomPairs(axisAtomPairsToBond)


        #Now replace the overlapping axis atoms with the corresponding
        #original axis atoms, make bonds between strand and axis atoms as needed
        #see this method docstrings for details
        self._replace_overlapping_axisAtoms_of_new_dna(new_endBaseAtomList)

    def _bond_strandAtom_pairs(self, strandPairsToBond):
        bondPoint1 = None
        bondPoint2 = None
        bondPoint3 = None
        bondPoint4 = None

        if len(strandPairsToBond) == 2:
            firstStrandAtomPair = strandPairsToBond[0]
            secondStrandAtomPair = strandPairsToBond[1]
            bondablePairs_1 = self._getBondablePairsForStrandAtoms(firstStrandAtomPair)
            bondablePairs_2 = self._getBondablePairsForStrandAtoms(secondStrandAtomPair)

            if bondablePairs_1[0] is not None and bondablePairs_2[1] is not None:
                bondPoint1, bondPoint2 = bondablePairs_1[0]
                bondPoint3, bondPoint4 = bondablePairs_2[1]
            elif bondablePairs_1[1] is not None and bondablePairs_2[0] is not None:
                bondPoint1, bondPoint2 = bondablePairs_1[1]
                bondPoint3, bondPoint4 = bondablePairs_2[0]

        elif len(strandPairsToBond) == 1:
            firstStrandAtomPair = strandPairsToBond[0]
            bondablePairs_1 = self._getBondablePairsForStrandAtoms(firstStrandAtomPair)
            if bondablePairs_1[0] is not None:
                bondPoint1, bondPoint2 = bondablePairs_1[0]
            elif bondablePairs_1[1] is not None:
                bondPoint1, bondPoint2 = bondablePairs_1[1]

            #Do the actual bonding
        if bondPoint1 and bondPoint2:
            bond_at_singlets(bondPoint1, bondPoint2, move = False)

        if bondPoint3 and bondPoint4:
            bond_at_singlets(bondPoint3, bondPoint4, move = False)



    def _getBondablePairsForStrandAtoms(self, strandAtomPair):
        bondablePairs = []

        atm1 = strandAtomPair[0]
        atm2 = strandAtomPair[1]

        assert atm1.element.role == 'strand' and atm2.element.role == 'strand'
        #Initialize all possible bond points to None

        five_prime_bondPoint_atm1  = None
        three_prime_bondPoint_atm1 = None
        five_prime_bondPoint_atm2  = None
        three_prime_bondPoint_atm2 = None
        #Initialize the final bondPoints we will use to create bonds
        bondPoint1 = None
        bondPoint2 = None

        #Find 5' and 3' bondpoints of atm1 (BTW, as of 2008-04-11, atm1 is
        #the new dna strandend atom See self._fuse_new_dna_with_original_duplex
        #But it doesn't matter here.
        for s1 in atm1.singNeighbors():
            bnd = s1.bonds[0]
            if bnd.isFivePrimeOpenBond():
                five_prime_bondPoint_atm1 = s1
            if bnd.isThreePrimeOpenBond():
                three_prime_bondPoint_atm1 = s1

        #Find 5' and 3' bondpoints of atm2
        for s2 in atm2.singNeighbors():
            bnd = s2.bonds[0]
            if bnd.isFivePrimeOpenBond():
                five_prime_bondPoint_atm2 = s2
            if bnd.isThreePrimeOpenBond():
                three_prime_bondPoint_atm2 = s2
        #Determine bondpoint1 and bondPoint2 (the ones we will bond). See method
        #docstring for details.
        if five_prime_bondPoint_atm1 and three_prime_bondPoint_atm2:
            bondablePairs.append((five_prime_bondPoint_atm1,
                                  three_prime_bondPoint_atm2 ))
        else:
            bondablePairs.append(None)


        #Following will overwrite bondpoint1 and bondPoint2, if the condition is
        #True. Doesn't matter. See method docstring to know why.
        if three_prime_bondPoint_atm1 and five_prime_bondPoint_atm2:
            bondablePairs.append((three_prime_bondPoint_atm1,
                                  five_prime_bondPoint_atm2))
        else:
            bondablePairs.append(None)

        return bondablePairs


    def _bond_atoms_in_atomPairs(self, atomPairs):
        """
        Create bonds between the atoms in given atom pairs. It creats explicit
        bonds between the two atoms at the specified bondpoints (i.e. it doesn't
        use fuseChunkBase to find the bondable pairs within certain tolerance)

        @see: self._fuse_new_dna_with_original_duplex()
        @see: _bond_two_strandAtoms() called here

        @TODO: Refactor self._bond_bare_strandAtoms_with_orig_axisAtoms
           self._bond_axisNeighbors_with_orig_axisAtoms to use this method
        """
        for atm1, atm2 in atomPairs:
            if atm1.element.role == 'strand' and atm2.element.role == 'strand':
                self._bond_two_strandAtoms(atm1, atm2)
            else:
                #@REVIEW -- As of 2008-04-14, the atomPairs send to this method
                #are of the same type i.e. (axis, axis) or (strand, strand)
                #but when we do refactoring of methods like
                #self._bond_bare_strandAtoms_with_orig_axisAtoms, to use this
                #method, may be we must make sure that we are not bonding
                #an axis atom with a 5' or 3' bondpoint of the strand atom.
                #Skip the pair if its one and the same atom.
                #-- Ninad 2008-04-14
                if atm1 is not atm2:
                    for s1 in atm1.singNeighbors():
                        if atm2.singNeighbors():
                            s2 = atm2.singNeighbors()[0]
                            bond_at_singlets(s1, s2, move = False)
                            break

                #reposition bond points (if any) on the new dna's end axis atom
                #that is just bonded with the resize end axis atom of the original
                #duplex .
                #This fixes bug BUG 2928
                # '1st Ax atom missing bondpoint when lengthening DnaStrand'
                #Note that this bug was observed only in Ax-Ax bonding.
                #Ss bonding is not affected. And, if we also reposition the
                #bondpoints for Ss atoms, the bondpoints may not be oriented
                #in desired way (i.e. reposition_baggage may not handle strand
                #bondpoint orientation well)/. For these reasons, it is only
                #implemented for Ax-Ax bonding. --Ninad 2008-08-22
                atm1.reposition_baggage()
                atm2.reposition_baggage()

    def _bond_two_strandAtoms(self, atm1, atm2):
        """
        Bonds the given strand atoms (sugar atoms) together. To bond these atoms,
        it always makes sure that a 3' bondpoint on one atom is bonded to 5'
        bondpoint on the other atom.
        Example:
        User lengthens a strand by a single strand baseatom. The final task done
        in self.modify() is to fuse the created strand base atom with the
        strand end atom of the original dna. But this new atom has two bondpoints
        -- one is a 3' bondpoint and other is 5' bondpoint. So we must find out
        what bondpoint is available on the original dna. If its a 5' bondpoint,
        we will use that and the 3'bondpoint available on the new strand
        baseatom. But what if even the strand endatom of the original dna is a
        single atom not bonded to any strand neighbors? ..thus, even that
        atom will have both 3' and 5' bondpoints. In that case it doesn't matter
        what pair (5' orig and 3' new) or (3' orig and 5' new) we bond, as long
        as we honor bonding within the atoms of any atom pair mentioned above.

        @param atm1: The first sugar atom of PAM3 (i.e. the strand atom) to be
                     bonded with atm2.
        @param atm2: Second sugar atom
        @see: self._fuse_new_dna_with_original_duplex()
        @see: self._bond_atoms_in_atomPairs() which calls this
        """
        #Moved from B_Dna_PAM3_SingleStrand_Generator to here, to fix bugs like
        #2711 in segment resizing-- Ninad 2008-04-14
        assert atm1.element.role == 'strand' and atm2.element.role == 'strand'
        #Initialize all possible bond points to None

        five_prime_bondPoint_atm1  = None
        three_prime_bondPoint_atm1 = None
        five_prime_bondPoint_atm2  = None
        three_prime_bondPoint_atm2 = None
        #Initialize the final bondPoints we will use to create bonds
        bondPoint1 = None
        bondPoint2 = None

        #Find 5' and 3' bondpoints of atm1 (BTW, as of 2008-04-11, atm1 is
        #the new dna strandend atom See self._fuse_new_dna_with_original_duplex
        #But it doesn't matter here.
        for s1 in atm1.singNeighbors():
            bnd = s1.bonds[0]
            if bnd.isFivePrimeOpenBond():
                five_prime_bondPoint_atm1 = s1
            if bnd.isThreePrimeOpenBond():
                three_prime_bondPoint_atm1 = s1

        #Find 5' and 3' bondpoints of atm2
        for s2 in atm2.singNeighbors():
            bnd = s2.bonds[0]
            if bnd.isFivePrimeOpenBond():
                five_prime_bondPoint_atm2 = s2
            if bnd.isThreePrimeOpenBond():
                three_prime_bondPoint_atm2 = s2
        #Determine bondpoint1 and bondPoint2 (the ones we will bond). See method
        #docstring for details.
        if five_prime_bondPoint_atm1 and three_prime_bondPoint_atm2:
            bondPoint1 = five_prime_bondPoint_atm1
            bondPoint2 = three_prime_bondPoint_atm2
        #Following will overwrite bondpoint1 and bondPoint2, if the condition is
        #True. Doesn't matter. See method docstring to know why.
        if three_prime_bondPoint_atm1 and five_prime_bondPoint_atm2:
            bondPoint1 = three_prime_bondPoint_atm1
            bondPoint2 = five_prime_bondPoint_atm2

        #Do the actual bonding
        if bondPoint1 and bondPoint2:
            bond_at_singlets(bondPoint1, bondPoint2, move = False)
        else:
            print_compact_stack("Bug: unable to bond atoms %s and %s: " %
                                (atm1, atm2) )

    def _determine_axisAtomsToRemove(self,
                                     resizeEndAxisAtom,
                                     baseatoms,
                                     numberOfBasePairsToRemove):
        """
        Determine the axis atoms to be removed from the Dna while resizing
        a DnaStrand or segment. Returns a list

        @param resizeEndAxisAtom: The axis atom at the resize end.
        @type resizeEndAxisAtom: B{Atom}

        @param baseatoms: A list of all axis atoms of the dna strand or segment
                          to be resized

        @type baseatoms: list

        @param numberOfBasePairsToRemove: Number of bases (if resizing strands)
                               or number of base-pairs (it resizing DnaSegments)
                               to be removed during the resize operation.
                               this number is used to determine the axis atoms
                               to remove (including the resizeEndAxisAtom)
        @type numberOfBasePairsToRemove: int

        @return : axis atoms to be removed during resize operation. The caller
                  then uses this list to determine which strand base atoms need
                  to be deleted.
        @rtype: list

        @see: self._remove_bases_from_dna() which calls this.
        """
        atm = resizeEndAxisAtom
        resizeEnd_strand_neighbors = self._strand_neighbors_to_delete(atm)
        strand_neighbors_to_delete = resizeEnd_strand_neighbors
        axisAtomsToRemove = []

        try:
            resizeEndAtom_baseindex = baseatoms.index(resizeEndAxisAtom)
            # note: this is an index in a list of baseatoms, which is not
            # necessary equal to the atom's "baseindex" (since that can be
            # negative for some atoms), but should be in the same order.
            # [bruce 080807 comment]
        except:
            print_compact_traceback("bug resize end axis atom not in " \
                                    "segments baseatoms!: ")
            return

        if resizeEndAtom_baseindex == 0:
            axisAtomsToRemove = baseatoms[:numberOfBasePairsToRemove]
        elif resizeEndAtom_baseindex == len(baseatoms) - 1:
            axisAtomsToRemove = baseatoms[-numberOfBasePairsToRemove:]
        else:
            #The axis atom is not at either 'ends' of the DnaSegment. So,
            #check if is a single strand that is being resized. In that case,
            #the axis atom at the resize end may not be at the extreme ends.
            #see bug 2939 for an example. The following code fixes that bug.
            if len(resizeEnd_strand_neighbors) == 1:
                #Axis neighbors of the resize end axis atom (len 0 or 1 or 2) --
                next_axis_atoms = resizeEndAxisAtom.axis_neighbors()
                #strand atom at the resize end
                resizeEndStrandAtom = resizeEnd_strand_neighbors[0]
                #Find out the next strand base atom bonded to the the resize
                #end strand atom. This will give us the connected axis neighbor
                #In the following figure, S1 is the resize end strand atom,
                #A1 is resize end axis atom. S2 is next_strand_atom  and A2
                #is next_axis_atom.
                #
                # ---o----o----o----S2----S1----> (strand being resized)
                # ---x----x----x----A2----A1----x----x----x----x (axis)
                #<---o----o----o----o ---- o----o----o----o----o (second strand)

                #Note that resize end strand atom will have only one strand base
                #atom connected to it. This code will never be reached if it has
                #more than 1 strand atoms connected!
                next_strand_atom = None
                #The axis neighbor of next_strand_atom
                next_axis_atom = None
                for bond_direction in (1, -1):
                    next_strand_atom = resizeEndStrandAtom.strand_next_baseatom(bond_direction)
                    if next_strand_atom:
                        next_axis_atom = next_strand_atom.axis_neighbor()
                        break

                if not next_axis_atom:
                    print_compact_stack("bug: end axis atom not at "\
                                        "either end of list and unable to" \
                                        "determine axisAtomsToRemove")
                    return axisAtomsToRemove

                if not next_axis_atom in resizeEndAxisAtom.axis_neighbors():
                    print_compact_stack(
                        "bug:unable to determine axisAtomsToRemove"\
                        "%s not an axis neighbor of %s"%(next_axis_atom,
                                                         resizeEndAxisAtom))

                next_axis_atom_baseindex = baseatoms.index(next_axis_atom)
                if resizeEndAtom_baseindex < next_axis_atom_baseindex:
                    startindex = resizeEndAtom_baseindex
                    endindex = startindex + numberOfBasePairsToRemove
                    axisAtomsToRemove = baseatoms[startindex:endindex]
                else:
                    startindex = resizeEndAtom_baseindex - (numberOfBasePairsToRemove - 1)
                    endindex = resizeEndAtom_baseindex + 1
                    axisAtomsToRemove = baseatoms[startindex:endindex]
            else:
                #Its not a strand resize operation and still the axis atom at resize
                #end is not at an extreme end. This indicates a bug.
                print_compact_stack("bug: end axis atom not at either end of list: ") #bruce 080807 added this

        assert len(axisAtomsToRemove) == min(numberOfBasePairsToRemove, len(baseatoms)) #bruce 080807 added this

        return axisAtomsToRemove


    def _remove_bases_from_dna(self,
                                  group,
                                  resizeEndAxisAtom,
                                  numberOfBasePairsToRemove):
        """
        Remove the specified number of base pairs from the duplex.

        @param group: The DnaGroup which contains this duplex
        @type group: DnaGroup

        @param resizeEndAxisAtom: The end axis base atom at a DnaLadder end of
        the duplex. This end base atom is used as a starting base atom while
        determining which base atoms to remove.
        @type resizeEndAxisAtom: Atom

        @param numberOfBasePairsToRemove: The total number of base pairs to
        remove from the duplex.
        @type numberOfBasePairsToRemove: int
        @see: self._determine_axisAtomsToRemove()
        """

        #Use whole_chain.get_all_baseatoms_in_order() and then remove the
        #requested number of bases from the resize end given by
        #numberOfBasePairsToRemove (including the resize end axis atom).
        #this fixes bug 2924 -- Ninad 2008-08-07

        segment = resizeEndAxisAtom.getDnaSegment()
        if not segment:
            print_compact_stack("bug: can't resize dna segment: ")
            return

        whole_chain = segment.get_wholechain()
        if whole_chain is None:
            print_compact_stack("bug: can't resize dna segment: ") #bruce 080807 added this
            return

        baseatoms = whole_chain.get_all_baseatoms_in_order()

        if len(baseatoms) < 2:
            print_compact_stack("WARNING: resizing a dna segment with < 2 "\
                                "base atoms is not supported: ")
            return

        atomsScheduledForDeletionDict = {}

        axisAtomsToRemove = self._determine_axisAtomsToRemove(
            resizeEndAxisAtom,
            baseatoms,
            numberOfBasePairsToRemove)


        for atm in axisAtomsToRemove:
            strand_neighbors_to_delete = self._strand_neighbors_to_delete(atm)

            for a in strand_neighbors_to_delete:
                if not atomsScheduledForDeletionDict.has_key(id(a)):
                    atomsScheduledForDeletionDict[id(a)] = a

            #Add the axis atom to the atoms scheduled for deletion only when
            #both the strand neighbors of this axis atom are scheduled for
            #deletion. But this is not true if its a sticky end i.e. the
            #axis atom has only one strand atom. To fix that problem
            #we also check (second condition) if all the strand neighbors
            #of an axis atom are scheduled for deletion... if so, ot also
            #adds that axis atom to the atom scheduled for deletion)
            #Axis atoms are explicitely deleted to fix part of memory
            #leak bug 2880 (and thus no longer depends on dna updater
            #to delete bare axis atoms .. which is good because there is a
            #debug pref that permits bare axis atoms for some other
            #uses -- Ninad 2008-05-15
            if len(strand_neighbors_to_delete) == 2 or \
               len(atm.strand_neighbors()) == len(strand_neighbors_to_delete):
                if not atomsScheduledForDeletionDict.has_key(id(atm)):
                    atomsScheduledForDeletionDict[id(atm)] = atm
                else:
                    print "unexpected: atom %r already in atomsScheduledForDeletionDict" % atm #bruce 080807 added this

            # REVIEW: if any atom can be added twice to that dict above without
            # this being a bug, then the has_key tests can simply be removed
            # (as an optimization). If adding it twice is a bug, then we should
            # print a warning when it happens, as I added in one case above
            # (but would be good in both cases). [bruce 080807 comment]

        #Now kill all the atoms.

        # [TODO: the following ought to be encapsulated in a helper method to
        #  efficiently kill any set of atoms; similar code may exist in
        #  several places. [bruce 080807 comment]]
        #
        #Before killing them, set a flag on each atom so that
        #Atom.kill knows not to create new bondpoints on its neighbors if they
        #will also be killed right now (it notices this by noticing that
        #a._f_will_kill has the same value on both atoms). Fixes a memory leak
        #(at least in some code where it's done). See bug 2880 for details.
        val = Atom_prekill_prep()
        for a in atomsScheduledForDeletionDict.itervalues():
            a._f_will_kill = val # inlined a._f_prekill(val), for speed

        for atm in atomsScheduledForDeletionDict.values():
            if atm: # this test is probably not needed [bruce 080807 comment]
                try:
                    atm.kill()
                except:
                    print_compact_traceback("bug in deleting atom while "\
                                            "resizing the segment: ")

        atomsScheduledForDeletionDict.clear()

        #IMPORTANT TO RUN DNA UPDATER after deleting these atoms! Otherwise we
        #will have to wait for next event to finish before the dna updater runs.
        #There are things like resize handle positions that depend on the
        #axis end atoms of a dna segment. Those update methods may be called
        #before dna updater is run again, thereby spitting out errors.
        self.assy.update_parts()

    def _strand_neighbors_to_delete(self, axisAtom):
        """
        Overridden in subclasses
        Returns a list of strand neighbors of the given axis atom to delete
        from the original dna being resized (and resizing will result in
        removing bases/ basepairs from the dna). This method determines
        whether both the strand neigbors of this axisAtom need to be deleted
        or is it just a single strand neighbor on a specific Dna ladder
        needs to be deleted. The latter is the case while resizing a
        single strand of a Dna.
        @see: self._remove_bases_from_dna() where this is called.
        @see: B_Dna_PAM3_Generator._strand_neighbors_to_delete()
        @see: B_Dna_PAM3_SingleStrand_Generator._strand_neighbors_to_delete()
        """
        return ()


    def make(self,
             group,
             numberOfBasePairs,
             basesPerTurn,
             duplexRise,
             endPoint1,
             endPoint2,
             position = V(0, 0, 0)):
        """
        Makes a DNA duplex with the I{numberOfBase} base-pairs.
        The duplex is oriented with its central axis coincident to the
        line (endPoint1, endPoint1), with its origin at endPoint1.

        @param assy: The assembly (part).
        @type  assy: L{assembly}

        @param group: The group node object containing the DNA. The caller
                      is responsible for creating an empty group and passing
                      it here. When finished, this group will contain the DNA
                      model.
        @type  group: L{Group}

        @param numberOfBasePairs: The number of base-pairs in the duplex.
        @type  numberOfBasePairs: int

        @param basesPerTurn: The number of bases per helical turn.
        @type  basesPerTurn: float

        @param duplexRise: The rise; the distance between adjacent bases.
        @type  duplexRise: float

        @param endPoint1: The origin of the duplex.
        @param endPoint1: L{V}

        @param endPoint2: The second point that defines central axis of
                          the duplex.
        @param endPoint2: L{V}

        @param position: The position in 3d model space at which to create
                         the DNA strand. This should always be 0, 0, 0.
        @type position:  position

        @see: self.fuseBasePairChunks()
        @see:self._insertBasesFromMMP()
        @see: self._regroup()
        @see: self._postProcess()
        @see: self._orient()
        @see: self._rotateTranslateXYZ()
        """

        self.assy               =  group.assy
        assy                    =  group.assy
        #Make sure to clear self.baseList each time self.make() is called
        self.baseList           =  []

        self.setNumberOfBasePairs(numberOfBasePairs)
        self.setBaseRise(duplexRise)
        #See a note in DnaSegment_EditCommand._createStructure(). Should
        #the parentGroup object <group> be assigned properties such as
        #duplexRise, basesPerTurn in this method itself? to be decided
        #once dna data model is fully functional (and when this method is
        #revised) -- Ninad 2008-03-05
        self.setBasesPerTurn(basesPerTurn)

        #End axis atom at end1. i.e. the first mouse click point from which
        #user started drawing the dna duplex (rubberband line). This is initially
        #set to None. When we start creating the duplex and read in the first
        #mmp file:  MiddleBasePair.mmp, we assign the appropriate atom to this
        #variable. See self._determine_axis_and_strandA_endAtoms_at_end_1()
        self.axis_atom_end1 = None

        #The strand base atom of Strand-A, connected to the self.axis_atom_end1
        #The vector between self.axis_atom_end1 and self.strandA_atom_end1
        #is used to determine the final orientation of the created duplex.
        #that aligns this vector such that it is parallel to the screen.
        #see self._orient_to_position_first_strandA_base_in_axis_plane() for more details.
        self.strandA_atom_end1 = None

        #Create a duplex by inserting basepairs from the mmp file.
        self._create_raw_duplex(group,
                                numberOfBasePairs,
                                basesPerTurn,
                                duplexRise,
                                position = position)


        # Orient the duplex.
        self._orient(self.baseList, endPoint1, endPoint2)

        #do further adjustments so that first base of strandA always lies
        #in the screen parallel plane, which is passing through the
        #axis.
        self._orient_to_position_first_strandA_base_in_axis_plane(self.baseList,
                                                                  endPoint1,
                                                                  endPoint2)

        # Regroup subgroup into strand and chunk groups
        self._regroup(group)
        return

    #START -- Helper methods used in generating dna (see self.make())===========

    def _create_raw_duplex(self,
                           group,
                           numberOfBasePairs,
                           basesPerTurn,
                           duplexRise,
                           position = V(0, 0, 0)):
        """
        Create a raw dna duplex in the specified group. This will be created
        along the Z axis. Later it will undergo more operations such as
        orientation change anc chunk regrouping.

        @return: A group object containing the 'raw dna duplex'
        @see: self.make()

        """
        # Make the duplex.
        subgroup = group
        subgroup.open = False


        # Calculate the twist per base in radians.
        twistPerBase = (self.handedness * 2 * pi) / basesPerTurn
        theta = 0.0
        z     = 0.5 * duplexRise * (numberOfBasePairs - 1)

        # Create duplex.
        for i in range(numberOfBasePairs):
            basefile, zoffset, thetaOffset = self._strandAinfo(i)

            def tfm(v, theta = theta + thetaOffset, z1 = z + zoffset):
                return self._rotateTranslateXYZ(v, theta, z1)

            #Note that self.baseList gets updated in the the following method
            self._insertBaseFromMmp(basefile,
                                    subgroup,
                                    tfm,
                                    self.baseList,
                                    position = position)

            if i == 0:
                #The chunk self.baseList[0] should always contain the information
                #about the strand end and axis end atoms at end1 we are
                #interested in. This chunk is obtained by reading in the
                #first mmp file (at i =0) .

                #Note that we could have determined this after the for loop
                #as well. But now harm in doing it here. This is also safe
                #from any accidental modifications to the chunk after the for
                #loop. Note that 'self.baseList' gets populated in
                #sub 'def insertBasesFromMMP'.... Related TODO: The method
                #'def make' itself needs reafcatoring so that all submethods are
                #direct methods of class Dna.
                #@see self._determine_axis_and_strandA_endAtoms_at_end_1() for
                #more comments
                firstChunkInBaseList = self.baseList[0]
                #@ATTENTION: The strandA endatom at end1 is later modified
                #in self.orient_for_modify (if its a resize operation)
                #Its done to fix bug 2888 (for v1.1.0).
                #Perhaps computing this strand atom  always be done at a later
                #stage. But I am unsure if this will cause any bugs. So not
                #changing the original implementation .
                #See B_Dna_PAM3_Generator.orient_for_modify() for details.
                #This NEEDS CLEANUP -- Ninad 2008-06-02
                self._determine_axis_and_strandA_endAtoms_at_end_1(self.baseList[0])

            theta -= twistPerBase
            z     -= duplexRise

        # Fuse the base-pair chunks together into continuous strands.
        self.fuseBasePairChunks(self.baseList)

        try:
            self._postProcess(self.baseList)
        except:
            if env.debug():
                print_compact_traceback(
                    "debug: exception in %r._postProcess(self.baseList = %r) " \
                    "(reraising): " % (self, self.baseList,))
            raise



    def _insertBaseFromMmp(self,
                           filename,
                           subgroup,
                           tfm,
                           baseList,
                           position = V(0, 0, 0) ):
        """
        Insert the atoms for a nucleic acid base from an MMP file into
        a single chunk.
         - If atomistic, the atoms for each base are in a separate chunk.
         - If PAM5, the pseudo atoms for each base-pair are together in a
           chunk.

        @param filename: The mmp filename containing the base
                         (or base-pair).
        @type  filename: str

        @param subgroup: The part group to add the atoms to.
        @type  subgroup: L{Group}

        @param tfm: Transform applied to all new base atoms.
        @type  tfm: V

        @param baseList: A list that maintains the bases inserted into the
                         model Example self.baseList

        @param position: The origin in space of the DNA duplex, where the
                         3' end of strand A is 0, 0, 0.
        @type  position: L{V}

        """

        #@TODO: The argument baselist ACTUALLY MODIFIES self.baseList. Should we
        #directly use self.baseList instead? Only comments are added for
        #now. See also self.make()(the caller)
        try:
            ok, grouplist = readmmp(self.assy, filename, isInsert = True)
        except IOError:
            raise PluginBug("Cannot read file: " + filename)
        if not grouplist:
            raise PluginBug("No atoms in DNA base? " + filename)

        viewdata, mainpart, shelf = grouplist

        for member in mainpart.members:
            # 'member' is a chunk containing a full set of
            # base-pair pseudo atoms.

            for atm in member.atoms.values():
                atm._posn = tfm(atm._posn) + position

            member.name = "BasePairChunk"
            subgroup.addchild(member)

            #Append the 'member' to the baseList. Note that this actually
            #modifies self.baseList. Should self.baseList be directly used here?
            baseList.append(member)

        # Clean up.
        del viewdata
        shelf.kill()

    def _rotateTranslateXYZ(self, inXYZ, theta, z):
        """
        Returns the new XYZ coordinate rotated by I{theta} and
        translated by I{z}.

        @param inXYZ: The original XYZ coordinate.
        @type  inXYZ: V

        @param theta: The base twist angle.
        @type  theta: float

        @param z: The base rise.
        @type  z: float

        @return: The new XYZ coordinate.
        @rtype:  V
        """
        c, s = cos(theta), sin(theta)
        x = c * inXYZ[0] + s * inXYZ[1]
        y = -s * inXYZ[0] + c * inXYZ[1]
        return V(x, y, inXYZ[2] + z)


    def fuseBasePairChunks(self, baseList, fuseTolerance = 1.5):
        """
        Fuse the base-pair chunks together into continuous strands.

        @param baseList: The list of bases inserted in the model. See self.make
                          (the caller) for an example.
        @see: self.make()
        @NOTE: self.assy is determined in self.make() so this method
               must be called from that method only.
        """

        if self.assy is None:
            print_compact_stack("bug: self.assy not defined. Unable to fuse bases: ")
            return

        # Fuse the base-pair chunks together into continuous strands.
        fcb = fusechunksBase()
        fcb.tol = fuseTolerance

        for i in range(len(baseList) - 1):
            #Note that this is actually self.baseList that we are using.
            #Example see self.make() which calls this method.
            tol_string = fcb.find_bondable_pairs([baseList[i]],
                                                 [baseList[i + 1]],
                                                 ignore_chunk_picked_state = True
                                                 )
            fcb.make_bonds(self.assy)

    def _postProcess(self, baseList):
        return

    #END Helper methods used in dna generation (see self.make())================

    def _baseFileName(self, basename):
        """
        Returns the full pathname to the mmp file containing the atoms
        of a nucleic acid base (or base-pair).

        Example: If I{basename} is "MidBasePair" and this is a PAM5 model of
        B-DNA, this returns:

          - "C:$HOME\cad\plugins\DNA\B-DNA\PAM5-bases\MidBasePair.mmp"

        @param basename: The basename of the mmp file without the extention
                         (i.e. "adenine", "MidBasePair", etc.).
        @type  basename: str

        @return: The full pathname to the mmp file.
        @rtype:  str
        """
        form    = self.form             # A-DNA, B-DNA or Z-DNA
        model   = self.model + '-bases' # PAM3 or PAM5
        return os.path.join(basepath, form, model, '%s.mmp' % basename)

    def _orient(self, baseList, pt1, pt2):
        """
        Orients the DNA duplex I{dnaGroup} based on two points. I{pt1} is
        the first endpoint (origin) of the duplex. The vector I{pt1}, I{pt2}
        defines the direction and central axis of the duplex.

        @param pt1: The starting endpoint (origin) of the DNA duplex.
        @type  pt1: L{V}

        @param pt2: The second point of a vector defining the direction
                    and central axis of the duplex.
        @type  pt2: L{V}
        """

        a = V(0.0, 0.0, -1.0)
        # <a> is the unit vector pointing down the center axis of the default
        # DNA structure which is aligned along the Z axis.
        bLine = pt2 - pt1
        bLength = vlen(bLine)
        b = bLine/bLength
        # <b> is the unit vector parallel to the line (i.e. pt1, pt2).
        axis = cross(a, b)
        # <axis> is the axis of rotation.

        theta = angleBetween(a, b)
        # <theta> is the angle (in degress) to rotate about <axis>.
        scalar = self.getBaseRise() * (self.getNumberOfBasePairs() - 1) * 0.5
        rawOffset = b * scalar

        if 0: # Debugging code.
            print "~~~~~~~~~~~~~~"
            print "uVector  a = ", a
            print "uVector  b = ", b
            print "cross(a,b) =", axis
            print "theta      =", theta
            print "baserise   =", self.getBaseRise()
            print "# of bases =", self.getNumberOfBasePairs()
            print "scalar     =", scalar
            print "rawOffset  =", rawOffset

        if theta == 0.0 or theta == 180.0:
            axis = V(0, 1, 0)
            # print "Now cross(a,b) =", axis

        rot =  (pi / 180.0) * theta  # Convert to radians
        qrot = Q(axis, rot) # Quat for rotation delta.

        # Move and rotate the base chunks into final orientation.
        ##for m in dnaGroup.members:
        for m in baseList:
            if isinstance(m, self.assy.Chunk):
                m.move(qrot.rot(m.center) - m.center + rawOffset + pt1)
                m.rot(qrot)



    def _determine_axis_and_strandA_endAtoms_at_end_1(self, chunk):
        """
        Overridden in subclasses. Default implementation does nothing.

        @param chunk: The method itereates over chunk atoms to determine
                      strand and axis end atoms at end 1.
        @see: B_DNA_PAM3._determine_axis_and_strandA_endAtoms_at_end_1()
              for documentation and implementation.
        """
        pass

    def _orient_for_modify(self, baseList, end1, end2):
        pass

    def _orient_to_position_first_strandA_base_in_axis_plane(self, baseList, end1, end2):
        """
        Overridden in subclasses. Default implementation does nothing.

        The self._orient method orients the DNA duplex parallel to the screen
        (lengthwise) but it doesn't ensure align the vector
        through the strand end atom on StrandA and the corresponding axis end
        atom  (at end1) , parallel to the screen.

        This function does that ( it has some rare bugs which trigger where it
        doesn't do its job but overall works okay )

        What it does: After self._orient() is done orienting, it finds a Quat
        that rotates between the 'desired vector' between strand and axis ends at
        end1(aligned to the screen)  and the actual vector based on the current
        positions of these atoms.  Using this quat we rotate all the chunks
        (as a unit) around a common center.

        @BUG: The last part 'rotating as a unit' uses a readymade method in
        ops_motion.py -- 'rotateSpecifiedMovables' . This method itself may have
        some bugs because the axis of the dna duplex is slightly offset to the
        original axis.

        @see: self._determine_axis_and_strandA_endAtoms_at_end_1()
        @see: self.make()

        @see: B_DNA_PAM3._orient_to_position_first_strandA_base_in_axis_plane

        """
        pass


    def _regroup(self, dnaGroup):
        """
        Regroups I{dnaGroup} into group containing three chunks: I{StrandA},
        I{StrandB} and I{Axis} of the DNA duplex.

        @param dnaGroup: The DNA group which contains the base-pair chunks
                         of the duplex.
        @type  dnaGroup: L{Group}

        @return: The new DNA group that contains the three chunks
                 I{StrandA}, I{StrandB} and I{Axis}.
        @rtype:  L{Group}
        """
            #Get the lists of atoms (two lists for two strands and one for the axis
            #for creating new chunks

        _strandA_list, _strandB_list, _axis_list = \
                     self._create_atomLists_for_regrouping(dnaGroup)



        # Create strand and axis chunks from atom lists and add
        # them to the dnaGroup.

        # [bruce 080111 add conditions to prevent bugs in PAM5 case
        #  which is not yet supported in the above code. It would be
        #  easy to support it if we added dnaBaseName assignments
        #  into the generator mmp files and generalized the above
        #  symbol names, and added a 2nd pass for Pl atoms.
        #  update, bruce 080311: it looks like something related to
        #  this has been done without this comment being updated.]

        if _strandA_list:
            strandAChunk = self._makeChunkFromAtomList(
                _strandA_list,
                name = gensym("Strand", self.assy),
                group = dnaGroup,
                color = env.prefs[dnaDefaultStrand1Color_prefs_key])

        if _strandB_list:
            strandBChunk = self._makeChunkFromAtomList(
                _strandB_list,
                name = gensym("Strand", self.assy),
                group = dnaGroup,
                color = env.prefs[dnaDefaultStrand2Color_prefs_key])

        if _axis_list:
            axisChunk = self._makeChunkFromAtomList(
                _axis_list,
                name = "Axis",
                group = dnaGroup,
                color = env.prefs[dnaDefaultSegmentColor_prefs_key])
        return

    def _makeChunkFromAtomList(self, atomList, **options):
        #bruce 080326 split this out, revised it for PAM3+5 (partway)
        chunk = self.assy.makeChunkFromAtomList( atomList, **options)
        ### todo: in some cases, set chunk.display_as_pam = MODEL_PAM5
        # initial stub: always do that (when making PAM5 dna),
        # but only if edit pref would otherwise immediately convert it to PAM3.
        #update, bruce 080401: always do it, regardless of that edit pref.
        #update, bruce 080523: never do it, until the bug 2842 dust completely
        # settles. See also a comment added in rev 12846. This is #2 of 2 changes
        # (in the same commit) which eliminates all ways of setting this attribute,
        # thus fixing bug 2842 well enough for v1.1.
        ## if self.model == "PAM5": ##  and pref_dna_updater_convert_to_PAM3plus5():
        ##     if debug_flags.atom_debug:
        ##         print "debug fyi: %r is setting .display_as_pam = MODEL_PAM5 " \
        ##               "on %r" % (self, chunk)
        ##     chunk.display_as_pam = MODEL_PAM5
        return chunk

    def getBaseRise( self ):
        """
        Get the base rise (spacing) between base-pairs.
        """
        return float( self.baseRise )

    def setBaseRise( self, inBaseRise ):
        """
        Set the base rise (spacing) between base-pairs.

        @param inBaseRise: The base rise in Angstroms.
        @type  inBaseRise: float
        """
        self.baseRise  =  inBaseRise

    def getNumberOfBasePairs( self ):
        """
        Get the number of base-pairs in this duplex.
        """
        return self.numberOfBasePairs

    def setNumberOfBasePairs( self, inNumberOfBasePairs ):
        """
        Set the base rise (spacing) between base-pairs.

        @param inNumberOfBasePairs: The number of base-pairs.
        @type  inNumberOfBasePairs: int
        """
        self.numberOfBasePairs  =  inNumberOfBasePairs

    def setBasesPerTurn(self, basesPerTurn):
        """
        Sets the number of base pairs per turn
        @param basesPerTurn: Number of bases per turn
        @type  basesPerTurn: int
        """
        self.basesPerTurn = basesPerTurn

    def getBasesPerTurn(self):
        """
        returns the number of bases per turn in the duplex
        """
        return self.basesPerTurn

    pass