1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
# Copyright 2007 Nanorex, Inc. See LICENSE file for details.
"""
GROMACS.py - defines class GROMACS, for a temporary demo of
atomic-level-DNA GROMACS simulation
@author: Brian
@version: $Id$
@copyright: 2007 Nanorex, Inc. See LICENSE file for details.
Encapsulates the running of energy minimizations and molecular dynamics
simulations from NE1 using GROMACS and HK_Simulation (the visualization window
of HiveKeeper.
NOTE: THIS CODE IS DESIGNED JUST FOR THE FNANO 2007 DEMO, AND FOR PROTOTYPING,
IE, TO SEE HOW THE VARIOUS COMPONENTS WORK/BEHAVE. NONE OF IT WOULD SURVIVE TO
THE REAL SOLUTION.
Brian Helfrich 2007-03-31
"""
import os
from datetime import datetime
class GROMACS:
def __init__(self, part):
self.part = part
# Note: This GROMACS build doesn't work if there are any spaces in its
# path, so don't put any.
#
self.gmxHome = 'C:/11Nano/CVS-D/cad/plugins/GROMACS/'
# These are the GROMACS AMBER03 atom types for nucleotide residues in
# the order they are written out by the DNA generator. We can re-create
# the PDB-style structure with these, and it works if nothing is done
# to the structure of the DNA to change the order of the atoms.
#
self.adenineAtomTypes = ['P', 'O1P', 'O2P', 'O5\'', 'C5\'', 'C4\'',
'O4\'', 'C3\'', 'C2\'', 'C1\'', 'N9', 'C8', 'N7', 'C5', 'C6', 'N6',
'N1', 'C2', 'N3', 'C4', 'H5\'2', 'H5\'1', 'H4\'', 'H1\'', 'H2\'1',
'H2\'2', 'H3\'', 'H8', 'H61', 'H62', 'H2', 'O3\'']
self.cytosineAtomTypes = ['P', 'O1P', 'O2P', 'O5\'', 'C5\'', 'C4\'',
'O4\'', 'C3\'', 'C2\'', 'C1\'', 'N1', 'C2', 'O', 'N3', 'C4', 'N4',
'C5', 'C6', 'H5\'1', 'H5\'2', 'H4\'', 'H1\'', 'H2\'1', 'H2\'2',
'H3\'', 'H6', 'H5', 'H41', 'H42', 'O3\'']
self.guanineAtomTypes = ['P', 'O1P', 'O2P', 'O5\'', 'C5\'', 'C4\'',
'O4\'', 'C3\'', 'C2\'', 'C1\'', 'N9', 'C8', 'N7', 'C5', 'C6', 'O6',
'N1', 'C2', 'N2', 'N3', 'C4', 'H5\'1', 'H5\'2', 'H4\'', 'H1\'',
'H2\'1', 'H2\'2', 'H3\'', 'H8', 'H1', 'H21', 'H22', 'O3\'']
self.thymineAtomTypes = ['P', 'O1P', 'O2P', 'O5\'', 'C5\'', 'C4\'',
'O4\'', 'C3\'', 'C2\'', 'C1\'', 'N1', 'C2', 'O', 'N3', 'C4', 'O4',
'C5', 'C7', 'C6', 'H5\'1', 'H5\'2', 'H4\'', 'H1\'', 'H2\'1',
'H2\'2', 'H3\'', 'H6', 'H71', 'H72', 'H73', 'H3', 'O3\'']
# Pseudo-atom tables
#
self.pseudoAtomTypes = \
['??', 'Ax', 'Ae', 'Ss', 'Sj', 'Pl', 'Pe', 'Sh', 'Hp'] # BUG: element names have been changed since this code worked
self.pseudoAtomCharges = \
[0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -2.0, 0.0, 0.0]
self.pseudoAtomMasses = \
[0.0, 100, 100, 100, 100, 100, 100, 100, 100]
self.atomKeyToIndexMap = {}
self.debug = False
return
def run(self, operation):
"""
Creates a temp directory, generates a structure files from the part,
pre-processes them with GROMACS tools, spawns the GROMACS simulation,
and spawns an HK_Simulation process to view it with.
operation - either "em" to perform an energy minimization, or "md" to
perform molecular dynamics simulation
"""
# Create a unique directory under the Nanorex/SimFiles directory for our
# files: Nanorex/SimFiles/GMX-<timestamp>
#
from platform_dependent.PlatformDependent import find_or_make_Nanorex_subdir
simFilesPath = find_or_make_Nanorex_subdir('SimFiles')
timestamp = datetime.today()
self.tempFilePath = \
os.path.join(simFilesPath,
"GMX-%s" % timestamp.strftime("%Y%m%d%H%M%S"))
os.mkdir(self.tempFilePath)
# Create the structure files from our part.
#
self.atomIndex = 1
self.residueIndex = 1
self.pdbFileHandle = 0
self.atomsFileHandle = 0
self.confFileHandle = 0
self.bondsFileHandle = 0
self.anglesFileHandle = 0
self.pseudoPass = 1
partType = self.writeStructure_Helper(self.part.topnode)
if partType == "pseudo":
# The first pass was to process and index atoms, now we have
# sufficient information to determine bonds and angles. It's
# probably possible to do everything in one pass.
#
if self.atomsFileHandle != 0:
self.atomsFileHandle.close()
self.pseudoPass = 2
self.residueIndex = 1
self.writeStructure_Helper(self.part.topnode)
if self.pdbFileHandle != 0:
self.pdbFileHandle.close()
if self.confFileHandle != 0:
self.confFileHandle.close()
if self.bondsFileHandle != 0:
self.bondsFileHandle.close()
if self.anglesFileHandle != 0:
self.anglesFileHandle.close()
script = ""
if partType == "pseudo":
# Combine the fragments of the topology into the topol.top file,
# tweak with GROMACS tools, and run the operation.
script = "pseudo_" + operation + ".bat"
else:
# Pre-process the .pdb file with the GROMACS tools and run the
# operation.
#
script = "atomic_" + operation + ".bat"
os.spawnl(os.P_NOWAIT, os.path.join(self.gmxHome, script),
os.path.join(self.gmxHome, script),
os.path.normpath(self.gmxHome),
'"' + os.path.normpath(self.tempFilePath) + '"')
return
def writeStructure_Helper(self, node):
partType = "pseudo"
if self.debug: print "node.name=%s" % node.name
if node.name[0:6] == "strand":
if self.debug: print "\t atomic helper"
self.writeAtomicPDB(node)
partType = "atomic"
else:
for childNode in node.members:
if childNode.is_group():
partType = self.writeStructure_Helper(childNode)
else:
if self.debug: print "\t p-atom write"
self.writePseudoAtomStructure(childNode)
return partType
def writePseudoAtomStructure(self, node):
if self.pseudoPass == 1:
# Process atoms
#
# Open the topol.top atoms fragment file if not already open
#
if self.atomsFileHandle == 0:
self.atomsFileHandle = \
open(os.path.join(self.tempFilePath, "atoms.frag"), "w")
self.atomsFileHandle.write("[ atoms ]\n")
self.atomsFileHandle.write("; atomId atomType residue# residue atom chargeGroup# charge mass\n")
for atom in node.atoms_in_mmp_file_order():
if atom.element.eltnum == 0:
continue
atomTypeIndex = self.getAtomTypeIndex(atom.element.eltnum)
self.atomsFileHandle.write("%8d%10s%10d BAS%6s%14d %8.3f%8.3f\n" % \
(self.atomIndex, self.pseudoAtomTypes[atomTypeIndex],
self.residueIndex, self.pseudoAtomTypes[atomTypeIndex],
self.atomIndex, self.pseudoAtomCharges[atomTypeIndex],
self.pseudoAtomMasses[atomTypeIndex]))
self.atomKeyToIndexMap[atom.key] = self.atomIndex
self.atomIndex += 1
self.residueIndex += 1
else:
# Process bonds, angles, and generate the conf.gro file
#
# Open the topol.top bonds fragment file if not already open
#
if self.bondsFileHandle == 0:
self.bondsFileHandle = \
open(os.path.join(self.tempFilePath, "bonds.frag"), "w")
self.bondsFileHandle.write("\n[ bonds ]\n")
self.bondsFileHandle.write("; ai aj function\n")
# Open the topol.top angles fragment file if not already open
#
if self.anglesFileHandle == 0:
self.anglesFileHandle = \
open(os.path.join(self.tempFilePath, "angles.frag"), "w")
self.anglesFileHandle.write("\n[ angles ]\n")
self.anglesFileHandle.write("; ai aj ak function\n")
# Open the conf.gro file if not already open
#
if self.confFileHandle == 0:
self.confFileHandle = \
open(os.path.join(self.tempFilePath, "conf.gro"), "w")
self.confFileHandle.write("DNA\n")
self.confFileHandle.write(" %d\n" % \
len(self.atomKeyToIndexMap))
for atom_1 in node.atoms_in_mmp_file_order():
if atom_1.element.eltnum == 0:
continue
# Emit conf.gro coordinates
#
atomTypeIndex = self.getAtomTypeIndex(atom_1.element.eltnum)
self.confFileHandle.write("%5d%-5s%5s%5d%8.3f%8.3f%8.3f\n" % \
(self.residueIndex, "BAS",
self.pseudoAtomTypes[atomTypeIndex],
self.atomKeyToIndexMap[atom_1.key],
atom_1.posn()[0]/10, atom_1.posn()[1]/10,
atom_1.posn()[2]/10))
# Emit bonds
#
atom_1_Index = self.atomKeyToIndexMap[atom_1.key]
if self.debug: print "atom [%s] %d" % (atom_1.key, atom_1_Index)
bondCount = 0
bondIndexes = []
for bond in atom_1.bonds:
atom_2 = bond.other(atom_1)
if self.debug: print "atom_2.key=%s" % atom_2.key
if atom_2.key not in self.atomKeyToIndexMap:
continue
atom_2_Index = self.atomKeyToIndexMap[atom_2.key]
if atom_2_Index > atom_1_Index:
self.bondsFileHandle.write("%6d%6d 1\n" % \
(atom_1_Index, atom_2_Index))
bondIndexes += [atom_2_Index]
bondCount += 1
# Emit angles
if bondCount > 1:
for index in range(1, bondCount):
self.anglesFileHandle.write("%6d%6d%6d 1\n" % \
(bondIndexes[index - 1], atom_1_Index,
bondIndexes[index]))
if bondCount > 2:
self.anglesFileHandle.write("%6d%6d%6d 1\n" % \
(bondIndexes[bondCount - 1], atom_1_Index,
bondIndexes[0]))
self.residueIndex += 1
def writePseudoAtomPDB___(self, node):
"""
This is dead code left here just in case pseudo-atom .pdb files need to
be generated.
"""
count_Ss = 1
count_Pl = 1
for atom in node.atoms_in_mmp_file_order():
if atom.element.eltnum == 0:
continue
coordinates = atom.posn()
coordinateFields = (coordinates[0], coordinates[1], coordinates[2])
self.filehandle.write("%-6s" % "ATOM")
self.filehandle.write("%5d" % self.atomIndex)
self.filehandle.write(" ")
if atom.element.eltnum == 200:
self.filehandle.write("Ax ")
elif atom.element.eltnum == 201:
self.filehandle.write("Ss%d " % count_Ss)
count_Ss += 1
elif atom.element.eltnum == 202:
self.filehandle.write("Pl%d " % count_Pl)
count_Pl += 1
self.filehandle.write("BAS ")
self.filehandle.write("%4d" % self.residueIndex)
self.filehandle.write(" ")
self.filehandle.write("%8.3f%8.3f%8.3f" % coordinateFields)
self.filehandle.write(" 1.00 0.00\n");
self.atomIndex += 1
self.residueIndex += 1
def writeAtomicPDB(self, node):
"""
Write down strand 1
- first nucleotide: residue name gets a "5", no (P, OP1, OP2)
- last nucleotide: residue name gets a "3"
Write up strand 2
- first (bottom) nucleotide: residue name gets a "5", no (P, OP1, OP2)
- last (top) nucleotide: residue name gets a "3"
"""
# Open the .pdb file if not already open
#
if self.pdbFileHandle == 0:
self.pdbFileHandle = \
open(os.path.join(self.tempFilePath, "dna.pdb"), "w")
# Need to write residues down strand 1 and up strand 2.
# Take note of the last nucleotide in each case.
#
nodeMembers = list(node.members) # Use a copy of the real list.
if len(nodeMembers) > 0:
lastNode = nodeMembers[len(nodeMembers) - 1]
if node.name == 'strand 2':
lastNode = nodeMembers[0]
nodeMembers.reverse()
nucleotideIndex = 1
for childNode in nodeMembers:
if self.debug:
print "node=%s nucleotideIndex=%d nucleotide=%s " % \
(node.name, nucleotideIndex, childNode.name),
if childNode == lastNode:
print "last",
print "\n"
atomTypeIndex = 0
for atom in childNode.atoms_in_mmp_file_order():
if atom.element.eltnum == 0:
continue
if (nucleotideIndex == 1) & (atomTypeIndex < 3):
atomTypeIndex += 1
continue # First nucleotide in a strand - no phosphate
coordinates = atom.posn()
coordinateFields = (coordinates[0], coordinates[1],
coordinates[2])
self.pdbFileHandle.write("%-6s" % "ATOM")
self.pdbFileHandle.write("%5d" % self.atomIndex)
self.pdbFileHandle.write(" ")
if childNode.name == 'adenine':
self.pdbFileHandle.write("%4s" %
self.adenineAtomTypes[atomTypeIndex])
self.pdbFileHandle.write(" DA")
elif childNode.name == 'cytosine':
self.pdbFileHandle.write("%4s" %
self.cytosineAtomTypes[atomTypeIndex])
self.pdbFileHandle.write(" DC")
elif childNode.name == 'guanine':
self.pdbFileHandle.write("%4s" %
self.guanineAtomTypes[atomTypeIndex])
self.pdbFileHandle.write(" DG")
elif childNode.name == 'thymine':
self.pdbFileHandle.write("%4s" %
self.thymineAtomTypes[atomTypeIndex])
self.pdbFileHandle.write(" DT")
# Handle strand ends
if nucleotideIndex == 1:
self.pdbFileHandle.write("5")
elif childNode == lastNode:
self.pdbFileHandle.write("3")
else:
self.pdbFileHandle.write(" ")
self.pdbFileHandle.write(" ")
self.pdbFileHandle.write("%4d" % self.residueIndex)
self.pdbFileHandle.write(" ")
self.pdbFileHandle.write("%8.3f%8.3f%8.3f" % coordinateFields)
self.pdbFileHandle.write(" 1.00 0.00\n");
atomTypeIndex += 1
self.atomIndex += 1
self.residueIndex += 1
nucleotideIndex += 1
return
def getAtomTypeIndex(self, elementNumber):
atomTypeIndex = 0 # ??
if elementNumber == 200: # Ax
atomTypeIndex = 1
elif elementNumber == 201: # Ss
atomTypeIndex = 3
elif elementNumber == 202: # Pl
atomTypeIndex = 5
elif elementNumber == 203: # Sj
atomTypeIndex = 4
elif elementNumber == 204: # Ae
atomTypeIndex = 2
elif elementNumber == 205: # Pe
atomTypeIndex = 6
elif elementNumber == 206: # Sh
atomTypeIndex = 7
elif elementNumber == 207: # Hp
atomTypeIndex = 8
return atomTypeIndex
|