summaryrefslogtreecommitdiff
path: root/cad/src/protein/model/Residue.py
blob: f754701df6064269c046dc9703aa4d7b4a867024 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
# Copyright 2008 Nanorex, Inc.  See LICENSE file for details. 

"""
Residue.py -- Residue class implementation.

Residue class stores information on individual amino acids of a protein
chain. 

@author: Piotr
@version: $Id$
@copyright: 2008 Nanorex, Inc.  See LICENSE file for details.

History:

piotr 082708: Re-factored the Residue class out of Protein.py file.

Renamed this class to "Residue" (which is a proper spelling, opposite 
to "Residuum", as Eric D has pointed out in his email).
"""

# 3-letter to 1-letter amino acid name conversion

# The three-letter names are used to distinguish "protein" from "non-protein"
# residues in PDB reading code.

AA_3_TO_1 = {
    'ALA':'A', # 20 standard amino acids
    'VAL':'V', 
    'PHE':'F', 
    'PRO':'P', 
    'MET':'M',
    'ILE':'I', 
    'LEU':'L', 
    'ASP':'D', 
    'GLU':'E', 
    'LYS':'K',
    'ARG':'R', 
    'SER':'S', 
    'THR':'T', 
    'TYR':'Y', 
    'HIS':'H',
    'CYS':'C', 
    'ASN':'N', 
    'GLN':'Q', 
    'TRP':'W', 
    'GLY':'G',
    '2AS':'D', # Non-standard codes encountered in the PDB.
    '3AH':'H', # Usually, these codes correspond to modified residues 
    '5HP':'E', # and are only used by the Protein class to convert between 
    'ACL':'R', # three- and single- letter representations. 
    'AIB':'A',
    'ALM':'A', 
    'ALO':'T', 
    'ALY':'K', 
    'ARM':'R', 
    'ASA':'D',
    'ASB':'D', 
    'ASK':'D', 
    'ASL':'D', 
    'ASQ':'D', 
    'AYA':'A',
    'BCS':'C', 
    'BHD':'D', 
    'BMT':'T', 
    'BNN':'A', 
    'BUC':'C',
    'BUG':'L', 
    'C5C':'C', 
    'C6C':'C', 
    'CCS':'C', 
    'CEA':'C',
    'CHG':'A', 
    'CLE':'L', 
    'CME':'C', 
    'CSD':'A', 
    'CSO':'C',
    'CSP':'C', 
    'CSS':'C', 
    'CSW':'C', 
    'CXM':'M', 
    'CY1':'C',
    'CY3':'C', 
    'CYG':'C', 
    'CYM':'C', 
    'CYQ':'C', 
    'DAH':'F',
    'DAL':'A', 
    'DAR':'R', 
    'DAS':'D', 
    'DCY':'C', 
    'DGL':'E',
    'DGN':'Q', 
    'DHA':'A', 
    'DHI':'H', 
    'DIL':'I', 
    'DIV':'V',
    'DLE':'L', 
    'DLY':'K', 
    'DNP':'A', 
    'DPN':'F', 
    'DPR':'P',
    'DSN':'S', 
    'DSP':'D', 
    'DTH':'T', 
    'DTR':'W', 
    'DTY':'Y',
    'DVA':'V', 
    'EFC':'C', 
    'FLA':'A', 
    'FME':'M', 
    'GGL':'E',
    'GLZ':'G', 
    'GMA':'E', 
    'GSC':'G', 
    'HAC':'A', 
    'HAR':'R',
    'HIC':'H', 
    'HIP':'H', 
    'HMR':'R', 
    'HPQ':'F', 
    'HTR':'W',
    'HYP':'P', 
    'IIL':'I', 
    'IYR':'Y', 
    'KCX':'K', 
    'LLP':'K',
    'LLY':'K', 
    'LTR':'W', 
    'LYM':'K', 
    'LYZ':'K', 
    'MAA':'A',
    'MEN':'N', 
    'MHS':'H', 
    'MIS':'S', 
    'MLE':'L', 
    'MPQ':'G',
    'MSA':'G', 
    'MSE':'M', 
    'MVA':'V', 
    'NEM':'H', 
    'NEP':'H',
    'NLE':'L', 
    'NLN':'L', 
    'NLP':'L', 
    'NMC':'G', 
    'OAS':'S',
    'OCS':'C', 
    'OMT':'M', 
    'PAQ':'Y', 
    'PCA':'E', 
    'PEC':'C',
    'PHI':'F', 
    'PHL':'F', 
    'PR3':'C', 
    'PRR':'A', 
    'PTR':'Y',
    'SAC':'S', 
    'SAR':'G', 
    'SCH':'C', 
    'SCS':'C', 
    'SCY':'C',
    'SEL':'S', 
    'SEP':'S', 
    'SET':'S', 
    'SHC':'C', 
    'SHR':'K',
    'SOC':'C', 
    'STY':'Y', 
    'SVA':'S', 
    'TIH':'A', 
    'TPL':'W',
    'TPO':'T', 
    'TPQ':'A', 
    'TRG':'K', 
    'TRO':'W', 
    'TYB':'Y',
    'TYQ':'Y', 
    'TYS':'Y', 
    'TYY':'Y', 
    'AGM':'R', 
    'GL3':'G',
    'SMC':'C', 
    'ASX':'B', 
    'CGU':'E', 
    'CSX':'C', 
    'GLX':'Z' }

# 3- TO 1-letter conversion for PDB nucleotide names
NUC_3_TO_1 = {
    ' DG':'G',
    ' DA':'A',
    ' DC':'C',
    ' DT':'T',
    ' DU':'U',
    ' DI':'I',
    '  G':'G',
    '  A':'A',
    '  T':'T',
    '  U':'U',
    '  C':'C',
    '  I':'I' }
    
# Types of secondary structure as defined in PDB format.
# There are various definitions of secondary structure in use.
# The most common is a three-letter code: helix (H), extended (E),
# coil (C). PDB distingushes a fourth type, turn (T) that corresponds
# to the chain fragments that rapidly change direction, have
# a hydrogen bond pattern present, and are not helices nor strands.
# Currently, the turns are not used for visualization purposes in NE1.

SS_COIL = 0
SS_HELIX = 1
SS_STRAND = 2
SS_TURN = 3


# PDB atom name sets for chiral angles for amino acid side chains

CHI_ANGLES = { "GLY" : [ None, 
                         None, 
                         None, 
                         None ],
               "ALA" : [ None,
                         None, 
                         None,
                         None ],
               "SER" : [ [ "N"  , "CA" , "CB" , "OG"  ],
                         None,
                         None,
                         None ],
               "GLU" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "CD"  ],
                         [ "CB" , "CG" , "CD" , "OE1" ],
                         None ],
               "GLN" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "CD"  ],
                         [ "CB" , "CG" , "CD" , "OE1" ],
                         None ],
               "ASP" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "OD1" ],
                         None,
                         None ],
               "ASN" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "OD1" ],
                         None,
                         None ],
               "CYS" : [ [ "N"  , "CA" , "CB" , "SG"  ],
                         None,
                         None,
                         None ],
               "MET" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "SD" ],
                         None,
                         None ],
               "THR" : [ [ "N"  , "CA" , "CB" , "CG2" ],
                         None,
                         None,
                         None ],
               "LEU" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "CD1" ],
                         None,
                         None ],
               "ILE" : [ [ "N"  , "CA" , "CB" , "CG1" ],
                         [ "CA" , "CB" , "CG1", "CD1" ],
                         None,
                         None ],
               "VAL" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         None,
                         None,
                         None ],
               "TRP" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         None,
                         None,
                         None ],
               "TYR" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         None,
                         None,
                         None ],
               "LYS" : [ [ "N"  , "CA" , "CB" , "OG"  ],
                         None,
                         None,
                         None ],
               "ARG" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         None,
                         None,
                         None ],
               "HIS" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         None,
                         None,
                         None ],
               "PHE" : [ [ "N"  , "CA" , "CB" , "CG"  ],
                         [ "CA" , "CB" , "CG" , "CD1" ],
                         None,
                         None ] }

# Sets of atoms excluded from chi-angle rotations.
CHI_EXCLUSIONS = { "PHE" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ],
                             None,
                             None ],
                   "THR" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "GLU" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             [ "CG", "HG2", "HG3" ],
                             None ],
                   "GLN" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             [ "CG", "HG2", "HG3" ],
                             None ],
                   "ASP" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             None,
                             None ],
                   "ASN" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             None,
                             None ],
                   "CYS" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "MET" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             None,
                             None ],
                   "ARG" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "LYS" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "HIS" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "LEU" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             None,
                             None ],
                   "ILE" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3" ], 
                             None,
                             None ],
                   "SER" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ],
                   "TYR" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             [ "CB", "HB2", "HB3"],
                             None,
                             None ],
                   "TRP" : [ [ "N", "H", "C", "O", "CA", "HA" ],
                             None, 
                             None,
                             None ] }

def calc_torsion_angle(atom_list):
    """
    Calculates torsional angle defined by four atoms, A1-A2-A3-A4,
    Return torsional angle value between atoms A2 and A3.
    
    @param atom_list: list of four atoms describing the torsion bond
    @type atom_list: list
    
    @return: value of the torsional angle (float)
    """
    # Note: this appears to be very general and perhaps ought to be moved to a more
    # general place (someday), perhaps VQT.py or nearby. [bruce 080828 comment]
    
    from Numeric import dot
    from math import atan2, pi, sqrt
    from geometry.VQT import cross
    
    if len(atom_list) != 4:
        # The list has to have four members.
        return 0.0
    
    # Calculate pairwise distances
    v12 = atom_list[0].posn() - atom_list[1].posn()
    v43 = atom_list[3].posn() - atom_list[2].posn()
    v23 = atom_list[1].posn() - atom_list[2].posn()

    # p is a vector perpendicular to the plane defined by atoms 1,2,3
    # p is perpendicular to v23_v12 plane
    p = cross(v23, v12)
    
    # x is a vector perpendicular to the plane defined by atoms 2,3,4.
    # x is perpendicular to v23_v43 plane
    x = cross(v23, v43)
    
    # y is perpendicular to v23_x plane
    y = cross(v23, x)
    
    # Calculate lengths of the x, y vectors.
    u1 = dot(x, x)
    v1 = dot(y, y)
    
    if u1 < 0.0 or \
       v1 < 0.0:
        return 360.0
    
    u2 = dot(p, x) / sqrt(u1)
    v2 = dot(p, y) / sqrt(v1)
    
    if u2 != 0.0 and \
       v2 != 0.0:
        # calculate the angle
        return atan2(v2, u2) * (180.0 / pi)
    else:
        return 360.0
     
    
class Residue:
    """
    This class implements a Residue object. The residue is an object
    describing an individual amino acid of a protein chain.
    """
    
    def __init__(self):
        """
        """
        # list of residue atoms in the same order as they occur in PDB file
        self.atom_list = []
        
        # dictionary for atom_name -> atom mapping
        self.atoms = {} 
        
        # amino acid secondary structure        
        self.secondary_structure = SS_COIL

        # True if the residue is expanded. The feature is used by "Edit
        # Rotamers" command for efficient rotamer manipulation in reduced
        # protein display style.
        self.expanded = False
        
        # Rotamer color, used by "Edit Protein" command.
        self.color = None
        
        # These Rosetta-related attributes should be probably moved from this
        # class to some Rosetta-related structure. For now, the Residue
        # and Protein classes include several methods created for Rosetta
        # purposes only.
        
        # Rosetta name of mutation range. 
        self.mutation_range = "NATAA"
        
        # Rosetta mutation descriptor. If set, it is usually a string of
        # 20 characters, corresponding to amino acid allowed at a given position.
        # Note: the descriptor is actually used by Rosetta only if mutation
        # range is set to "PIKAA". Otherwise, it is used only for informational
        # purposes. 
        self.mutation_descriptor = ""
        
        # True if this residue will be using backrub mode.
        self.backrub = False

    def get_atom_name(self, atom):
        """
        For a given PDB atom, return a corresponding atom name.
        """
        if atom.pdb_info and \
           atom.pdb_info.has_key('atom_name'):
            return atom.pdb_info['atom_name']
        else:
            return None
        
    def add_atom(self, atom, pdbname):
        """ 
        Add a new atom to the atom dictionary. 
        """
        self.atoms[pdbname] = atom
        self.atom_list.append(atom)

    def get_first_atom(self):
        """
        Return a first atom of the residue, or None.
        
        @note: this method will cause an exception if the residue is empty
        (has no atoms). This should never happen.
        
        """
        if len(self.atom_list):
            return self.atom_list[0]

        raise Exception("Residue object has no atoms")
        
    def get_atom_list(self):
        """
        Return a list of atoms for the residue.
        """
        return self.atom_list
    
    def get_side_chain_atom_list(self):
        """
        Return a list of side chain atoms for self. Assumes standard
        PDB atom names.
        """
        return [atom for atom in self.atom_list \
                if self.get_atom_name(atom) not in ['C', 'N', 'O', 'H', 'HA']]

    def get_three_letter_code(self):
        """
        Return a three-letter amino acid code (the residue name).
        
        This method returns "   " (a string composed of three spaces) 
        if there is no amino acid code assigned.
        
        @note: this method should probably scan all atoms looking for a 
        PDB residue key, not only the first one. For example, if a new atom
        is added to a residue, the method may not return a valid three-letter 
        code anymore. This could be a desired and expected behavior, but it is 
        not guaranteed in the current implementation. -- piotr 080902
        
        @return: amino acid three-letter name, or "   " if the name is unknown.
        """
        atom = self.get_first_atom()
        if atom and \
           atom.pdb_info:
            if atom.pdb_info.has_key('residue_name'):
                return atom.pdb_info['residue_name'][:3]
        
        return "   "

    def get_one_letter_code(self):
        """
        Return a one-letter amino acid code, or "X" if the residue code
        is not recognized.
        
        @note: see docstring in get_three_letter_code
        
        """
        if AA_3_TO_1.has_key(self.get_three_letter_code()):
            return AA_3_TO_1[self.get_three_letter_code()]
        
        return "X"
    
    def get_id(self):
        """
        Return a residue ID.
        
        The residue ID is a string representing the residue serial number 
        (integer value up to 9999) and concatenated residue insertion code 
        (single letter character). It is represented by a five character string.
        """
        # REVIEW: docstring should clarify whether serial number
        # is padded on left with ' ' or '0' (when less than 1000).
        # [bruce 080904 comment]
        atom = self.get_first_atom()
        
        if atom.pdb_info:
            if atom.pdb_info.has_key('residue_id'):
                return atom.pdb_info['residue_id']

        raise Exception("Residue has no ID")
    
    def get_index(self):
        """
        Return a residue index. The residue index is a numerical equivalent
        of a residue ID (less the insertion code) and is provided for user's
        convenience, i.e. when it is desired for the index to be used 
        independently from the residue insertion code. Also, see docstring
        in get_id.
        """
        # REVIEW: docstring of get_id suggests that residue_id will
        # have 4 chars for serial number and 1 char for insertion code.
        # But this makes use of the first 3 chars only.
        # Needs bugfix or explanation. [bruce 080904 comment]
        
        residue_id = self.get_id()
        
        return int(residue_id[:3])
    
    def has_atom(self, atom):
        """
        Check if the atom belongs to self. 
        
        @param atom: atom to be checked
        @type atom: Atom        
        
        @return: True if the atom belongs to self, False otherwise 
        """
        if atom in self.atoms.values():
            return True
        else:
            return False
        
    def set_secondary_structure(self, sec):
        """
        Set a secondary structure type for this residue.
        
        @param sec: secondary structure type to be assigned
        @type sec: int
        """
        self.secondary_structure = sec
        
    def get_secondary_structure(self):
        """
        Retrieve a secondary structure type.

        @return: secondary structure of this residue. 
        """
        return self.secondary_structure
        
    def get_atom_by_name(self, name):
        """
        Returns a residue atom for a given PDB atom name, or None if not found.
        The PDB name corresponds to the atom label as defined in PDB file.
        Peptide Builder can create proper atom labels.
        
        This intentionally and without a warning returns None if the atom 
        of a given name is not found. It is caller's responsibility 
        to handle such case properly. --piotr 080902
        
        @param name: name of the atom
        @type name: string
        
        @return: atom or None
        @rtype: Atom
        """
        if self.atoms.has_key(name):
            return self.atoms[name]
        else:
            return None
    
    def get_c_alpha_atom(self):
        """
        Return an alpha-carbon atom atom (or None).
        
        @return: alpha carbon atom
        """
        return self.get_atom_by_name("CA")
    
    def get_c_beta_atom(self):
        """
        Return a beta carbon atom (or None).
        
        @return: beta carbon atom
        """
        return self.get_atom_by_name("CB")
    
    def get_n_atom(self):
        """
        Return a backbone nitrogen atom.
        
        @return: backbone nitrogen atom
        """
        return self.get_atom_by_name("N")
        
    def get_c_atom(self):
        """
        Return a backbone carbon atom.
        
        @return: backbone carbonyl group carbon atom
        """
        return self.get_atom_by_name("C")
        
    def get_o_atom(self):
        """
        Return a backbone oxygen atom.
        
        @return: backbone carbonyl group oxygen atom
        """
        return self.get_atom_by_name("O")
        
    def set_mutation_range(self, range):
        """
        Sets a mutation range according to Rosetta definition.
        
        @param range: mutation range
        @type range: string
        """
        self.mutation_range = range
        
    def get_mutation_range(self):
        """
        Gets a mutation range according to Rosetta definition.
        nie,.
        @return: range
        """
        return self.mutation_range
    
    def set_mutation_descriptor(self, descriptor):
        """
        Sets a mutation descriptor according to Rosetta definition.
        
        @param descriptor: Rosetta mutation descriptor 
        @type descriptor: string (20-characters long)
        """
        self.mutation_descriptor = descriptor
        
    def get_mutation_descriptor(self):
        """
        Returns a mutation descriptor according to Rosetta definition.
        
        @return descriptor: string (20-characters long)
        """
        return self.mutation_descriptor
    
    def get_chi_atom_list(self, which):
        """
        Create a list of four atoms for computing a given chi angle.
        Return an empty list if no such angle exists for self, or if
        residue name doesn't match one of the 20 standard amino acid names,
        or if the specified chi angle is out of allowed range (which is 0..3).
        
        @param which: chi angle (0=chi1, 1=chi2, and so on)
        @type which: int
        
        @return: list of four atoms, or empty list
        """
        if which in range(4):
            residue_name = self.get_three_letter_code()
            if CHI_ANGLES.has_key(residue_name):
                chi_list = CHI_ANGLES[residue_name]
                if chi_list[which]:
                    chi_atom_names = chi_list[which]
                    chi_atoms = []
                    for name in chi_atom_names:
                        atom = self.get_atom_by_name(name)
                        if atom:
                            chi_atoms.append(atom)
                    return chi_atoms
        
        return []
     
    def get_chi_atom_exclusion_list(self, which):
        """
        Creates a list of atoms excluded from rotation for a current amino acid.
        Returns an empty list if wrong chi angle is requested.
        
        @param which: chi angle (0=chi1, 1=chi2, and so on)
        @type which: int
        
        @return: list of atoms to be excluded from rotation
        """
        ex_atoms = []
        
        if which in range(4):
            residue_name = self.get_three_letter_code()
            if CHI_EXCLUSIONS.has_key(residue_name):
                chi_ex_list = CHI_EXCLUSIONS[residue_name]
                oxt_atom = self.get_atom_by_name("OXT")
                if oxt_atom:
                    ex_atoms.append(oxt_atom)
                for w in range(0, which + 1):
                    if chi_ex_list[w]:
                        ex_atom_names = chi_ex_list[w]
                        for name in ex_atom_names:
                            atom = self.get_atom_by_name(name)
                            if atom:
                                ex_atoms.append(atom)
        return ex_atoms
     
    def get_chi_angle(self, which):
        """
        Computes the side-chain Chi angle. Returns None if the angle
        doesn't exist.
        
        @note: This method returns None if the chi angle doesn't exist.
        This is intentional and callers should be aware of it.
        
        @param which: chi angle (0=chi1, 1=chi2, and so on)
        @type which: int
        
        @return: value of the specified chi angle, or None
        """
        chi_atom_list = self.get_chi_atom_list(which)
        if chi_atom_list:
            return calc_torsion_angle(chi_atom_list)                  
        else:
            return None

    
    def get_atom_list_to_rotate(self, which):
        """
        Create a list of atoms to be rotated around a specified chi angle.
        Returns an empty list if wrong chi angle is requested, or if all
        atoms are going to be excluded.
        
        piotr 082008: This method should be rewritten in a way so it 
        traverses a molecular graph rather than uses a predefined 
        lists of atoms "excluded" and "included" from rotations.
        Current implementation only works for "proper" amino acids
        that have all atoms named properly and don't include any 
        non-standard atoms.
        
        @param which: chi angle (0=chi1, 1=chi2, and so on)
        @type which: int
        
        @return: list of atoms to be rotated for a specified chi angle
        """
        atom_list = []
        
        chi_atom_exclusion_list = self.get_chi_atom_exclusion_list(which)
        
        if chi_atom_exclusion_list:
            all_atom_list = self.get_atom_list()
            for atom in all_atom_list:
                if atom not in chi_atom_exclusion_list:
                    atom_list.append(atom)

        return atom_list
    
    def lock(self):
        """
        Locks this residue (sets Rosetta mutation range to "native rotamer").      
        """
        self.set_mutation_range("NATRO")
        
    def set_chi_angle(self, which, angle):
        """
        Sets a specified chi angle of this amino acid. 
        
        @param which: chi angle (0=chi1, 1=chi2, and so on)
        @type which: int
        
        @param angle: value of the chi angle to be set
        @type angle:float
        
        @note: this method intentionally returns None if it is not possible
        to set the specified chi angle
        
        @return: angle value if sucessfully completed, None if not
        """
        # Note: Eric M said he factored some intrinsic coordinate code
        # out of some other file to create a general function for that.
        # Is this also something that could use that function?
        # If so, it's enough for now to comment this saying so
        # rather than to actually refactor it. [bruce 080828 comment]
        #
        # piotr 080902 reply:
        # I think that is different than the internal-to-cartesian 
        # coordinate conversion. Perhaps the code Eric M re-factored from 
        # Peptide Builder could be adapted to be used for torsion angle
        # manipulations, but I think current implementation is more 
        # straightforward. The "rotate point around a vector" routine
        # should be split out, though (and perhaps an equivalent method
        # exists somewhere in the codebase).
        
        from geometry.VQT import norm, Q, V
        from math import pi, cos, sin
        
        # Get a list of atoms to rotate.
        chi_atom_list = self.get_chi_atom_list(which)
        
        if len(chi_atom_list) > 0:
            # Calculate a current chi torsion angle.
            angle0 = calc_torsion_angle(chi_atom_list)
            # Calculate a difference between the current angle and 
            # a requested chi angle.
            dangle = angle - angle0
            if abs(dangle) > 0.0:
                # Vector we are rotating about is the vector connecting 
                # two middle atoms of the chi angle atom list.
                vec = norm(chi_atom_list[2].posn() - chi_atom_list[1].posn())
                # Compute a list of atoms to rotate.
                atom_list = self.get_atom_list_to_rotate(which)
                
                first_atom_posn = chi_atom_list[1].posn()
                
                for atom in atom_list:
                    
                    # Move the origin to the first atom.
                    pos = atom.posn() - first_atom_posn
                    
                    cos_a = cos(pi * (dangle / 180.0))
                    sin_a = sin(pi * (dangle / 180.0))
                    
                    q = V(0, 0, 0)
                    
                    # Rotate the point around a vector
                    
                    q[0] += (cos_a + (1.0 - cos_a) * vec[0] * vec[0]) * pos[0];
                    q[0] += ((1.0 - cos_a) * vec[0] * vec[1] - vec[2] * sin_a) * pos[1];
                    q[0] += ((1.0 - cos_a) * 
                             vec[0] * vec[2] + vec[1] * sin_a) * pos[2];
                 
                    q[1] += ((1.0 - cos_a) * 
                             vec[0] * vec[1] + vec[2] * sin_a) * pos[0];
                    q[1] += (cos_a + (1.0 - cos_a) * vec[1] * vec[1]) * pos[1];
                    q[1] += ((1.0 - cos_a) * vec[1] * vec[2] - vec[0] * sin_a) * pos[2];
                 
                    q[2] += ((1.0 - cos_a) * vec[0] * vec[2] - vec[1] * sin_a) * pos[0];
                    q[2] += ((1.0 - cos_a) * vec[1] * vec[2] + vec[0] * sin_a) * pos[1];
                    q[2] += (cos_a + (1.0 - cos_a) * vec[2] * vec[2]) * pos[2];
    
                    # Move the origin back to the previous position
                    q += first_atom_posn
                    
                    # Set the atom position.
                    atom.setposn(q)
                    
            return angle
                
        return None
        
    def expand(self):
        """
        Expand a residue side chain.
        """
        
        self.expanded = True
        
    def collapse(self):
        """
        Collapse a residue side chain.
        """
        self.expanded = False
        
    def is_expanded(self):
        """
        Return True if side chain of this amino acid is expanded.
        """
        return self.expanded
    
    def set_color(self, color):
        """
        Set a rotamer color for current amino acid.
        """
        self.color = color
        
    def set_backrub_mode(self, enable_backrub):
        """
        Set Rosetta backrub mode (True or False).
        
        @param enable_backrub: should backrub mode be enabled for this residue
        @type enable_backrub: boolean
        """
        self.backrub = enable_backrub
        
    def get_backrub_mode(self):
        """ 
        Get Rosetta backrub mode (True or False).
        
        @return: is backrub enabled for this residue (boolean)
        """
        return self.backrub
    
    pass # end of class Residue