1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
# Copyright 2004-2008 Nanorex, Inc. See LICENSE file for details.
"""
shape_vertices.py - Geometric constructions of vertex lists used
by the drawing functions.
This includes vertices for the shapes of primitives that will go into display
lists in the setup_drawer function in setup_draw.py .
@version: $Id$
@copyright: 2004-2008 Nanorex, Inc. See LICENSE file for details.
History:
Originated by Josh as drawer.py .
Various developers extended it since then.
Brad G. added ColorSorter features.
At some point Bruce partly cleaned up the use of display lists.
071030 bruce split some functions and globals into draw_grid_lines.py
and removed some obsolete functions.
080210 russ Split the single display-list into two second-level lists (with and
without color) and a set of per-color sublists so selection and hover-highlight
can over-ride Chunk base colors. ColorSortedDisplayList is now a class in the
parent's displist attr to keep track of all that stuff.
080311 piotr Added a "drawpolycone_multicolor" function for drawing polycone
tubes with per-vertex colors (necessary for DNA display style)
080313 russ Added triangle-strip icosa-sphere constructor, "getSphereTriStrips".
080420 piotr Solved highlighting and selection problems for multi-colored
objects (e.g. rainbow colored DNA structures).
080519 russ pulled the globals into a drawing_globals module and broke drawer.py
into 10 smaller chunks: glprefs.py setup_draw.py shape_vertices.py
ColorSorter.py CS_workers.py c_renderer.py CS_draw_primitives.py drawers.py
gl_lighting.py gl_buffers.py
"""
# the imports from math vs. Numeric are as discovered in existing code
# as of 2007/06/25. It's not clear why acos is coming from math...
from math import atan2
from Numeric import sin, cos, sqrt, pi
degreesPerRadian = 180.0 / pi
from geometry.VQT import norm, vlen, V, Q, A
from utilities.constants import DIAMOND_BOND_LENGTH
import graphics.drawing.drawing_globals as drawing_globals
# REVIEW: probably we should refactor so we don't depend on assignments
# into drawing_globals as a side effect of importing this module.
# [bruce 081001 comment]
def init_icos():
global icosa, icosix
# the golden ratio
global phi
phi = (1.0+sqrt(5.0))/2.0
vert = norm(V(phi,0,1))
a = vert[0]
b = vert[1]
c = vert[2]
# vertices of an icosahedron
icosa = ((-a,b,c), (b,c,-a), (b,c,a), (a,b,-c), (-c,-a,b), (-c,a,b),
(b,-c,a), (c,a,b), (b,-c,-a), (a,b,c), (c,-a,b), (-a,b,-c))
icosix = ((9, 2, 6), (1, 11, 5), (11, 1, 8), (0, 11, 4), (3, 1, 7),
(3, 8, 1), (9, 3, 7), (0, 6, 2), (4, 10, 6), (1, 5, 7),
(7, 5, 2), (8, 3, 10), (4, 11, 8), (9, 7, 2), (10, 9, 6),
(0, 5, 11), (0, 2, 5), (8, 10, 4), (3, 9, 10), (6, 0, 4))
return
init_icos()
# generate geodesic spheres by subdividing the faces of an icosahedron
# recursively:
# /\ /\
# / \ / \
# / \ /____\
# / \ => /\ /\
# / \ / \ / \
# /__________\ /____\/____\
#
# and normalizing the resulting vectors to the surface of a sphere
def subdivide(tri,deep):
if deep:
a = tri[0]
b = tri[1]
c = tri[2]
a1 = norm(A(tri[0]))
b1 = norm(A(tri[1]))
c1 = norm(A(tri[2]))
d = tuple(norm(a1+b1))
e = tuple(norm(b1+c1))
f = tuple(norm(c1+a1))
return subdivide((a,d,f), deep-1) + subdivide((d,e,f), deep-1) +\
subdivide((d,b,e), deep-1) + subdivide((f,e,c), deep-1)
else: return [tri]
## Get the specific detail level of triangles approximation of a sphere
def getSphereTriangles(level):
ocdec = []
for i in icosix:
ocdec += subdivide((icosa[i[0]],icosa[i[1]],icosa[i[2]]),level)
return ocdec
# ==
# Instead of the above recursive scheme that orients the icosahedron with the
# midpoints of six edges perpendicular to the major axes, use a ring approach
# to make subdivided icosa-spheres for Triangle Strips. The vertices are
# grouped in rings from the North Pole to the South Pole. Each strip zig-zags
# between two rings, and the poles are surrounded by pentagonal Triangle Fans.
#
# ----------------
#
# The pattern of five-fold vertices in a "twisted orange-slice" segment
# covering one-fifth of the icosahedron is:
#
# ... [3,0] ... (North Pole)
# / | \
# / | ...
# / |
# ... [2,1]---[2,0] ...
# / \ / \
# ... \ / \ ...
# \ / \ /
# ... [1,1]---[1,0] ...
# | /
# ... | /
# \ | /
# ... [0,0] ... (South Pole)
#
# ----------------
#
# Higher subdivision levels step the strip verts along the icos edges,
# interpolating intermediate points on the icos and projecting each onto the
# sphere. Note: sphere vertex normals are the same as their coords.
#
# The "*"s show approximate vertex locations at each subdivision level.
# Bands are numbered from South to North. (Reason explained below.)
# Sub-band numbers are in angle-brackets, "<>".
#
# Level 0 [3*0] Level 1 [6*0] Level 2 [12*0] _<3>
# / | (2 steps) / | <1> (4 steps) *-* _<2>
# Band 2 / | * - * *-*-* _<1>
# / | / | / | <0> *-*-*-* _<0>
# [2*1]- -[2*0] => [4*2]-*-[4*0] => [8*4]***[8*0] _<3>
# \ / \ \ / \ / \ <1> *-*-*-*-* _<2>
# Band 1 \ / \ * - * - * *-*-*-*-* _<1>
# \ / \ \ / \ / \ <0> *-*-*-*-* _<0>
# [1*1]---[1*0] [2*2]-*-[2*0] [4*4]***[4*0]_<3>
# | / | \ | / <1> *-*-*-* _<2>
# Band 0 | / * - * *-*-* _<1>
# | / | / <0> *-* _<0>
# [0*0] [0*0] [0*0]
#
# ----------------
#
# The reason for rotating east, then going west along the latitude lines, is
# that the "grain" of triangle strip diagonals runs that way in the middle
# band of the icos:
#
# Triangle Strip triangles
#
# 6 ----- 4 ----- 2
# \5,4,6/ \3,2,4/ \
# ... \ / \ / \
# \ /3,4,5\ /1,2,3\
# 5 ----- 3 ----- 1 <- Vertex order
#
# This draws triangles 1-2-3, 3-2-4, 3-4-5, and 5-4-6, all counter-clockwise
# so the normal directions don't flip-flop.
#
# ----------------
#
# This version optimizes by concatenating vertices for separate Triangle Fan
# and Triangle Strip calls into a single long Triangle Strip to minimize calls.
#
# In the "pentagon cap" band at the top of the icos, points 2, 4, and 6 in the
# above example are collapsed to the North Pole; at the bottom, points 1, 3,
# and 5 are collapsed to the South Pole. This makes "null triangles" with one
# zero-length edge, and the other two edges echoing one of the other triangle
# edges (5,4,6 and 3,2,4 at the top, and 3,4,5 and 1,2,3 at the bottom.)
#
# In the subdivided caps, the icosahedron bands are split into horizontal
# sub-bands. In the tapering-in sub-bands in the North cap, there is one less
# vertex on the top edges of sub-bands, so we collapse the *LAST* triangle
# there (e.g. 5,4,6 above) On the bottom edges of the South cap bands there
# is one less vertex, so we collapse the *FIRST* triangle (e.g. 1,2,3.)
#
# Similarly, moving from the end of each sub-band to the beginning of the next
# requires a *pair* of null triangles. We get that by simply concatenating the
# wrapped triangle strips. We orient point pairs in the triangle strip from
# south to north, so this works as long as we jog northward between (sub-)bands.
# This is the reason we start the Triangle Strip with the South Pole band.
#
def getSphereTriStrips(level):
steps = 2**level
points = [] # Triangle Strip vertices o be returned.
# Construct an icosahedron with two vertices at the North and South Poles,
# +-1 on the Y axis, as you look toward the X-Y plane with the Z axis
# pointing out at you. The "middle ring" vertices are all at the same
# +-latitudes, on the intersection circles of the globe with a polar-axis
# cylinder of the proper radius.
#
# The third "master vertex" of the icosahedron is placed on the X-Y plane,
# which intersects the globe at the Greenwich Meridian (the semi-circle at
# longitude 0, through Greenwich Observatory, 5 miles south-east of London.)
#
# The X (distance from the polar axis) and Y (height above the equatorial
# plane) of the master vertex make a "golden rectangle", one unit high by
# "phi" (1.6180339887498949) wide. We normalize this to put it on the
# unit-radius sphere, and take the distance from the axis as the cylinder
# radius used to generate the rest of the vertices of the two middle rings.
#
# Plotted on the globe, the master vertex (first vertex of the North ring)
# is lat-long 31.72,0 due south of London in Africa, about 45 miles
# south-southwest of Benoud, Algeria. The first vertex of the south ring is
# rotated 1/10 of a circle east, at lat-long -31.72,36 in the south end of
# the Indian Ocean, about 350 miles east-southeast of Durban, South Africa.
#
vert0 = norm(V(phi,1,0)) # Project the "master vertex" onto a unit sphere.
cylRad = vert0[0] # Icos vertex distance from the Y axis.
ringLat = atan2(vert0[1], vert0[0]) * degreesPerRadian # Latitude +-31.72 .
# Basic triangle-strip icosahedron vertices. Start and end with the Poles.
# Reflect the master vertex into the southern hemisphere and rotate 5 copies
# to make the middle rings of 5 vertices at North and South latitudes.
p2_5 = 2*pi / 5.0
# Simplify indexing by replicating the Poles, so everything is in fives.
icosRings = [ 5 * [V(0.0, -1.0, 0.0)], # South Pole.
# South ring, first edge *centered on* the Greenwich Meridian.
[V(cylRad*cos((i-.5)*p2_5),-vert0[1], cylRad*sin((i-.5)*p2_5))
for i in range(5)],
# North ring, first vertex *on* the Greenwich Meridian.
[V(cylRad*cos(i*p2_5 ), vert0[1], cylRad*sin(i*p2_5))
for i in range(5)],
5 * [V(0.0, 1.0, 0.0)] ] # North Pole.
# Three bands, going from bottom to top (South to North.)
for band in range(3):
lowerRing = icosRings[band]
upperRing = icosRings[band+1]
# Subdivide bands into sub-bands. When level == 0, steps == 1,
# subBand == 0, and we get just the icosahedron out. (Really!)
for subBand in range(steps):
# Account for the tapering-in at the poles, making less points on
# one edge of a sub-band than there are on the other edge.
botOffset = 0
if band is 0: # South.
botSteps = max(subBand, 1) # Don't divide by zero.
topSteps = subBand + 1
# Collapse the *first* triangle of south sub-band bottom edges.
botOffset = -1
elif band is 1: # Middle.
botSteps = topSteps = steps
else: # band is 2: North.
botSteps = steps - subBand
topSteps = max(steps - (subBand+1), 1)
pass
subBandSteps = max(botSteps, topSteps)
# Do five segments, clockwise around the North Pole (East to West.)
for seg in range(5):
nextseg = (seg+1) % 5 # Wrap-around.
# Interpolate ends of bottom & top edges of a sub-band segment.
fractBot = float(subBand)/float(steps)
fractTop = float(subBand+1)/float(steps)
sbBotRight = fractBot * upperRing[seg] + \
(1.0-fractBot) * lowerRing[seg]
sbTopRight = fractTop * upperRing[seg] + \
(1.0-fractTop) * lowerRing[seg]
sbBotLeft = fractBot * upperRing[nextseg] + \
(1.0-fractBot) * lowerRing[nextseg]
sbTopLeft = fractTop * upperRing[nextseg] + \
(1.0-fractTop) * lowerRing[nextseg]
# Output the right end of the first segment of the sub-band.
# We'll end up wrapping around to this same pair of points at
# the left end of the last segment of the sub-band.
if seg == 0:
# Project verts from icosahedron faces onto the unit sphere.
points += [norm(sbBotRight), norm(sbTopRight)]
# Step across the sub-band edges from right to left,
# stitching triangle pairs from their lower to upper edges.
for step in range(1, subBandSteps+1):
# Interpolate step point pairs along the sub-band edges.
fractLower = float(step+botOffset)/float(botSteps)
lower = fractLower * sbBotLeft + \
(1.0-fractLower) * sbBotRight
# Collapse the *last* triangle of north sub-band top edges.
fractUpper = float(min(step, topSteps))/float(topSteps)
upper = fractUpper * sbTopLeft + \
(1.0-fractUpper) * sbTopRight
# Output verts, projected from icos faces onto unit sphere.
points += [norm(lower), norm(upper)]
continue # step
continue # seg
continue # subBand
continue # band
return points
def indexVerts(verts, close):
"""
Compress a vertex array into an array of unique vertices, and an array of
index values into the unique vertices. This is good for converting input
for glDrawArrays into input for glDrawElements.
The second arg is 'close', the distance between vertices which are close
enough to be considered a single vertex.
The return value is a pair of arrays (index, verts).
"""
unique = []
index = []
for v in verts:
for i in range(len(unique)):
if vlen(unique[i] - v) < close:
index += [i]
break
pass
else:
index += [len(unique)]
unique += [v]
pass
continue
return (index, unique)
# ==
def init_cyls():
# generate two circles in space as 13-gons, one rotated half a segment with
# respect to the other these are used as cylinder ends [not quite true
# anymore, see comments just below]
slices = 13
circ1 = map((lambda n: n*2.0*pi/slices), range(slices+1))
circ2 = map((lambda a: a+pi/slices), circ1)
drawing_globals.drum0 = drum0 = map((lambda a: (cos(a), sin(a), 0.0)),
circ1)
drum1 = map((lambda a: (cos(a), sin(a), 1.0)), circ2)
drum1n = map((lambda a: (cos(a), sin(a), 0.0)), circ2)
#grantham 20051213 I finally decided the look of the oddly twisted cylinder
# bonds was not pretty enough, so I made a "drum2" which is just drum0 with
# a 1.0 Z coordinate, a la drum1.
#bruce 060609: this apparently introduced the bug of the drum1 end-cap of a
# cylinder being "ragged" (letting empty space show through), which I fixed
# by using drum2 for that cap rather than drum1. drum1 is no longer used
# except as an intermediate value in the next few lines.
drawing_globals.drum2 = drum2 = map((lambda a: (cos(a), sin(a), 1.0)),
circ1)
# This edge list zips up the "top" vertex and normal and then the "bottom"
# vertex and normal. Thus each tuple in the sequence would be (vtop, ntop,
# vbot, nbot) [grantham 20051213]
# (bruce 051215 simplified the python usage in a way which should create the
# same list.)
drawing_globals.cylinderEdges = zip(drum0, drum0, drum2, drum0)
circle = zip(drum0[:-1],drum0[1:],drum1[:-1]) +\
zip(drum1[:-1],drum0[1:],drum1[1:])
circlen = zip(drum0[:-1],drum0[1:],drum1n[:-1]) +\
zip(drum1n[:-1],drum0[1:],drum1n[1:])
drawing_globals.cap0n = (0.0, 0.0, -1.0)
drawing_globals.cap1n = (0.0, 0.0, 1.0)
drum0.reverse()
return
init_cyls()
def init_motors():
###data structure to construct the rotation sign for rotary motor
numSeg = 20
rotS = map((lambda n: pi/2+n*2.0*pi/numSeg), range(numSeg*3/4 + 1))
zOffset = 0.005
scaleS = 0.4
drawing_globals.rotS0n = rotS0n = map(
(lambda a: (scaleS*cos(a), scaleS*sin(a), 0.0 - zOffset)), rotS)
drawing_globals.rotS1n = rotS1n = map(
(lambda a: (scaleS*cos(a), scaleS*sin(a), 1.0 + zOffset)), rotS)
###Linear motor arrow sign data structure
drawing_globals.halfHeight = 0.45
drawing_globals.halfEdge = halfEdge = 3.0 * scaleS * sin(pi/numSeg)
arrow0Vertices = [
(rotS0n[-1][0]-halfEdge, rotS0n[-1][1], rotS0n[-1][2]),
(rotS0n[-1][0]+halfEdge, rotS0n[-1][1], rotS0n[-1][2]),
(rotS0n[-1][0], rotS0n[-1][1] + 2.0*halfEdge, rotS0n[-1][2])]
arrow0Vertices.reverse()
drawing_globals.arrow0Vertices = arrow0Vertices
drawing_globals.arrow1Vertices = [
(rotS1n[-1][0]-halfEdge, rotS1n[-1][1], rotS1n[-1][2]),
(rotS1n[-1][0]+halfEdge, rotS1n[-1][1], rotS1n[-1][2]),
(rotS1n[-1][0], rotS1n[-1][1] + 2.0*halfEdge, rotS1n[-1][2])]
drawing_globals.halfEdge = halfEdge = 1.0/3.0 ##1.0/8.0
drawing_globals.linearArrowVertices = [
(0.0, -halfEdge, 0.0), (0.0, halfEdge, 0.0), (0.0, 0.0,2*halfEdge)]
return
init_motors()
def init_diamond():
# a chunk of diamond grid, to be tiled out in 3d
drawing_globals.sp0 = sp0 = 0.0
#bruce 051102 replaced 1.52 with this constant (1.544),
# re bug 900 (partial fix.)
drawing_globals.sp1 = sp1 = DIAMOND_BOND_LENGTH / sqrt(3.0)
sp2 = 2.0*sp1
sp3 = 3.0*sp1
drawing_globals.sp4 = sp4 = 4.0*sp1
digrid=[[[sp0, sp0, sp0], [sp1, sp1, sp1]],
[[sp1, sp1, sp1], [sp2, sp2, sp0]],
[[sp2, sp2, sp0], [sp3, sp3, sp1]],
[[sp3, sp3, sp1], [sp4, sp4, sp0]],
[[sp2, sp0, sp2], [sp3, sp1, sp3]],
[[sp3, sp1, sp3], [sp4, sp2, sp2]],
[[sp2, sp0, sp2], [sp1, sp1, sp1]],
[[sp1, sp1, sp1], [sp0, sp2, sp2]],
[[sp0, sp2, sp2], [sp1, sp3, sp3]],
[[sp1, sp3, sp3], [sp2, sp4, sp2]],
[[sp2, sp4, sp2], [sp3, sp3, sp1]],
[[sp3, sp3, sp1], [sp4, sp2, sp2]],
[[sp4, sp0, sp4], [sp3, sp1, sp3]],
[[sp3, sp1, sp3], [sp2, sp2, sp4]],
[[sp2, sp2, sp4], [sp1, sp3, sp3]],
[[sp1, sp3, sp3], [sp0, sp4, sp4]]]
drawing_globals.digrid = A(digrid)
drawing_globals.DiGridSp = sp4
return
init_diamond()
def init_cube():
drawing_globals.cubeVertices = cubeVertices = [
[-1.0, 1.0, -1.0], [-1.0, 1.0, 1.0],
[1.0, 1.0, 1.0], [1.0, 1.0, -1.0],
[-1.0, -1.0, -1.0], [-1.0, -1.0, 1.0],
[1.0, -1.0, 1.0], [1.0, -1.0, -1.0]]
#bruce 051117: compute this rather than letting a subroutine hardcode it as
# a redundant constant
flatCubeVertices = []
for threemore in cubeVertices:
flatCubeVertices.extend(threemore)
flatCubeVertices = list(flatCubeVertices) #k probably not needed
drawing_globals.flatCubeVertices = flatCubeVertices
if 1: # remove this when it works
flatCubeVertices_hardcoded = [-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, -1.0, -1.0]
assert flatCubeVertices == flatCubeVertices_hardcoded
sq3 = sqrt(3.0)/3.0
drawing_globals.cubeNormals = [
[-sq3, sq3, -sq3], [-sq3, sq3, sq3],
[sq3, sq3, sq3], [sq3, sq3, -sq3],
[-sq3, -sq3, -sq3], [-sq3, -sq3, sq3],
[sq3, -sq3, sq3], [sq3, -sq3, -sq3]]
drawing_globals.cubeIndices = [
[0, 1, 2, 3], [0, 4, 5, 1], [1, 5, 6, 2],
[2, 6, 7, 3], [0, 3, 7, 4], [4, 7, 6, 5]]
return
init_cube()
# Some variables used by the Lonsdaleite lattice construction.
ux = 1.262
uy = 0.729
dz = 0.5153
ul = 1.544
drawing_globals.XLen = XLen = 2*ux
drawing_globals.YLen = YLen = 6*uy
drawing_globals.ZLen = ZLen = 2*(ul + dz)
def _makeLonsCell():
"""
Data structure to construct a Lonsdaleite lattice cell
"""
lVp = [# 2 outward vertices
[-ux, -2*uy, 0.0], [0.0, uy, 0.0],
# Layer 1: 7 vertices
[ux, -2*uy, ul], [-ux, -2*uy, ul], [0.0, uy, ul],
[ux, 2*uy, ul+dz], [-ux, 2*uy, ul+dz], [0.0, -uy, ul+dz],
[-ux, 4*uy, ul],
# Layer 2: 7 vertices
[ux, -2*uy, 2*(ul+dz)], [-ux, -2*uy, 2*(ul+dz)],
[0.0, uy, 2*(ul+dz)], [ux, 2*uy, 2*ul+dz], [-ux, 2*uy, 2*ul+dz],
[0.0, -uy, 2*ul+dz], [-ux, 4*uy, 2*(ul+dz)]
]
res = [ # 2 outward vertical edges for layer 1
[lVp[0], lVp[3]], [lVp[1], lVp[4]],
# 6 xy Edges for layer 1
[lVp[2], lVp[7]], [lVp[3], lVp[7]], [lVp[7], lVp[4]],
[lVp[4], lVp[6]], [lVp[4], lVp[5]],
[lVp[6], lVp[8]],
# 2 outward vertical edges for layer 2
[lVp[14], lVp[7]], [lVp[13], lVp[6]],
# 6 xy Edges for layer 2
[lVp[14], lVp[9]], [lVp[14], lVp[10]], [lVp[14], lVp[11]],
[lVp[11], lVp[13]], [lVp[11], lVp[12]],
[lVp[13], lVp[15]]
]
return res
drawing_globals.lonsEdges = _makeLonsCell()
|