1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
|
# Copyright 2008-2009 Nanorex, Inc. See LICENSE file for details.
"""
ProteinChunks.py -- defines I{Reduced Protein} display modes.
@author: Piotr
@version: $Id$
@copyright: 2008-2009 Nanorex, Inc. See LICENSE file for details.
History:
piotr 080623: First preliminary version of the protein display style.
piotr 080702: Implemented ribbons and cartoons.
piotr 080709: Making the file compliant with a Protein class.
piotr 080710: Minor fixes.
piotr 080723: Improved rotamer rendering speed.
piotr 080729: Code cleanup.
piotr 080804: Further code cleanup, adding docstrings.
piotr 080904: Added missing docstrings, prepared for review.
"""
import foundation.env as env
from geometry.VQT import V, norm, cross
from graphics.display_styles.displaymodes import ChunkDisplayMode
from graphics.drawing.CS_draw_primitives import drawcylinder
from graphics.drawing.CS_draw_primitives import drawpolycone_multicolor
from graphics.drawing.CS_draw_primitives import drawsphere
from graphics.drawing.CS_draw_primitives import drawline
from graphics.drawing.CS_draw_primitives import drawtriangle_strip
from Numeric import dot
from OpenGL.GL import glMaterialfv
from OpenGL.GL import GL_FRONT_AND_BACK
from OpenGL.GL import GL_AMBIENT_AND_DIFFUSE
from OpenGL.GL import glCallList
from OpenGL.GL import glGenLists
from OpenGL.GL import glNewList
from OpenGL.GL import glEndList
from OpenGL.GL import GL_COMPILE
import colorsys
from utilities.constants import blue, cyan, green, orange, red, white, gray
from utilities.constants import yellow
##### TODO: FIX: The *_worker functions are an internal part of the drawing code
# and should never be called directly from outside it. Doing so makes it
# difficult to modify the drawing code internally. All calls herein to
# drawsphere_worker or drawcylinder_worker should be replaced
# with equivalent calls to drawsphere or drawcylinder (and then if
# that's too much slower, those should be optimized in the drawing
# code, not here). [bruce 090304 comment]
from graphics.drawing.CS_workers import drawcylinder_worker
from graphics.drawing.CS_workers import drawsphere_worker
# Protein display style preferences
from utilities.prefs_constants import proteinStyle_prefs_key
from utilities.prefs_constants import proteinStyleColors_prefs_key
from utilities.prefs_constants import proteinStyleQuality_prefs_key
from utilities.prefs_constants import proteinStyleScaleFactor_prefs_key
from utilities.prefs_constants import proteinStyleScaling_prefs_key
from utilities.prefs_constants import proteinStyleHelixColor_prefs_key
from utilities.prefs_constants import proteinStyleStrandColor_prefs_key
from utilities.prefs_constants import proteinStyleCoilColor_prefs_key
from utilities.prefs_constants import proteinStyleSmooth_prefs_key
try:
from OpenGL.GLE import gleSetJoinStyle
from OpenGL.GLE import TUBE_NORM_PATH_EDGE
from OpenGL.GLE import TUBE_JN_ANGLE
from OpenGL.GLE import TUBE_CONTOUR_CLOSED
from OpenGL.GLE import TUBE_JN_CAP
except:
print "Protein Chunks: GLE module can't be imported. Now trying _GLE"
from OpenGL._GLE import gleSetJoinStyle
from OpenGL._GLE import TUBE_NORM_PATH_EDGE
from OpenGL._GLE import TUBE_JN_ANGLE
from OpenGL._GLE import TUBE_CONTOUR_CLOSED
from OpenGL._GLE import TUBE_JN_CAP
# protein coloring styles
PROTEIN_COLOR_SAME = -1
PROTEIN_COLOR_CHUNK = 0
PROTEIN_COLOR_CHAIN = 1
PROTEIN_COLOR_ORDER = 2
PROTEIN_COLOR_HYDROPATHY = 3
PROTEIN_COLOR_POLARITY = 4
PROTEIN_COLOR_ACIDITY = 5
PROTEIN_COLOR_SIZE = 6
PROTEIN_COLOR_CHARACTER = 7
PROTEIN_COLOR_NOC = 8
PROTEIN_COLOR_SECONDARY = 9
PROTEIN_COLOR_SS_ORDER = 10
PROTEIN_COLOR_BFACTOR = 11
PROTEIN_COLOR_OCCUPANCY = 12
PROTEIN_COLOR_ENERGY = 13
PROTEIN_COLOR_CUSTOM = 14
# protein display styles
PROTEIN_STYLE_CA_WIRE = 1
PROTEIN_STYLE_CA_CYLINDER = 2
PROTEIN_STYLE_CA_BALL_STICK = 3
PROTEIN_STYLE_TUBE = 4
PROTEIN_STYLE_LADDER = 5
PROTEIN_STYLE_ZIGZAG = 6
PROTEIN_STYLE_FLAT_RIBBON = 7
PROTEIN_STYLE_SOLID_RIBBON = 8
PROTEIN_STYLE_SIMPLE_CARTOONS = 9
PROTEIN_STYLE_FANCY_CARTOONS = 10
PROTEIN_STYLE_PEPTIDE_TILES = 11
# I plan to change the following color schemes so they use less
# intrusive colors (maybe just blue-to-white-to-red scale instad
# of red-green-blue spectrum). piotr 080902
# coloring according to amino acid hydropathy scale (Kyte-Doolittle)
AA_COLORS_HYDROPATHY = {
"ALA" : orange,
"ARG" : blue,
"ASN" : blue,
"ASP" : blue,
"CYS" : orange,
"GLN" : blue,
"GLU" : blue,
"GLY" : green,
"HIS" : blue,
"ILE" : red,
"LEU" : red,
"LYS" : blue,
"MET" : orange,
"PHE" : orange,
"PRO" : cyan,
"SER" : green,
"THR" : green,
"TRP" : green,
"TYR" : cyan,
"VAL" : red }
# coloring according to amino acid polarity
AA_COLORS_POLARITY = {
"ALA" : red,
"ARG" : green,
"ASN" : green,
"ASP" : green,
"CYS" : green,
"GLN" : green,
"GLU" : green,
"GLY" : red,
"HIS" : green,
"ILE" : red,
"LEU" : red,
"LYS" : green,
"MET" : red,
"PHE" : red,
"PRO" : red,
"SER" : green,
"THR" : green,
"TRP" : red,
"TYR" : red,
"VAL" : red }
# coloring according to amino acid acidity
AA_COLORS_ACIDITY = {
"ALA" : green,
"ARG" : blue,
"ASN" : green,
"ASP" : red,
"CYS" : green,
"GLN" : green,
"GLU" : red,
"GLY" : green,
"HIS" : blue,
"ILE" : green,
"LEU" : green,
"LYS" : blue,
"MET" : green,
"PHE" : green,
"PRO" : green,
"SER" : green,
"THR" : green,
"TRP" : green,
"TYR" : green,
"VAL" : green }
def compute_spline(data, idx, t):
"""
Implements a Catmull-Rom spline. Interpolates between data[idx] and
data[idx+1] using data[idx-1], data[idx], data[idx+1] and data[idx+2]
points.
@param data: list of data points to interpolate. it needs to have at least
data points, otherwise will cause an exception
@param idx: index of data points to be interpolated between
@type idx: int
@param t: interpolation ratio (0.0 <= t <= 1.0)
@type t: float
@note: this method is basically identical to the one in DnaCylinderChunks,
so it should be splitted out from here and moved to another, more general
file
"""
t2 = t*t
t3 = t2*t
x0 = data[idx-1]
x1 = data[idx]
x2 = data[idx+1]
x3 = data[idx+2]
res = 0.5 * ((2.0 * x1) +
t * (-x0 + x2) +
t2 * (2.0 * x0 - 5.0 * x1 + 4.0 * x2 - x3) +
t3 * (-x0 + 3.0 * x1 - 3.0 * x2 + x3))
return res
def make_tube(points, colors, radii, dpos, resolution=3):
"""
Converts a polycylinder tube into a smooth, curved tube using spline
interpolation of points, colors and radii.
If there is not enough data points, returns the original lists.
Thus, it can be used in the following way:
pos, col, rad, dpos = make_tube(pos, col, rad, dpos, resolution)
Assumes that len(points) == len(colors) == len(radii)
@param points: consecutive points to be interpolated
@type points: list of V or list of float[3]
@param colors: colors corresponding to the points
@type colors: list of colors
@param radii: radii correspoding to individual points
@type radii: list of radii
@param dpos: dpos vectors correspoding to individual points
@type dpos: list of dpos vectors
@param resolution: specifies a number of points intepolated in-between
two consecutive input points
@type resolution: integer
@return: tuple of interpolated (points, colors, radii, dpos)
"""
n = len(points)
if n > 3:
new_points = []
new_colors = []
new_radii = []
new_dpos = []
o = 1
ir = 1.0/float(resolution)
for p in range (1, n-2):
start_spline = 0
end_spline = int(resolution) #@@@
if p == 1:
start_spline = int(resolution / 2 - 1)
if p == n-3:
end_spline = int(resolution / 2 + 1)
for m in range (start_spline, end_spline):
t = ir * m
sp = compute_spline(points, p, t)
sc = compute_spline(colors, p, t)
sr = compute_spline(radii, p, t)
sd = compute_spline(dpos, p, t)
new_points.append(sp)
new_colors.append(sc)
new_radii.append(sr)
new_dpos.append(sd)
t = ir * (m + 1)
sp = compute_spline(points, p, t)
sc = compute_spline(colors, p, t)
sr = compute_spline(radii, p, t)
sd = compute_spline(dpos, p, t)
new_points.append(sp)
new_colors.append(sc)
new_radii.append(sr)
new_dpos.append(sd)
return (new_points, new_colors, new_radii, new_dpos)
else:
return (points, colors, radii, dpos)
# These two methods are identical to these found in DnaCylinderChunks.
def get_rainbow_color(hue, saturation, value):
"""
Gets a color of a hue range limited to 0 - 0.667 (red - blue)
@param hue: color hue (0..1)
@type hue: float
@param saturation: color saturation (0..1)
@type saturation: float
@param value: color value (0..1)
@type value: float
@return: color for given (h,s,v)
"""
hue = 0.666 * (1.0 - hue)
if hue < 0.0:
hue = 0.0
if hue > 0.666:
hue = 0.666
return colorsys.hsv_to_rgb(hue, saturation, value)
def get_rainbow_color_in_range(pos, count, saturation, value):
"""
Gets a color of a hue range limited to 0 - 0.667 (red - blue color range)
correspoding to a "pos" value from (0..count) range.
@param pos: position in (0..count range)
@type pos: integer
@param count: limits the range of allowable values
@type count: integer
@param saturation: color saturation (0..1)
@type saturation: float
@param value: color value (0..1)
@type value: float
@return: color for given (pos, s, v)
"""
if count > 1:
count -= 1
hue = float(pos)/float(count)
if hue < 0.0:
hue = 0.0
if hue > 1.0:
hue = 1.0
return get_rainbow_color(hue, saturation, value)
class ProteinChunks(ChunkDisplayMode):
"""
This class implements drawing of reduced representations of protein
structures. General class structure is copied from DnaCylinderChunks.py
"""
# mmp_code must be a unique 3-letter code, distinct from the values in
# constants.dispNames or in other display modes
mmp_code = 'pro'
disp_label = 'Protein' # label for statusbar fields, menu text, etc.
featurename = "Set Display Protein"
# Pretty sure Bruce's intention is to define icons for subclasses
# of ChunkDisplayMode here, not in mticon_names[] and hideicon_names[]
# in chunks.py. Ask him to be sure. Mark 2008-02-12
icon_name = "modeltree/Protein.png"
hide_icon_name = "modeltree/Protein-hide.png"
def _get_aa_color(self, chunk, pos, n_pos, sec, aa, c_sec, n_sec):
"""
Returns an amino acid color according to the current color mode.
@param chunk: Protein chunk
@type chunk: Chunk with protein attribute available
@param pos: residue sequence position
@type pos: int
@param n_pos: length of the protein sequence
@type n_pos: int
@param sec: secondary structure type (SS_HELIX, SS_STRAND, or SS_COIL)
@type sec: int
@param aa: amino acid name (3-letter code)
@type aa: string
@param c_sec: index of secondary structure element
@type c_sec: int
@param n_sec: number of secondary structure elements
@type n_sec: int
@return: residue color according to curreny color mode, or gray
if wrong parameters were specified
"""
color = gray
if self.proteinStyleColors == PROTEIN_COLOR_ORDER:
# Color according to order of amino acids.
color = get_rainbow_color_in_range(pos, n_pos, 1.0, 1.0)
elif self.proteinStyleColors == PROTEIN_COLOR_CHUNK:
# Assign chunk color
if chunk.color:
color = chunk.color
pass
elif self.proteinStyleColors == PROTEIN_COLOR_POLARITY:
# Color according to amino acid polarity.
if aa in AA_COLORS_POLARITY:
color = AA_COLORS_POLARITY[aa]
elif self.proteinStyleColors == PROTEIN_COLOR_ACIDITY:
# Color according to amino acid acidity.
if aa in AA_COLORS_ACIDITY:
color = AA_COLORS_ACIDITY[aa]
elif self.proteinStyleColors == PROTEIN_COLOR_HYDROPATHY:
# Color according to amino acid hydropathy index.
if aa in AA_COLORS_HYDROPATHY:
color = AA_COLORS_HYDROPATHY[aa]
elif self.proteinStyleColors == PROTEIN_COLOR_SECONDARY:
# Color according to protein secondary structure.
if sec == 1:
color = self.proteinStyleHelixColor
elif sec == 2:
color = self.proteinStyleStrandColor
else:
color = self.proteinStyleCoilColor
elif self.proteinStyleColors == PROTEIN_COLOR_SS_ORDER:
# Color according to the order of secondary structure elements.
if sec > 0:
color = get_rainbow_color_in_range(c_sec, n_sec-1, 1.0, 1.0)
else:
color = self.proteinStyleCoilColor
return color
def drawchunk(self, glpane, chunk, memo, highlighted):
"""
Draws a reduced representation of a protein chunk. This method is called
per chunk, but in fact it draws individual secondary structure elements,
i.e. consecutive part of the protein chain composed of a single type
of secondary structure.
"""
# Note: If the protein model is going to be re-factored in the future
# so that every individual chunk corresponds to a single, homogenoeous
# secondary structure element, this method could be used without
# much changes.
# Retrieve parameters from memo
structure, total_length, ca_list, n_sec = memo
# Get display style settings
style = self.proteinStyle
scaleFactor = self.proteinStyleScaleFactor
resolution = self.proteinStyleQuality
scaling = self.proteinStyleScaling
smooth = self.proteinStyleSmooth
# Set nice joint style for gle Polycone primitives.
gleSetJoinStyle(TUBE_JN_ANGLE | TUBE_NORM_PATH_EDGE \
| TUBE_JN_CAP | TUBE_CONTOUR_CLOSED )
# Iterate over consecutive secondary structure elements.
current_sec = 0
for sec, secondary in structure:
# Number of atoms in SS element including dummy atoms.
n_atoms = len(sec)
# The length should be at least 3.
if n_atoms >= 3:
# Alpha carbon trace styles. Simple but fast.
# Use either lines or cylinder to connect consecutive alpha carbons.
if style == PROTEIN_STYLE_CA_WIRE or \
style == PROTEIN_STYLE_CA_CYLINDER or \
style == PROTEIN_STYLE_CA_BALL_STICK:
for n in range( 1, n_atoms-1 ):
pos0, ss0, aa0, idx0, dpos0, cbpos0 = sec[n - 1]
pos1, ss1, aa1, idx1, dpos1, cbpos1 = sec[n]
pos2, ss2, aa2, idx2, dpos2, cbpos2 = sec[n + 1]
color = self._get_aa_color(chunk,
idx1,
total_length,
ss1,
aa1,
current_sec,
n_sec)
if style == PROTEIN_STYLE_CA_WIRE:
# Wire - use line.
if pos0:
drawline(color,
pos1 + 0.5 * (pos0 - pos1),
pos1,
width=5,
isSmooth=True)
if pos2:
drawline(color,
pos1,
pos1 + 0.5 * (pos2 - pos1),
width=5,
isSmooth=True)
else:
# Cylinder and B&S - use cylinders.
if pos0:
drawcylinder(color,
pos1 + 0.5 * (pos0 - pos1),
pos1,
0.25 * scaleFactor,
capped=1)
if style == PROTEIN_STYLE_CA_BALL_STICK:
drawsphere(color, pos1, 0.5 * scaleFactor, 2)
else:
drawsphere(color, pos1, 0.25 * scaleFactor, 2)
if pos2:
drawcylinder(color,
pos1,
pos1 + 0.5 * (pos2 - pos1),
0.25 * scaleFactor,
capped=1)
elif style == PROTEIN_STYLE_PEPTIDE_TILES:
# Peptide tiles: not implemented yet.
# piotr 080903: this option should be removed
# from Protein Display Style PM.
"""
for n in range( 1, n_atoms-2 ):
pos0, ss0, aa0, idx0, dpos0, cbpos0 = sec[n - 1]
pos1, ss1, aa1, idx1, dpos1, cbpos1 = sec[n]
color = self._get_aa_color(chunk,
idx1,
total_length,
ss1,
aa1,
current_sec,
n_sec)
tri = []
nor = []
col = []
"""
elif style == PROTEIN_STYLE_TUBE or \
style == PROTEIN_STYLE_LADDER or \
style == PROTEIN_STYLE_ZIGZAG or \
style == PROTEIN_STYLE_FLAT_RIBBON or \
style == PROTEIN_STYLE_SOLID_RIBBON or \
style == PROTEIN_STYLE_SIMPLE_CARTOONS or \
style == PROTEIN_STYLE_FANCY_CARTOONS:
# All of these styles use the same interpolated cubic spline
# that connects alpha carbon atoms.
# The following lists store positions, colors, radii and
# peptide bond vectors for consecutive main chain
# positions.
tube_pos = []
tube_col = []
tube_rad = []
tube_dpos = []
# Fill-in the position, color, radius and peptide position
# lists.
for n in range( 2, n_atoms-2 ):
pos00, ss00, a00, idx00, dpos00, cbpos00 = sec[n - 2]
pos0, ss0, aa0, idx0, dpos0, cbpos0 = sec[n - 1]
pos1, ss1, aa1, idx1, dpos1, cbpos1 = sec[n]
pos2, ss2, aa2, idx2, dpos2, cbpos2 = sec[n + 1]
pos22, ss22, aa22, idx22, dpos22, cbpos22 = sec[n + 2]
color = self._get_aa_color(chunk,
idx1,
total_length,
ss1,
aa1,
current_sec,
n_sec)
rad = 0.25 * scaleFactor
if style == PROTEIN_STYLE_TUBE and \
scaling == 1:
if secondary > 0:
rad *= 2.0
if n == 2:
if pos0:
tube_pos.append(pos00)
tube_col.append(V(color))
tube_rad.append(rad)
tube_dpos.append(dpos1)
tube_pos.append(pos0)
tube_col.append(V(color))
tube_rad.append(rad)
tube_dpos.append(dpos1)
if style == PROTEIN_STYLE_LADDER:
drawcylinder(color, pos1, cbpos1, rad * 0.75)
drawsphere(color, cbpos1, rad * 1.5, 2)
if pos1:
tube_pos.append(pos1)
tube_col.append(V(color))
tube_rad.append(rad)
tube_dpos.append(dpos1)
if n == n_atoms - 3:
if pos2:
tube_pos.append(pos2)
tube_col.append(V(color))
tube_rad.append(rad)
tube_dpos.append(dpos1)
tube_pos.append(pos22)
tube_col.append(V(color))
tube_rad.append(rad)
tube_dpos.append(dpos1)
# For smoothed helices we need to add virtual atoms
# located approximately at the centers of peptide bonds
# but slightly moved away from the helix axis.
new_tube_pos = []
new_tube_col = []
new_tube_rad = []
new_tube_dpos = []
if smooth and \
secondary == 1:
for p in range(len(tube_pos)):
new_tube_pos.append(tube_pos[p])
new_tube_col.append(tube_col[p])
new_tube_rad.append(tube_rad[p])
new_tube_dpos.append(tube_dpos[p])
if p > 1 and p < len(tube_pos) - 3:
pv = tube_pos[p-1] - tube_pos[p]
nv = tube_pos[p+2] - tube_pos[p+1]
mi = 0.5 * (tube_pos[p+1] + tube_pos[p])
# The coefficient below was handpicked to make
# the helices approximately round.
mi -= 0.75 * norm(nv+pv)
new_tube_pos.append(mi)
new_tube_col.append(0.5*(tube_col[p]+tube_col[p+1]))
new_tube_rad.append(0.5*(tube_rad[p]+tube_rad[p+1]))
new_tube_dpos.append(0.5*(tube_dpos[p]+tube_dpos[p+1]))
tube_pos = new_tube_pos
tube_col = new_tube_col
tube_rad = new_tube_rad
tube_dpos = new_tube_dpos
if secondary != 1 or \
style != PROTEIN_STYLE_SIMPLE_CARTOONS:
tube_pos, tube_col, tube_rad, tube_dpos = make_tube(
tube_pos,
tube_col,
tube_rad,
tube_dpos,
resolution=resolution)
if style == PROTEIN_STYLE_ZIGZAG or \
style == PROTEIN_STYLE_FLAT_RIBBON or \
style == PROTEIN_STYLE_SOLID_RIBBON or \
style == PROTEIN_STYLE_SIMPLE_CARTOONS or \
style == PROTEIN_STYLE_FANCY_CARTOONS:
last_pos = None
last_width = 1.0
reset = False
# Find SS element widths and determine width increment.
if secondary == 0:
# Coils have a constant width.
width = scaleFactor * 0.1
dw = 0.0
elif secondary == 1:
# Helices expand and shrink at the ends.
width = scaleFactor * 0.1
dw = (1.0 * scaleFactor) / (resolution - 3)
else:
# Strands just shrink at the C-terminal end.
width = scaleFactor * 1.0
dw = (1.5 * scaleFactor) / ((1.5 * resolution) - 3)
if style == PROTEIN_STYLE_FLAT_RIBBON or \
style == PROTEIN_STYLE_SOLID_RIBBON or \
style == PROTEIN_STYLE_SIMPLE_CARTOONS or \
style == PROTEIN_STYLE_FANCY_CARTOONS:
tri_arr0 = []
nor_arr0 = []
col_arr0 = []
if style == PROTEIN_STYLE_SOLID_RIBBON or \
style == PROTEIN_STYLE_SIMPLE_CARTOONS or \
style == PROTEIN_STYLE_FANCY_CARTOONS:
tri_arr1 = []
nor_arr1 = []
col_arr1 = []
tri_arr2 = []
nor_arr2 = []
col_arr2 = []
tri_arr3 = []
nor_arr3 = []
col_arr3 = []
# This should be done faster... are individual
# copies of the tube positions really necessary?
###from copy import copy
###new_tube_dpos = [dpos for dpos in tube_dpos]
# Auxiliary tube positions for FANCY_CARTOON helices.
tube_pos_left = [tube_pos[0]]
tube_pos_right = [tube_pos[0]]
for n in range(1, len(tube_pos)-1):
pos = tube_pos[n]
col = tube_col[n][0]
col2 = tube_col[n+1][0]
if last_pos:
next_pos = tube_pos[n+1]
dpos1 = last_width * tube_dpos[n-1]
dpos2 = width * tube_dpos[n]
ddpos = dpos1-dpos2
if reset:
dpos1 = dpos2
reset = False
if self.proteinStyle == PROTEIN_STYLE_ZIGZAG:
# The line calls below draw an outline
# of ribbon triangles.
drawline(col,
last_pos-dpos1,
pos-dpos2,
width=3)
drawline(col,
last_pos+dpos1,
pos+dpos2,
width=3)
drawline(col,
last_pos-dpos1,
pos+dpos2,
width=1)
drawline(col,
pos-dpos2,
pos+dpos2,
width=1)
drawline(col,
last_pos-dpos1,
last_pos+dpos1,
width=1)
if self.proteinStyle == PROTEIN_STYLE_FLAT_RIBBON:
# Flat ribbon only draws a single
# layer of triangles.
if pos != last_pos:
nvec1 = norm(cross(dpos1, pos-last_pos))
if next_pos != pos:
nvec2 = norm(cross(dpos2, next_pos-pos))
else:
nvec2 = nvec1
nor_arr0.append(nvec1)
nor_arr0.append(nvec1)
nor_arr0.append(nvec2)
nor_arr0.append(nvec2)
tri_arr0.append(last_pos-dpos1)
tri_arr0.append(last_pos+dpos1)
tri_arr0.append(pos-dpos2)
tri_arr0.append(pos+dpos2)
col_arr0.append(col)
col_arr0.append(col)
col_arr0.append(col2)
col_arr0.append(col2)
if self.proteinStyle == PROTEIN_STYLE_SOLID_RIBBON or \
self.proteinStyle == PROTEIN_STYLE_SIMPLE_CARTOONS or \
self.proteinStyle == PROTEIN_STYLE_FANCY_CARTOONS:
# These three styles are similar.
# The difference between "solid ribbon"
# and "fancy cartoons" is that the
# cartoons mode uses rounded edges
# on helices, while solid ribbon uses
# just a flat edge. The difference between
# simple cartoons and fancy cartoons or
# solid ribbon is that the simple cartoons
# mode use simple straight cylinders to
# represent alpha helices.
if secondary > 0:
# Prepare triangle strips positioned
# along interpolated curve connecting
# consecutive alpha carbon atoms
col3 = col4 = V(gray)
if pos != last_pos:
nvec1 = norm(cross(dpos1, pos-last_pos))
if next_pos != pos:
nvec2 = norm(cross(dpos2, next_pos-pos))
else:
nvec2 = nvec1
nor_arr0.append(nvec1)
nor_arr0.append(nvec1)
nor_arr0.append(nvec2)
nor_arr0.append(nvec2)
if self.proteinStyle == PROTEIN_STYLE_FANCY_CARTOONS:
dn1 = 0.15 * nvec1 * scaleFactor
dn2 = 0.15 * nvec2 * scaleFactor
else:
dn1 = 0.15 * nvec1 * scaleFactor
dn2 = 0.15 * nvec2 * scaleFactor
tri_arr0.append(last_pos - dpos1 - dn1)
tri_arr0.append(last_pos + dpos1 - dn1)
tri_arr0.append(pos - dpos2 - dn2)
tri_arr0.append(pos + dpos2 - dn2)
tube_pos_left.append(last_pos - dpos1)
tube_pos_right.append(last_pos + dpos1)
col_arr0.append(col)
col_arr0.append(col)
col_arr0.append(col2)
col_arr0.append(col2)
nor_arr1.append(nvec1)
nor_arr1.append(nvec1)
nor_arr1.append(nvec2)
nor_arr1.append(nvec2)
tri_arr1.append(last_pos - dpos1 + dn1)
tri_arr1.append(last_pos + dpos1 + dn1)
tri_arr1.append(pos - dpos2 + dn2)
tri_arr1.append(pos + dpos2 + dn2)
if secondary == 1:
col_arr1.append(
0.5 * col + 0.5 * V(white))
col_arr1.append(
0.5 * col + 0.5 * V(white))
col_arr1.append(
0.5 * col2 + 0.5 * V(white))
col_arr1.append(
0.5 * col2 + 0.5 * V(white))
else:
col_arr1.append(col)
col_arr1.append(col)
col_arr1.append(col2)
col_arr1.append(col2)
nor_arr2.append(-dpos1)
nor_arr2.append(-dpos1)
nor_arr2.append(-dpos2)
nor_arr2.append(-dpos2)
tri_arr2.append(last_pos - dpos1 - dn1)
tri_arr2.append(last_pos - dpos1 + dn1)
tri_arr2.append(pos - dpos2 - dn2)
tri_arr2.append(pos - dpos2 + dn2)
col_arr2.append(col3)
col_arr2.append(col3)
col_arr2.append(col4)
col_arr2.append(col4)
nor_arr3.append(-dpos1)
nor_arr3.append(-dpos1)
nor_arr3.append(-dpos2)
nor_arr3.append(-dpos2)
tri_arr3.append(last_pos + dpos1 - dn1)
tri_arr3.append(last_pos + dpos1 + dn1)
tri_arr3.append(pos + dpos2 - dn2)
tri_arr3.append(pos + dpos2 + dn2)
col_arr3.append(col3)
col_arr3.append(col3)
col_arr3.append(col4)
col_arr3.append(col4)
last_pos = pos
last_width = width
if secondary == 1:
if n > len(tube_pos) - resolution:
width -= dw
elif width < 1.0 * scaleFactor:
width += dw
if secondary == 2:
if n == len(tube_pos) - 1.5 * resolution:
width = scaleFactor * 1.6
reset = True
if n > len(tube_pos) - 1.5 * resolution:
width -= dw
###new_tube_dpos[n] = dpos1
# Append dummy positions at both ends for
# GLE polycone rendering.
tube_pos_left.append(tube_pos[-2])
tube_pos_right.append(tube_pos[-2])
tube_pos_left.append(tube_pos[-1])
tube_pos_right.append(tube_pos[-1])
if self.proteinStyle == PROTEIN_STYLE_FLAT_RIBBON:
# Note: the "-2" opacity component in the color list
# tells the ColorSorter that this is a multi color
# object and "color material" should be enabled
# while rendering it.
drawtriangle_strip(
[1.0,1.0,0.0,-2.0], tri_arr0, nor_arr0, col_arr0)
if self.proteinStyle == PROTEIN_STYLE_SOLID_RIBBON or \
self.proteinStyle == PROTEIN_STYLE_SIMPLE_CARTOONS or \
self.proteinStyle == PROTEIN_STYLE_FANCY_CARTOONS:
if secondary == 0:
drawpolycone_multicolor(
[0,0,0,-2], tube_pos, tube_col, tube_rad)
else:
if (secondary == 1 and
self.proteinStyle == PROTEIN_STYLE_SOLID_RIBBON) or \
secondary == 2:
drawtriangle_strip(
[1.0,1.0,0.0,-2.0],
tri_arr0, nor_arr0, col_arr0)
drawtriangle_strip(
[1.0,1.0,0.0,-2.0],
tri_arr1, nor_arr1, col_arr1)
drawtriangle_strip(
[1.0,1.0,0.0,-2.0],
tri_arr2, nor_arr2, col_arr2)
drawtriangle_strip([1.0,1.0,0.0,-2.0],
tri_arr3, nor_arr3, col_arr3)
# Fill in the strand N-terminal end.
quad_tri = []
quad_nor = []
quad_col = []
quad_tri.append(tri_arr2[0])
quad_tri.append(tri_arr3[0])
quad_tri.append(tri_arr2[1])
quad_tri.append(tri_arr3[1])
quad_nor.append(nor_arr2[0])
quad_nor.append(nor_arr3[0])
quad_nor.append(nor_arr2[1])
quad_nor.append(nor_arr3[1])
quad_col.append(col_arr2[0])
quad_col.append(col_arr3[0])
quad_col.append(col_arr2[1])
quad_col.append(col_arr3[1])
drawtriangle_strip(
[1.0,1.0,1.0,-2.0], quad_tri, quad_nor,quad_col)
if (secondary == 1 and self.proteinStyle == PROTEIN_STYLE_FANCY_CARTOONS):
# Draw smooth tubes at the edges of the
# helices.
drawtriangle_strip(
[1.0,1.0,0.0,-2.0],
tri_arr0, nor_arr0, col_arr0)
drawtriangle_strip([
1.0,1.0,0.0,-2.0],
tri_arr1, nor_arr1, col_arr1)
drawpolycone_multicolor(
[0,0,0,-2],
tube_pos_left, tube_col, tube_rad)
drawpolycone_multicolor(
[0,0,0,-2],
tube_pos_right, tube_col, tube_rad)
if (secondary == 1 and style == PROTEIN_STYLE_SIMPLE_CARTOONS):
drawcylinder(tube_col[0][0],
tube_pos[1],
tube_pos[-3], 2.5, capped=1)
if style == PROTEIN_STYLE_LADDER or \
style == PROTEIN_STYLE_TUBE:
# Draw a smooth tube connecting alpha carbon positions.
drawpolycone_multicolor([0,0,0,-2],
tube_pos,
tube_col,
tube_rad)
# Increase secondary structure element counter (for coloring
# by "secondary structure elements order").
current_sec += 1
def drawchunk_selection_frame(self, glpane, chunk, selection_frame_color, memo, highlighted):
"""
Given the same arguments as drawchunk, plus selection_frame_color,
draw the chunk's selection frame.
(Drawing the chunk itself as well would not cause drawing errors
but would presumably be a highly undesirable slowdown, especially if
redrawing after selection and deselection is optimized to not have to
redraw the chunk at all.)
@note: in the initial implementation of the code that calls this method,
the highlighted argument might be false whether or not we're actually
hover-highlighted. And if that's fixed, then just as for drawchunk,
we might be called twice when we're highlighted, once with
highlighted = False and then later with highlighted = True.
This method seems to be obsolete. piotr 080803
"""
self.drawchunk(self, glpane, chunk, selection_frame_color, memo, highlighted)
return
def drawchunk_realtime(self, glpane, chunk, highlighted=False):
"""
Draws protein rotamers.
This is a hack for having atomistic and reduced models displayed
simultenaously. This method creates its own display list to store
"expanded" rotamers drawn as tubes. Different colors can be assigned
to individual rotamers.
piotr 080801: Backbone atoms are omitted.
"""
# Draw rotamers using a display list. Create it if necessary.
# Note: the only command that uses this feature is Edit
# Rotamers. The purpose of this feature is to have
# an atomistic-like display style on top of a reduced
# representation.
# Note: this implementation may have bugs. The major problem
# is that the display list is never explicitly deleted,
# so using this feature may introduce memory leaks (I am
# not sure about that).
# The rotamer is rendered using a style resembling "Tubes".
if chunk.protein:
if highlighted:
# If highlighhting, just draw everything without using
# the display list.
color = yellow
aa_list = chunk.protein.get_amino_acids()
glMaterialfv(
GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE,
color[:3])
for aa in aa_list:
if chunk.protein.is_expanded(aa):
aa_atom_list = aa.get_side_chain_atom_list()
for atom in aa_atom_list:
pos1 = atom.posn()
drawsphere_worker((pos1, 0.2, 1, 1))
for bond in atom.bonds:
if atom == bond.atom1:
if bond.atom2 in aa_atom_list:
pos2 = bond.atom2.posn()
drawcylinder_worker((
pos1,
pos1 + 0.5*(pos2 - pos1),
0.2,
True))
else:
if bond.atom1 in aa_atom_list:
pos2 = bond.atom1.posn()
drawcylinder_worker((
pos1,
pos1 + 0.5*(pos2 - pos1),
0.2,
True))
else:
"""
from PyQt4.Qt import QFont, QString, QColor, QFontMetrics
labelFont = QFont( QString("Lucida Grande"), 16)
fm = QFontMetrics(labelFont)
"""
if not chunk.protein.residues_dl:
# Create a new residues display list if one is not present.
chunk.protein.residues_dl = glGenLists(1)
glNewList(chunk.protein.residues_dl, GL_COMPILE)
aa_list = chunk.protein.get_amino_acids()
for aa in aa_list:
# Iterate over amino acids and check if any rotamer
# is in 'expanded' state.
if chunk.protein.is_expanded(aa):
aa_atom_list = aa.get_side_chain_atom_list()
for atom in aa_atom_list:
pos1 = chunk.abs_to_base(atom.posn())
if aa.color:
color = aa.color
else:
color = atom.drawing_color()
glMaterialfv(
GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE,
color[:3])
##### TODO: FIX: The *_worker functions should never be
# called directly from outside the drawing code. See longer
# comment where they are imported. [bruce 090304 comment]
drawsphere_worker((pos1, 0.2, 1, 1))
### _name = aa.get_atom_name(atom)
### textpos = chunk.abs_to_base(atom.posn()) + 2.0 * glpane.out
### glColor3f(1,1,1)
### chunk.glpane.renderText(textpos[0], textpos[1], textpos[2], _name, labelFont)
# Draw bonds
for bond in atom.bonds:
if bond.atom2 in aa_atom_list:
if atom == bond.atom1:
if bond.atom2 in aa_atom_list:
pos2 = chunk.abs_to_base(
bond.atom2.posn())
drawcylinder_worker((
pos1,
pos1 + 0.5*(pos2 - pos1),
0.2,
True))
else:
if bond.atom1 in aa_atom_list:
pos2 = chunk.abs_to_base(
bond.atom1.posn())
drawcylinder_worker((
pos1,
pos1 + 0.5*(pos2 - pos1),
0.2,
True))
glEndList()
# Call the residues display list
glCallList(chunk.protein.residues_dl)
return
def writepov(self, chunk, memo, file):
"""
Renders the chunk to a POV-Ray file.
Not implemented yet.
"""
return
def compute_memo(self, chunk):
"""
If drawing chunks in this display mode can be optimized by precomputing
some info from chunk's appearance, compute that info and return it.
If this computation requires preference values, access them as
env.prefs[key], and that will cause the memo to be removed (invalidated)
when that preference value is changed by the user.
This computation is assumed to also depend on, and only on, chunk's
appearance in ordinary display modes (i.e. it's invalidated whenever
havelist is). There is not yet any way to change that, so bugs will
occur if any ordinarily invisible chunk info affects this rendering,
and potential optimizations will not be done if any ordinarily visible
info is not visible in this rendering. These can be fixed if necessary
by having the real work done within class Chunk's _recompute_ rules,
with this function or drawchunk just accessing the result of that
(and sometimes causing its recomputation), and with whatever
invalidation is needed being added to appropriate setter methods of
class Chunk. If the real work can depend on more than chunk's ordinary
appearance can, the access would need to be in drawchunk;
otherwise it could be in drawchunk or in this method compute_memo().
@param chunk: The chunk.
@type chunk: chunk
"""
def _get_ss(aa):
"""
Returns secondary structure for a residue, or SS_COIL if
aa is None
@param aa: amino acid
@type aa: Residue
"""
if aa:
return aa.get_secondary_structure()
return SS_COIL # BUG: Undefined variable
def _get_aa(aa):
"""
Returns a three-letter amino acid code for a residue,
or "UNK" if aa is None.
@param aa: amino acid
@type aa: Residue
"""
if aa:
return aa.get_three_letter_code()
return "UNK"
# Return None if the chunk is None
if chunk is None:
return None
# Return None if the chunk is not a protein.
if chunk.protein is None:
return None
# List of secondary structure elements
structure = []
# Retrieve protein style properties from user preferences.
self.proteinStyle = env.prefs[proteinStyle_prefs_key] + 1
self.proteinStyleSmooth = env.prefs[proteinStyleSmooth_prefs_key]
self.proteinStyleQuality = 2 * env.prefs[proteinStyleQuality_prefs_key]
self.proteinStyleScaling = env.prefs[proteinStyleScaling_prefs_key]
self.proteinStyleScaleFactor = env.prefs[proteinStyleScaleFactor_prefs_key]
self.proteinStyleColors = env.prefs[proteinStyleColors_prefs_key]
self.proteinStyleAuxColors = 0
self.proteinStyleCustomColor = gray
self.proteinStyleAuxCustomColor = gray
self.proteinStyleColorsDiscrete = False
self.proteinStyleHelixColor = env.prefs[proteinStyleHelixColor_prefs_key]
self.proteinStyleStrandColor = env.prefs[proteinStyleStrandColor_prefs_key]
self.proteinStyleCoilColor = env.prefs[proteinStyleCoilColor_prefs_key]
# Extract secondary structure elements
# Every element is a list of consecutive C-alpha atoms of the same
# secondary structure conformation. The list also includes
# two "dummy" atoms - either preceding and following residues, or
# pre-computed dummy atoms extensions.
# Empty SS element.
sec = []
# Extract a list of alpha carbon atoms and corresponding C-O vectors.
# The C-O vectors are rotated to avoid sudden orientation changes.
ca_list = []
# "dpos" in the ProteinChunk code corresponds to a vector perpendicular
# to Ca-Ca vector and laying in a peptide plane. Roughly, this vector
# corresponds to a normalized C=O bond of a peptide carbonyl.
# "dpos" vectors can be flipped so the angle between consecutive
# "dpos" vectors is less than 90 degree to avoid visual problems.
# dictionary of corresponding Ca-Cb atoms for rendering of the
# "Ladder" style.
ca_cb = {}
n_ca = 0
last_c_atom = None
last_o_atom = None
last_dpos = None
last_ca_atom = None
# Calculate "dpos" vectors paralles to the peptide planes.
for aa in chunk.protein.get_amino_acids():
last_c_atom = aa.get_c_atom()
last_o_atom = aa.get_o_atom()
last_cb_atom = aa.get_c_beta_atom()
ca_atom = aa.get_c_alpha_atom()
if ca_atom:
dpos = None
if last_o_atom and last_c_atom:
dpos = norm(last_o_atom.posn() - last_c_atom.posn())
if last_dpos:
dca = ca_atom.posn() - last_ca_atom.posn()
npep = cross(dca, dpos) # normal to the peptide plane
dpos = norm(cross(npep, dca))
n0 = last_dpos
n1 = dpos
d = dot(n0, n1)
# Flip dpos if the angle between consecutive planes
# is > 90 deg.
if d < 0.0:
dpos = -1.0 * dpos
last_dpos = dpos
ca_list.append((ca_atom,
chunk.abs_to_base(ca_atom.posn()),
_get_ss(aa),
_get_aa(aa),
dpos))
last_ca_atom = ca_atom
n_ca += 1
if last_cb_atom:
ca_cb[ca_atom] = chunk.abs_to_base(last_cb_atom.posn())
elif last_ca_atom:
ca_cb[ca_atom] = chunk.abs_to_base(last_ca_atom.posn())
for p in range(len(ca_list)-1):
atom, pos, ss, aa, dpos = ca_list[p]
if dpos == None:
atom2, pos2, ss2, aa2, dpos2 = ca_list[p+1]
ca_list[p] = (atom, pos, ss, aa, dpos2)
anum = 0
# Smoothing alpha-helices and beta-strands. The consecutive "dpos"
# vectors are smoothed using a sliding windows and weighted average.
# Beta-strands use longer averaging window than alpha-helices.
if self.proteinStyleSmooth and \
(self.proteinStyle == PROTEIN_STYLE_TUBE or
self.proteinStyle == PROTEIN_STYLE_LADDER or
self.proteinStyle == PROTEIN_STYLE_ZIGZAG or
self.proteinStyle == PROTEIN_STYLE_FLAT_RIBBON or
self.proteinStyle == PROTEIN_STYLE_SOLID_RIBBON or \
self.proteinStyle == PROTEIN_STYLE_SIMPLE_CARTOONS or \
self.proteinStyle == PROTEIN_STYLE_FANCY_CARTOONS):
smooth_list = []
for i in range(len(ca_list)):
if i > 0:
prev_ca, prev_ca_pos, prev_ss, prev_aa, prev_dpos = ca_list[i - 1]
else:
prev_ca = None
prev_ca_pos = None
prev_ss = 0
prev_aa = None
prev_dpos = None
ca, ca_pos, ss, aa, dpos = ca_list[i]
if i < n_ca - 1:
next_ca, next_ca_pos, next_ss, next_aa, next_dpos = ca_list[i + 1]
else:
next_ca = None
next_ca_pos = None
next_ss = 0
next_aa = None
next_dpos = None
if (ss == 1 or prev_ss == 1 or next_ss == 1) and prev_ca and next_ca:
if prev_dpos and next_dpos:
dpos = norm(prev_dpos + dpos + next_dpos)
smooth_list.append((ca, ca_pos, ss, aa, dpos, i))
if (ss == 2 or prev_ss == 2 or next_ss == 2) and prev_ca and next_ca:
ca_pos = 0.5 * (0.5 * (prev_ca_pos + next_ca_pos) + ca_pos)
if next_ss == 2 and prev_ss == 2:
dpos = norm(prev_dpos + dpos + next_dpos)
smooth_list.append((ca, ca_pos, ss, aa, dpos, i))
for ca, ca_pos, ss, aa, dpos, i in smooth_list:
ca_list[i] = (ca, ca_pos, ss, aa, dpos)
# Build the list of secondary structure elements.
n_sec = 0
for i in range( n_ca ):
ca, ca_pos, ss, aa, dpos = ca_list[i]
if i > 0:
prev_ca, prev_ca_pos, prev_ss, prev_aa, prev_dpos = ca_list[i - 1]
else:
prev_ca = ca
prev_ca_pos = ca_pos
prev_ss = ss
prev_aa = aa
prev_dpos = dpos
if i > 1:
prev2_ca, prev2_ca_pos, prev2_ss, prev2_aa, prev2_dpos = ca_list[i - 2]
else:
prev2_ca = prev_ca
prev2_ca_pos = prev_ca_pos
prev2_ss = prev_ss
prev2_aa = prev_aa
prev2_dpos = prev_dpos
if len(sec) == 0:
sec.append((prev2_ca_pos, prev2_ss, prev2_aa, i - 2, prev2_dpos, ca_cb[prev2_ca]))
sec.append((prev_ca_pos, prev_ss, prev_aa, i - 1, prev_dpos, ca_cb[prev_ca]))
sec.append((ca_pos, ss, aa, i, dpos, ca_cb[ca]))
if i < n_ca - 1:
next_ca, next_ca_pos, next_ss, next_aa, next_dpos = ca_list[i + 1]
else:
next_ca = ca
next_ca_pos = ca_pos
next_ss = ss
next_aa = aa
next_dpos = dpos
if next_ss != ss or i == n_ca-1:
if i < n_ca - 2:
next2_ca, next2_ca_pos, next2_ss, next2_aa, next2_dpos = ca_list[i + 2]
else:
next2_ca = next_ca
next2_ca_pos = next_ca_pos
next2_ss = next_ss
next2_aa = next_aa
next2_dpos = next_dpos
# Preasumably, the sec list includes all atoms
# inside a continuous secondary structure chain fragment
# (ss element) and FOUR dummy atom positions (two at
# each of both terminals).
# The dummy atom positions can't be None and therefore
# the spline interpolator has to compute fake positions
# of the terminal atoms.
sec.append((next_ca_pos, next_ss, next_aa, i + 1, dpos, ca_cb[next_ca]))
sec.append((next2_ca_pos, next2_ss, next2_aa, i + 2, dpos, ca_cb[next2_ca]))
# Fix the endings.
pos1, ss1, aa1, idx1, dpos1, cbpos1 = sec[1]
pos2, ss2, aa2, idx2, dpos2, cbpos2 = sec[2]
pos3, ss3, aa3, idx3, dpos3, cbpos3 = sec[3]
### pos4, ss4, aa4, idx4, dpos4, cbpos4 = sec[4]
if pos1 == pos2:
pos1 = pos1 - (pos3 - pos2)
sec[1] = (pos1, ss1, aa1, idx1, dpos1, cbpos1)
pos1, ss1, aa1, idx1, dpos1, cbpos1 = sec[-2]
pos2, ss2, aa2, idx2, dpos2, cbpos2 = sec[-3]
pos3, ss3, aa3, idx3, dpos3, cbpos3 = sec[-4]
### pos4, ss4, aa4, idx4, dpos4, cbpos4 = sec[-5]
if pos1 == pos2:
pos1 = pos1 - (pos3 - pos2)
sec[-2] = (pos1, ss1, aa1, idx1, dpos1, cbpos1)
# Make sure that the interior surface of helices
# is properly oriented. This is important for "Fancy Cartoons"
# display style.
if ss == 1:
pos2, ss2, aa2, idx2, dpos2, cbpos2 = sec[2]
pos3, ss3, aa3, idx3, dpos3, cbpos3 = sec[3]
pos4, ss4, aa4, idx4, dpos4, cbpos4 = sec[4]
xvec = cross(pos4-pos3, pos3-pos2)
sign = dot(xvec, dpos3)
if sign > 0:
# Wrong helix face orientation, invert peptide plates
for n in range(2, len(sec)-2):
(pos1, ss1, aa1, idx1, dpos1, cbpos1) = sec[n]
dpos1 *= -1
sec[n] = (pos1, ss1, aa1, idx1, dpos1, cbpos1)
pass
# Append the secondary structure element.
structure.append((sec, ss))
n_sec += 1
sec = []
return (structure, n_ca, ca_list, n_sec)
ChunkDisplayMode.register_display_mode_class(ProteinChunks)
|