1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
# Copyright 2008 Nanorex, Inc. See LICENSE file for details.
"""
files_in.py -- reading AMBER .in file fragments
@author: EricM
@version: $Id$
@copyright: 2008 Nanorex, Inc. See LICENSE file for details.
"""
# Various standard residues appear in AMBER data files with .in
# extensions. These describe the residue with internal coordinates,
# each atom placed with respect to other previously placed atoms.
# Actual .in files in the AMBER source tree contain multiple residues,
# each of which has data specified beyond just the z-matrix of
# internal coordinates. This routine is designed to read a single
# fragment from one of those files, where the fragment consists of
# just the lines defining the z-matrix for a single residue.
# Here is a sample of such a fragment, Glycene:
# i igraph isymbl itree na nb nc r theta phi chrg
#
# 1 DUMM DU M 0 -1 -2 0.000 0.000 0.000 0.00000
# 2 DUMM DU M 1 0 -1 1.449 0.000 0.000 0.00000
# 3 DUMM DU M 2 1 0 1.522 111.100 0.000 0.00000
# 4 N N M 3 2 1 1.335 116.600 180.000 -0.374282
# 5 H H E 4 3 2 1.010 119.800 0.000 0.253981
# 6 CA CT M 4 3 2 1.449 121.900 180.000 -0.128844
# 7 HA2 H0 E 6 4 3 1.090 109.500 300.000 0.088859
# 8 HA3 H0 E 6 4 3 1.090 109.500 60.000 0.088859
# 9 C C M 6 4 3 1.522 110.400 180.000 0.580584
# 10 O O E 9 6 4 1.229 120.500 0.000 -0.509157
# The format is columns of data separated by whitespace. Different
# AMBER .in files use different widths for the various columns. The
# first column is the atom index number (i). The first three atoms
# are dummy atoms, used to establish the coordinate system.
# The second column is a unique atom name for each of the non-dummy
# atoms (igraph).
# The third column is the AMBER atom type (isymbl).
# Column 4 is the topology for the atom (itree). It determines the
# number of non-loop bonds. We're going to ignore this, and just
# create a bond for each radius specification.
# Columns 5, 6, and 7 are indices for three previous atoms (na, nb,
# nc)
# Columns 8, 9, and 10 are the radius (r), angle (theta), and torsion
# angle (phi) parameters.
# The last column is the fractional charge on the atom (chrg). We are
# ignoring the charge here.
# The radius parameter is in Angstroms, the angle and torsion
# parameters are in degrees.
# Taking line ten an an example, the Oxygen atom it represents is
# 1.229 Angstroms away from Carbon atom number 9. The O-C-C angle
# between atoms 10, 9, and 6 is 120.5 degrees. The O-C-C-N torsion
# angle between atoms 10, 9, 6, and 4 is 0 degrees, indicating that
# the O and N are on the same side of the C-C bond.
# See: http://amber.scripps.edu/doc/prep.html
import os
from geometry.InternalCoordinatesToCartesian import InternalCoordinatesToCartesian
from geometry.VQT import A
from model.chunk import Chunk
from model.chem import Atom
from model.bonds import bond_atoms
from model.elements import PeriodicTable
AMBER_AtomTypes = {}
_is_initialized = False
def _init():
global _is_initialized
if (_is_initialized):
return
AMBER_AtomTypes["C"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CA"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CB"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CC"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CD"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CK"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CM"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CN"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CQ"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CR"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CT"] = PeriodicTable.getElement("C").find_atomtype("sp3")
AMBER_AtomTypes["CV"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CW"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["C*"] = PeriodicTable.getElement("C").find_atomtype("sp2")
AMBER_AtomTypes["CY"] = PeriodicTable.getElement("C").find_atomtype("sp")
AMBER_AtomTypes["CZ"] = PeriodicTable.getElement("C").find_atomtype("sp")
AMBER_AtomTypes["C0"] = PeriodicTable.getElement("Ca").find_atomtype("?")
AMBER_AtomTypes["H"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H0"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HC"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H1"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H2"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H3"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HA"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H4"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["H5"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HO"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HS"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HW"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HP"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["HZ"] = PeriodicTable.getElement("H").find_atomtype("?")
AMBER_AtomTypes["F"] = PeriodicTable.getElement("F").find_atomtype("?")
AMBER_AtomTypes["Cl"] = PeriodicTable.getElement("Cl").find_atomtype("?")
AMBER_AtomTypes["Br"] = PeriodicTable.getElement("Br").find_atomtype("?")
AMBER_AtomTypes["I"] = PeriodicTable.getElement("I").find_atomtype("?")
AMBER_AtomTypes["IM"] = PeriodicTable.getElement("Cl").find_atomtype("?")
AMBER_AtomTypes["IB"] = PeriodicTable.getElement("Na").find_atomtype("?")
AMBER_AtomTypes["MG"] = PeriodicTable.getElement("Mg").find_atomtype("?")
AMBER_AtomTypes["N"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["NA"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["NB"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["NC"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["N2"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["N3"] = PeriodicTable.getElement("N").find_atomtype("sp3")
AMBER_AtomTypes["NT"] = PeriodicTable.getElement("N").find_atomtype("sp3")
AMBER_AtomTypes["N*"] = PeriodicTable.getElement("N").find_atomtype("sp2")
AMBER_AtomTypes["NY"] = PeriodicTable.getElement("N").find_atomtype("sp")
AMBER_AtomTypes["O"] = PeriodicTable.getElement("O").find_atomtype("sp2")
AMBER_AtomTypes["O2"] = PeriodicTable.getElement("O").find_atomtype("sp2")
AMBER_AtomTypes["OW"] = PeriodicTable.getElement("O").find_atomtype("sp3")
AMBER_AtomTypes["OH"] = PeriodicTable.getElement("O").find_atomtype("sp3")
AMBER_AtomTypes["OS"] = PeriodicTable.getElement("O").find_atomtype("sp3")
AMBER_AtomTypes["P"] = PeriodicTable.getElement("P").find_atomtype("sp3(p)") #sp3(p) is 'sp3(phosphate)
AMBER_AtomTypes["S"] = PeriodicTable.getElement("S").find_atomtype("sp3") # ?
AMBER_AtomTypes["SH"] = PeriodicTable.getElement("S").find_atomtype("sp3") # ?
AMBER_AtomTypes["CU"] = PeriodicTable.getElement("Cu").find_atomtype("?")
AMBER_AtomTypes["FE"] = PeriodicTable.getElement("Fe").find_atomtype("?")
AMBER_AtomTypes["Li"] = PeriodicTable.getElement("Li").find_atomtype("?")
AMBER_AtomTypes["IP"] = PeriodicTable.getElement("Na").find_atomtype("?")
AMBER_AtomTypes["Na"] = PeriodicTable.getElement("Na").find_atomtype("?")
AMBER_AtomTypes["K"] = PeriodicTable.getElement("K").find_atomtype("?")
#AMBER_AtomTypes["Rb"] = PeriodicTable.getElement("Rb").find_atomtype("?")
#AMBER_AtomTypes["Cs"] = PeriodicTable.getElement("Cs").find_atomtype("?")
AMBER_AtomTypes["Zn"] = PeriodicTable.getElement("Zn").find_atomtype("?")
_is_initialized = True
def insertin(assy, filename):
_init()
dir, nodename = os.path.split(filename)
mol = Chunk(assy, nodename)
mol.showOverlayText = True
file = open(filename)
lines = file.readlines()
atoms = {}
transform = InternalCoordinatesToCartesian(len(lines), None)
for line in lines:
columns = line.strip().split()
index = int(columns[0])
name = columns[1]
type = columns[2]
na = int(columns[4])
nb = int(columns[5])
nc = int(columns[6])
r = float(columns[7])
theta = float(columns[8])
phi = float(columns[9])
transform.addInternal(index, na, nb, nc, r, theta, phi)
xyz = transform.getCartesian(index)
if (index > 3):
if (AMBER_AtomTypes.has_key(type)):
sym = AMBER_AtomTypes[type]
else:
print "unknown AMBER atom type, substituting Carbon: %s" % type
sym = "C"
a = Atom(sym, A(xyz), mol)
atoms[index] = a
a.setOverlayText(type)
if (na > 3):
a2 = atoms[na]
bond_atoms(a, a2)
assy.addmol(mol)
|