summaryrefslogtreecommitdiff
path: root/cad/src/experimental/tiling/foo.py
blob: f7040e7ea81992abd9de46d3a44eeece0334f10b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/python

# Copyright 2006-2007 Nanorex, Inc.  See LICENSE file for details. 
"""Arbitrary 2D surfaces in 3D space can be represented as:

    f(v) = 0

where f takes a 3D vector v and returns a scalar. For a
sphere, where f(x,y,z) = x**2 + y**2 + z**2 - R**2.

We would like to take these arbitrary surfaces and tile them with
graphene structures. The inputs to this process will be the function f
that defines the surface, and a starting point x0.
"""

import os
import random
import types

class Vector:
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z
    def tuple(self):
        return (self.x, self.y, self.z)
    def __repr__(self):
        return ("<" +
                repr(self.x) + "," +
                repr(self.y) + "," +
                repr(self.z) + ">")
    def __abs__(self):
        return self.magsq() ** 0.5
    def magsq(self):
        return self.x**2 + self.y**2 + self.z**2
    def scale(self, k):
        return Vector(k * self.x, k * self.y, k * self.z)
    def normalize(self):
        return self.scale(1.0 / abs(self))
    def __add__(self, v):
        return Vector(self.x + v.x, self.y + v.y, self.z + v.z)
    def __sub__(self, v):
        return self + (-v)
    def __neg__(self):
        return Vector(-self.x, -self.y, -self.z)
    def int(self):
        return Vector(int(self.x), int(self.y), int(self.z))
    def cross(self, v):
        return Vector(self.y * v.z - self.z * v.y,
                      self.z * v.x - self.x * v.z,
                      self.x * v.y - self.y * v.x)
    def gradient(self, f):
        h = 1.0e-10
        e = f(self)
        return Vector((f(self + Vector(h, 0, 0)) - e) / h,
                      (f(self + Vector(0, h, 0)) - e) / h,
                      (f(self + Vector(0, 0, h)) - e) / h)




def randvec():
    # return a random vector of length one
    while True:
        vec = Vector(2 * random.random() - 1,
                     2 * random.random() - 1,
                     2 * random.random() - 1)
        if vec.magsq() > 0.001:
            return vec.normalize()

def minimize(f, v, g=None, debug=False):
    """If g is not None, then it represents a direction, starting at v,
    along which we seek a minimum value for f.

    If g is None, then we are starting at v and trying to find a local
    minimum for f, regardless of direction.

    Some of the instances where we're using this, we should maybe use
    Newton's method instead."""
    localMin = (g == None)
    if localMin:
        if debug: print "finding local minimum"
        g = -v.gradient(f)
    else:
        if debug: print "1D minimize"
    x = f(v)
    p = 3.0
    s = 0.0
    evals = 1
    while p > 1.0e-15:
        for j in range(-10,10):
            ds = p * j
            if s + ds >= 0.0:
                v1 = v + g.scale(s + ds)
                y = f(v1)
                evals += 1
                if y < x:
                    s += ds
                    if debug: print "new good s", s, y
                    x = y
                    if localMin:
                        v = v + g.scale(s)
                        g = -v.gradient(f)
        p *= 0.7
    if debug: print evals, "evals"
    if localMin:
        return v
    else:
        return v + g.scale(s)

def newtonsMethodStep(f, v):
    x = f(v)
    g = v.gradient(f)
    return v - g.scale(x / g.magsq())

def nearbyPoint(f, v):
    """Given a point xi which is pretty close to the surface defined
    by f, find a nearby point which lies right on the surface (within
    the limits of floating-point imprecision) where f is zero
    """
    #def f2(x):
    #    return f(x) ** 2
    #return minimize(f2, v, -v.gradient(f))
    for i in range(10):
        v = newtonsMethodStep(f, v)
    return v

######################

def makeRing(f, x0, side=1.42):
    def distances(ptlst, v):
        flst = [ f ]
        for pt, dist in ptlst:
            def dist(v, pt=pt, distsq=dist**2):
                return (v - pt).magsq() - distsq
            flst.append(dist)
        for i in range(1000):
            for f1 in flst:
                v = newtonsMethodStep(f1, v)
        return v
    def extendRing(p1, p2, p3=None):
        lst = [ (p1, side), (p2, (3**.5) * side) ]
        if p3 != None:
            lst.append((p3, 2 * side))
        px = p1 + randvec()
        px = distances(lst, px)
        return px
    x0 = nearbyPoint(f, x0)
    x1 = x0 + randvec()
    x1 = distances([ (x0, side) ], x1)
    x2 = extendRing(x0, x1)
    x3 = extendRing(x1, x0, x2)
    print f(x1), abs(x0 - x1)
    print f(x2), abs(x2 - x0), abs(x2 - x1)
    print f(x3), abs(x3 - x0), abs(x3 - x1)
    x4 = extendRing(x2, x0, x1)
    x5 = extendRing(x3, x1, x0)
    print f(x4), abs(x4 - x0), abs(x4 - x3)
    print f(x5), abs(x5 - x1), abs(x5 - x2)
    print abs(x5 - x4) / side

######################

class Atom:
    def __init__(self, pos):
        self.index = -1
        self.pos = pos
        self.bonds = [ ]
    def __repr__(self):
        return "<Atom %d %f %f %f>" % \
               (self.index, self.pos.x, self.pos.y, self.pos.z)
    def mmp(self):
        r = "atom %d (6) (%d, %d, %d) def\n" % \
            (self.index + 1,
             int(1000 * self.pos.x),
             int(1000 * self.pos.y),
             int(1000 * self.pos.z))
        numBonds = 0
        bonds = "bondg"
        for atm2 in self.bonds:
            if atm2.index < self.index:
                bonds += " " + repr(atm2.index+1)
                numBonds += 1
        bonds += "\n"
        if numBonds > 3:
            return ""
        elif numBonds > 0:
            r += bonds
        return r

BONDLEN = 1.42
TOOCLOSE = 0.8 * BONDLEN
TOODISTANT = 1.1 * BONDLEN

def bucketKey(pos):
    return (int(pos.x / BONDLEN),
            int(pos.y / BONDLEN),
            int(pos.z / BONDLEN))

class Buckets:
    def __init__(self, alst=[ ]):
        self.buckets = { }
        for a in alst:
            self.add(a)
    def add(self, atm):
        key = bucketKey(atm.pos)
        try:
            self.buckets[key].append(atm)
        except KeyError:
            self.buckets[key] = [ atm ]
    def remove(self, atm):
        key = bucketKey(atm.pos)
        try:
            self.buckets[key].remove(atm)
        except KeyError:
            pass
    def neighborhood(self, pos):
        ipos = pos.scale(1. / BONDLEN).int()
        lst = [ ]
        for xdiff in range(-1, 2):
            for ydiff in range(-1, 2):
                for zdiff in range(-1, 2):
                    diff = Vector(xdiff, ydiff, zdiff)
                    key = (ipos + diff).tuple()
                    if self.buckets.has_key(key):
                        lst2 = self.buckets[key]
                        for atm2 in lst2:
                            lst.append(atm2)
        return lst
    def findClosestAtom(self, pos, ignoreIdentical=True):
        closest = None
        smallestDistance = 1.0e20
        for atm in self.neighborhood(pos):
            dist = abs(atm.pos - pos)
            if dist < smallestDistance:
                if not ignoreIdentical or dist > 0.00001:
                    smallestDistance = dist
                    closest = atm
        return closest

class Tiling:
    def __init__(self):
        self.atoms = [ ]
        self.buckets = Buckets()
    def start(self, f, x0, x1=None):
        x0 = nearbyPoint(f, x0)
        if x1 == None:
            x1 = x0 + randvec()
        def dist(v, pt=x0, distsq=BONDLEN**2):
            return (v - pt).magsq() - distsq
        for i in range(10):
            x1 = newtonsMethodStep(f, x1)
            x1 = newtonsMethodStep(dist, x1)
        tiling.add(Atom(x0))
        tiling.add(Atom(x1))
        self.inferBonds()
    def moveAtom(self, atm, newpos):
        print "moveAtom"
        key1 = bucketKey(atm.pos)
        key2 = bucketKey(newpos)
        self.buckets.remove(atm)
        atm.pos = newpos
        self.buckets.add(atm)
    def __neighborhood(self, pos):
        ipos = apply(Vector, bucketKey(pos))
        lst = [ ]
        for xdiff in range(-1, 2):
            for ydiff in range(-1, 2):
                for zdiff in range(-1, 2):
                    diff = Vector(xdiff, ydiff, zdiff)
                    key = (ipos + diff).tuple()
                    if self.buckets.has_key(key):
                        lst2 = self.buckets[key]
                        for atm2 in lst2:
                            lst.append(atm2)
        return lst
    def grow(self, f):
        while self.growLayer(f) > 0:
            print "layer"
        #for i in range(9):
        #    self.growLayer(f)
        #    print "layer"
    def growLayer(self, f):
        self.inferBonds()
        def growAtom(f, atm):
            def dist(v, pt=atm.pos, distsq=BONDLEN**2):
                return (v - pt).magsq() - distsq
            if len(atm.bonds) == 0:
                print "no bonds " + repr(a)
                return [ ]
            elif len(atm.bonds) == 1:
                g = atm.pos.gradient(f)
                u = (atm.pos - atm.bonds[0].pos).normalize()
                v = u.cross(g.normalize())
                A = BONDLEN * (3**.5)/2
                B = BONDLEN * 0.5
                x2 = atm.pos + v.scale(A) + u.scale(B)
                x3 = atm.pos - v.scale(A) + u.scale(B)
                for i in range(10):
                    x2 = newtonsMethodStep(f, x2)
                    x2 = newtonsMethodStep(dist, x2)
                    x3 = newtonsMethodStep(f, x3)
                    x3 = newtonsMethodStep(dist, x3)
                x2, x3 = Atom(x2), Atom(x3)
                return [ x2, x3 ]
            elif len(atm.bonds) == 2:
                u = atm.pos - atm.bonds[0].pos
                v = atm.pos - atm.bonds[1].pos
                x2 = u + v
                for i in range(10):
                    x2 = newtonsMethodStep(f, x2)
                    x2 = newtonsMethodStep(dist, x2) 
                x2 = Atom(x2)
                return [ x2 ]
            else:
                return [ ]
        oldsize = len(self.atoms)
        newatoms = [ ]
        for a in self.atoms:
            newatoms += growAtom(f, a)
        # first eliminate redundancies in the new layer itself
        i = 0
        while i < len(newatoms):
            b = Buckets(newatoms)
            atm = newatoms[i]
            atm2 = b.findClosestAtom(atm.pos)
            if atm2 != None and abs(atm.pos - atm2.pos) < TOOCLOSE:
                newpos = (atm.pos + atm2.pos).scale(0.5)
                newatoms.remove(atm)
                atm2.pos = newpos
            else:
                i = i + 1
        # next eliminate any redundancies with atoms already in the structure
        for atm in newatoms:
            atm2 = self.buckets.findClosestAtom(atm.pos)
            if abs(atm.pos - atm2.pos) < TOOCLOSE:
                newatoms.remove(atm)
                self.moveAtom(atm2, (atm.pos + atm2.pos).scale(0.5))
        for a in newatoms:
            self.add(a)
        return len(self.atoms) - oldsize
    def add(self, atm):
        print 'add', atm
        self.atoms.append(atm)
        self.buckets.add(atm)
    def remove(self, atm):
        print 'remove', atm
        self.atoms.remove(atm)
        self.buckets.remove(atm)
    def closestAtom(self, pos):
        return self.buckets.findClosestAtom(pos)
    def inferBondsForAtom(self, atm):
        def closeEnough(atm1, atm2):
            return abs(atm1.pos - atm2.pos) < 2
        nbhd = self.buckets.neighborhood(atm.pos)
        for atm2 in nbhd:
            if atm2 != atm and atm2 not in atm.bonds and \
               0.8 * BONDLEN < abs(atm.pos - atm2.pos) < 1.2 * BONDLEN:
                atm.bonds.append(atm2)
    def inferBonds(self):
        for atm in self.atoms:
            self.inferBondsForAtom(atm)
    def writeMmp(self, filename):
        self.inferBonds()
        for i in range(len(self.atoms)):
            self.atoms[i].index = i
        mmpfile = """mmpformat 050920 required; 051103 preferred
kelvin 300
group (View Data)
info opengroup open = True
csys (HomeView) (1.000000, 0.000000, 0.000000, 0.000000) (10.000000) (0.000000, 0.000000, 0.000000) (1.000000)
csys (LastView) (1.000000, 0.000000, 0.000000, 0.000000) (10.943023) (0.000000, 0.000000, 0.000000) (1.000000)
egroup (View Data)
group (Nanotube)
info opengroup open = True
mol (Nanotube-1) def
"""
        for a in self.atoms:
            mmpfile += a.mmp()
        mmpfile += """egroup (Nanotube)
group (Clipboard)
info opengroup open = False
egroup (Clipboard)
end molecular machine part 1
"""
        open(filename, "w").write(mmpfile)

####################

# makeRing(f, x0)

def growAtom(f, atm):
    def dist(v, pt=atm.pos, distsq=BONDLEN**2):
        return (v - pt).magsq() - distsq
    if len(atm.bonds) == 0:
        raise Exception("no bonds")
    elif len(atm.bonds) == 1:
        g = atm.pos.gradient(f)
        u = (atm.pos - atm.bonds[0].pos).normalize()
        v = u.cross(g.normalize())
        A = BONDLEN * (3**.5)/2
        B = BONDLEN * 0.5
        x2 = atm.pos + v.scale(A) + u.scale(B)
        x3 = atm.pos - v.scale(A) + u.scale(B)
        for i in range(10):
            x2 = newtonsMethodStep(f, x2)
            x2 = newtonsMethodStep(dist, x2)
            x3 = newtonsMethodStep(f, x3)
            x3 = newtonsMethodStep(dist, x3)
        x2, x3 = Atom(x2), Atom(x3)
        return [ x2, x3 ]
    elif len(atm.bonds) == 2:
        u = atm.pos - atm.bonds[0].pos
        v = atm.pos - atm.bonds[1].pos
        x2 = u + v
        for i in range(10):
            x2 = newtonsMethodStep(f, x2)
            x2 = newtonsMethodStep(dist, x2) 
        x2 = Atom(x2)
        return [ x2 ]
    else:
        return [ ]

# def joinY

def firstTwo(mmpf, f, x0, x1=None):
    x0 = nearbyPoint(f, x0)
    if x1 == None:
        x1 = x0 + randvec()
    def dist(v, pt=x0, distsq=BONDLEN**2):
        return (v - pt).magsq() - distsq
    for i in range(10):
        x1 = newtonsMethodStep(f, x1)
        x1 = newtonsMethodStep(dist, x1)
    x0, x1 = Atom(x0), Atom(x1)
    return [ x0, x1 ]

###################################

def bevelMax(x, y, C=1.0):
    if y - x < -C: return x
    elif y - x > C: return y
    else: return x + (1/(4.*C)) * (y - x + C)**2

def f(v):
    f1 = v.x**2 + v.y**2 + (3 * v.z)**2 - 10.0**2
    f2 = (v.x-50)**2 + v.y**2 + v.z**2 - 50.0**2
    #return bevelMax(f1, f2)
    return max(f1, f2)

tiling = Tiling()
tiling.start(f, randvec())
tiling.grow(f)
tiling.writeMmp('/tmp/nt.mmp')
# os.system("/home/wware/polosims/cad/src/atom.py /tmp/nt.mmp")