1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
#!/usr/bin/python
# Copyright 2006-2007 Nanorex, Inc. See LICENSE file for details.
import os, sys, string
from math import *
sys.path.append("/home/wware/polosims/cad/src")
from geometry.VQT import A, V, vlen
class AtomType:
def __init__(self, symbol, number, rcovalent):
self.symbol = symbol
self.number = number
self.rcovalent = rcovalent
def __repr__(self):
return '<' + self.symbol + '>'
periodicTable = [
AtomType('X', 0, 0.0),
AtomType('H', 1, 0.31),
AtomType('C', 6, 0.77),
AtomType('N', 7, 0.73),
AtomType('O', 8, 0.69),
AtomType('P', 15, 1.08),
]
def lookupAtomType(num):
for at in periodicTable:
if at.number == num:
return at
raise Exception("AtomType not found, num=" + repr(num))
class Atom:
def __init__(self, mmpline):
if mmpline != None:
mmpline = mmpline.rstrip()
self.mmpline = mmpline
fields = mmpline.split()
self.key = string.atoi(fields[1])
self.style = fields[6]
self.hybridization = None
self.base = None
self.atomtype = lookupAtomType(string.atoi(fields[2][1:-1]))
self.x = 0.001 * string.atoi(fields[3][1:-1])
self.y = 0.001 * string.atoi(fields[4][:-1])
self.z = 0.001 * string.atoi(fields[5][:-1])
else:
self.mmpline = None
self.key = 0
self.style = None
self.hybridization = None
self.base = None
self.atomtype = lookupAtomType(0)
self.x = 0.0
self.y = 0.0
self.z = 0.0
self.bonds = [ ]
def is_singlet(self):
return self.atomtype.symbol == 'X'
def clone(self):
a = Atom(self.mmpline)
for attr in ('key', 'style', 'hybridization', 'base', 'atomtype',
'x', 'y', 'z', 'bonds'):
setattr(a, attr, getattr(self, attr))
return a
def hybridize(self, hybrids={
'C': { 4: 'sp3',
3: 'sp2',
2: 'sp',
},
'O': { 2: 'sp3',
1: 'sp2',
},
'N': { 3: 'sp3',
2: 'sp2',
1: 'sp',
}
}):
try:
self.hybridization = hybrids[self.atomtype.symbol][len(self.bonds)]
except KeyError:
self.hybridization = None
def posn(self):
return V(self.x, self.y, self.z)
def __repr__(self):
r = "<%s %d (%g, %g, %g)" % \
(self.atomtype.symbol, self.key, self.x, self.y, self.z)
r += " %s" % self.style
if self.hybridization != None:
r += " %s" % self.hybridization
if self.base != None:
r += " (base %d)" % self.base
if self.bonds:
r += " ["
for b in self.bonds:
r += " " + repr(b)
r += " ]"
return r + ">"
class Bondpoint(Atom):
def __init__(self, owner, v):
Atom.__init__(self, mmpline=None)
self.style = owner.style
self.base = owner.base
self.x = v[0]
self.y = v[1]
self.z = v[2]
self.bonds = [ owner.key ]
def __repr__(self):
r = "<%s %d (%g, %g, %g)" % \
(self.atomtype.symbol, self.key, self.x, self.y, self.z)
r += " %s" % self.style
if self.base != None:
r += " (base %d)" % self.base
if self.bonds:
r += " ["
for b in self.bonds:
r += " " + repr(b)
r += " ]"
return r + ">"
class MakeBondpoint(Exception):
pass
class Base:
def __init__(self, strand, key):
self.key = key
self.atomlist = [ ]
self.phosphorusZcoord = 0.
self.strand = strand
atm0 = strand.atoms[key]
self.style = atm0.style
self.addAtom(atm0)
def __cmp__(self, other):
return -cmp(self.phosphorusZcoord, other.phosphorusZcoord)
def keys(self):
return map(lambda a: a.key, self.atomlist)
def __len__(self):
return len(self.atomlist)
def addAtom(self, a):
k = a.key
if a not in self.atomlist:
if a.style == self.style:
a.base = self.key
self.atomlist.append(a)
if a.atomtype.symbol == 'P':
self.phosphorusZcoord = a.z
else:
raise MakeBondpoint
def addLayer(self):
atoms = self.strand.atoms
newguys = [ ]
for a in self.atomlist:
for k in a.bonds:
if k not in newguys and k not in self.keys():
newguys.append(k)
atoms[k].buddy = a
newAtoms = 0
for k in newguys:
a2 = atoms[k]
a = a2.buddy
try:
self.addAtom(a2)
newAtoms += 1
except MakeBondpoint:
# don't make this bondpoint if it's already been made
if not hasattr(a, 'gotBondpoint'):
p1, p2 = a.posn(), a2.posn()
r1, r2 = a.atomtype.rcovalent, a2.atomtype.rcovalent
p = (r2 * p1 + r1 * p2) / (r1 + r2)
bpt = Bondpoint(a, p)
# pick up a new key
self.strand.addAtom(bpt)
self.addAtom(bpt)
a.gotBondpoint = True
return newAtoms
def grow(self):
while True:
if self.addLayer() == 0:
return
class Strand:
def __init__(self, filename=None):
self.atoms = { }
self.nextKey = 1
self.bases = [ ]
if filename != None:
for L in open(filename).readlines():
if L.startswith("atom"):
self.addAtom(Atom(L))
self.assignBases()
def addAtom(self, a):
a.key = key = self.nextKey
self.nextKey += 1
self.atoms[key] = a
def transform(self, t):
if t.func_code.co_argcount == 1:
for a in self.atoms.values():
v = V(a.x, a.y, a.z)
a.x, a.y, a.z = tuple(t(v))
else:
for a in self.atoms.values():
a.x, a.y, a.z = t(a.x, a.y, a.z)
def addAtomFromMmp(self, mmpline):
self.addAtom(Atom(mmpline))
def inferBonds(self):
maxBondLength = 2.5
def quantize(vec, maxBondLength=maxBondLength):
return (int(vec[0] / maxBondLength),
int(vec[1] / maxBondLength),
int(vec[2] / maxBondLength))
def bond_atoms(a1, a2):
if a1.key not in a2.bonds:
a2.bonds.append(a1.key)
if a2.key not in a1.bonds:
a1.bonds.append(a2.key)
buckets = { }
for atom in self.atoms.values():
atom.bonds = [ ] # clear existing bonds
# put this atom in one of the buckets
key = quantize(atom.posn())
try:
buckets[key].append(atom)
except KeyError:
buckets[key] = [ atom ]
def region(center):
lst = [ ]
x0, y0, z0 = quantize(center)
for x in range(x0 - 1, x0 + 2):
for y in range(y0 - 1, y0 + 2):
for z in range(z0 - 1, z0 + 2):
key = (x, y, z)
try:
lst += buckets[key]
except KeyError:
pass
return lst
for atm1 in self.atoms.values():
for atm2 in region(atm1.posn()):
bondLen = vlen(atm1.posn() - atm2.posn())
idealBondLen = atm1.atomtype.rcovalent + atm2.atomtype.rcovalent
a = 0.2
if (1-a) * idealBondLen < bondLen < (1+a) * idealBondLen:
bond_atoms(atm1, atm2)
atm1.hybridize()
def assignBases(self):
self.inferBonds()
remainingKeys = self.atoms.keys()
while len(remainingKeys) > 0:
baseKey = remainingKeys[0]
print "Base", baseKey
base = Base(self, baseKey)
self.bases.append(base)
remainingKeys = remainingKeys[1:]
base.grow()
for key in base.keys():
if key in remainingKeys:
remainingKeys.remove(key)
def renumberAtoms(self):
# Renumber their keys, and recompute bonds with new keys
atomlist = self.atoms.values()
self.atoms = { }
self.nextKey = 1
for i in range(len(atomlist)):
self.addAtom(atomlist[i])
self.inferBonds()
def filter(self, filt):
s = Strand()
for a in self.atoms.values():
if filt(a):
s.addAtom(a.clone())
s.inferBonds()
return s
def writeManyMmps(self, specs, tfm0, tfm):
# discard tiny "bases" and any atoms in them
tinybases = filter(lambda b: len(b) < 6, self.bases)
for b in tinybases:
for a in b.atomlist:
del self.atoms[a.key]
self.bases.remove(b)
self.renumberAtoms()
# sort bases in order of decreasing phosphorus z coord
self.bases.sort()
for index, groupname, filename in specs:
basekey = self.bases[index].key
base = self.filter(lambda a: a.base == basekey)
def tfm2(x, y, z, tfm0=tfm0, tfm=tfm, index=index):
v = V(x,y,z)
v = tfm0(v)
while index:
v = tfm(v)
index -= 1
return tuple(v)
base.transform(tfm2)
base.writeMmp(filename, groupname)
mmptext = """mmpformat 050920 required; 060421 preferred
kelvin 300
group (View Data)
info opengroup open = True
csys (HomeView) (1.000000, 0.000000, 0.000000, 0.000000) (10.000000) (0.000000, 0.000000, 0.000000) (1.000000)
csys (LastView) (1.000000, 0.000000, 0.000000, 0.000000) (8.153929) (0.000000, 0.000000, 0.000000) (1.000000)
egroup (View Data)
group (%(groupname)s)
info opengroup open = True
%(text)s
egroup (%(groupname)s)
end1
group (Clipboard)
info opengroup open = False
egroup (Clipboard)
end molecular machine part %(groupname)s
"""
def writeMmp(self, filename, groupname=None):
# Sort the atoms by what group they are in
atomlist = self.atoms.values()
atomlist.sort(lambda a1, a2: cmp(a1.base, a2.base))
self.renumberAtoms()
# write the file
s = ""
thisgroup = None
for a in self.atoms.values():
if groupname == None:
if thisgroup != a.base:
s += "mol (Strand %d) def\n" % a.base
thisgroup = a.base
s += ("atom %d (%d) (%d, %d, %d) def\n" %
(a.key, a.atomtype.number,
int(1000 * a.x), int(1000 * a.y), int(1000 * a.z)))
if a.hybridization != None:
s += "info atom atomtype = " + a.hybridization + "\n"
bstr = ""
for b in a.bonds:
if b < a.key:
bstr += " " + repr(b)
if bstr:
s += "bond1" + bstr + "\n"
if groupname != None:
s = "mol (" + groupname + ") def\n" + s
outf = open(filename, "w")
outf.write(self.mmptext % {"groupname": groupname, "text": s[:-1]})
outf.close()
########################################
if True:
g = Strand('strund1.mmp')
specs = [
(0, 'guanine', 'guanine.mmp'),
(1, 'cytosine', 'cytosine.mmp'),
(3, 'adenine', 'adenine.mmp'),
(6, 'thymine', 'thymine.mmp')
]
def tfm0(v):
return v + V(0, 0, -18.7)
def tfm(v):
angle = -36 * pi / 180
x, y, z = tuple(v)
c, s = cos(angle), sin(angle)
x, y = c * x + s * y, -s * x + c * y
return V(x, y, z + 3.391)
g.writeManyMmps(specs, tfm0, tfm)
else:
writeMmp('groups.mmp')
|