summaryrefslogtreecommitdiff
path: root/src/rtapi/rtl_ulapi.c
blob: 766b302e332c405ae83e5d10ed08670f0935fd8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/** RTAPI is a library providing a uniform API for several real time
    operating systems.  As of ver 2.0, RTLinux and RTAI are supported.
*/
/********************************************************************
* Description:  rtl_ulapi.c
*               This file, 'rtl_ulapi.c', implements the nonrealtime 
*               portion of the API for the RTlinux platform.
*
* Author: John Kasunich, Paul Corner
* License: LGPL Version 2
*    
* Copyright (c) 2004 All rights reserved.
*
* Last change: 
********************************************************************/

/** This file, 'rtl_ulapi.c', implements the non-realtime portion of
    the API for the RTLinux platform.  The API is defined in rtapi.h,
    which includes documentation for all the API functions.  The
    realtime portion of the API is implemented in rtl_rtapi.c
    (for the RTLinux platform).
*/

/** Copyright (C) 2003 John Kasunich
                       <jmkasunich AT users DOT sourceforge DOT net>
    Copyright (C) 2003 Paul Corner
                       <paul_c AT users DOT sourceforge DOT net>
    This library is based on version 1.0, which was released into
    the public domain by its author, Fred Proctor.  Thanks Fred!
*/

/* This library is free software; you can redistribute it and/or
   modify it under the terms of version 2.1 of the GNU Lesser General
   Public License as published by the Free Software Foundation.
   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Lesser General Public License for more details.

   You should have received a copy of the GNU General Lesser Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111 USA
*/

/** THE AUTHORS OF THIS LIBRARY ACCEPT ABSOLUTELY NO LIABILITY FOR
    ANY HARM OR LOSS RESULTING FROM ITS USE.  IT IS _EXTREMELY_ UNWISE
    TO RELY ON SOFTWARE ALONE FOR SAFETY.  Any machinery capable of
    harming persons must have provisions for completely removing power
    from all motors, etc, before persons enter any danger area.  All
    machinery must be designed to comply with local and national safety
    codes, and the authors of this software can not, and do not, take
    any responsibility for such compliance.

    This code was written as part of the EMC HAL project.  For more
    information, go to www.linuxcnc.org.
*/

#include <stdio.h>		/* sprintf() */
#include <string.h>		/* strcpy, etc. */
#include <stdarg.h>		/* va_arg, etc. */
//#include <stddef.h>           /* NULL, needed for rtai_shm.h */
#include <unistd.h>		/* open(), close() */
//#include <sys/mman.h>         /* PROT_READ, needed for rtai_shm.h */
//#include <sys/types.h>                /* off_t, needed for rtai_shm.h */
//#include <sys/fcntl.h>                /* O_RDWR, needed for rtai_shm.h */
#include <malloc.h>		/* malloc(), free() */
/*! \todo  FIXME - probably need an include for inb() and outb() */
#include <asm/io.h>
#include <mbuff.h>

#include "rtapi.h"		/* public RTAPI decls */
#include "rtapi_common.h"	/* shared realtime/nonrealtime stuff */

/* the following are internal functions that do the real work associated
   with deleting resources.  They do not check the mutex that protects
   the internal data structures.  When someone calls a rtapi_xxx_delete()
   function, the rtapi funct gets the mutex before calling one of these
   internal functions.  When internal code that already has the mutex
   needs to delete something, it calls these functions directly.
*/

static int shmem_delete(int shmem_id, int module_id);
static int fifo_delete(int fifo_id, int module_id);

/* internal function for mapping int keys to ascii keystrings */
static void genstr(unsigned int i, char *str);
#define KEYSTR_LEN 16		/* length of ascii keystrings */

/* resource data unique to this process */
static void *shmem_addr_array[RTAPI_MAX_SHMEMS + 1];
static int fifo_fd_array[RTAPI_MAX_FIFOS + 1];

static int msg_level = RTAPI_MSG_INFO;	/* message printing level */

/***********************************************************************
*                      GENERAL PURPOSE FUNCTIONS                       *
************************************************************************/

/* NOTE:  /dev/mbuff must have read/write permissions for any users
   that will be running rtapi processes.
*/

int rtapi_init(const char *modname)
{
    int n, module_id;
    module_data *module;
    char keystr[KEYSTR_LEN];

    /* say hello */
    rtapi_print_msg(RTAPI_MSG_DBG, "RTAPI: Init\n");
    /* convert main RTAPI key to a string */
    genstr((unsigned int) RTAPI_KEY, keystr);
    /* get main shared memory block from OS and save its address */
    rtapi_data = mbuff_alloc(keystr, sizeof(rtapi_data_t));
    if (rtapi_data == NULL) {
	rtapi_print_msg(RTAPI_MSG_ERR,
	    "RTAPI: ERROR: Could not open shared memory area\n");
	return -ENOMEM;
    }
    /* perform a global init if needed */
    init_rtapi_data(rtapi_data);
    /* check revision code */
    if (rtapi_data->rev_code != rev_code) {
	/* mismatch - release master shared memory block */
	mbuff_free(keystr, rtapi_data);
	rtapi_print_msg(RTAPI_MSG_ERR, "RTAPI: ERROR: Version mismatch\n");
	return -EINVAL;
    }
    /* set up local pointers to global data */
    module_array = rtapi_data->module_array;
    task_array = rtapi_data->task_array;
    shmem_array = rtapi_data->shmem_array;
    sem_array = rtapi_data->sem_array;
    fifo_array = rtapi_data->fifo_array;
    irq_array = rtapi_data->irq_array;
    /* perform local init */
    for (n = 0; n <= RTAPI_MAX_SHMEMS; n++) {
	shmem_addr_array[n] = NULL;
    }
    /* get the mutex */
    rtapi_mutex_get(&(rtapi_data->mutex));
    /* find empty spot in module array */
    n = 1;
    while ((n <= RTAPI_MAX_MODULES) && (module_array[n].state != NO_MODULE)) {
	n++;
    }
    if (n > RTAPI_MAX_MODULES) {
	/* no room */
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EMFILE;
    }
    /* we have space for the module */
    module_id = n;
    module = &(module_array[n]);
    /* update module data */
    module->state = USERSPACE;
    if (modname != NULL) {
	/* use name supplied by caller, truncating if needed */
	snprintf(module->name, RTAPI_NAME_LEN, "%s", modname);
    } else {
	/* make up a name */
	snprintf(module->name, RTAPI_NAME_LEN, "ULMOD%03d", module_id);
    }
    rtapi_data->ul_module_count++;
    rtapi_mutex_give(&(rtapi_data->mutex));
    return module_id;
}

int rtapi_exit(int module_id)
{
    module_data *module;
    int n;
    char keystr[KEYSTR_LEN];

    if (rtapi_data == NULL) {
	/* not inited */
	return -EINVAL;
    }
    /* validate module ID */
    if ((module_id < 1) || (module_id > RTAPI_MAX_MODULES)) {
	return -EINVAL;
    }
    /* get mutex */
    rtapi_mutex_get(&(rtapi_data->mutex));
    /* point to the module's data */
    module = &(module_array[module_id]);
    /* check module status */
    if (module->state != USERSPACE) {
	/* not an active user space module */
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EINVAL;
    }
    /* clean up any mess left behind by the module */
    for (n = 1; n <= RTAPI_MAX_SHMEMS; n++) {
	if (test_bit(module_id, shmem_array[n].bitmap)) {
	    fprintf(stderr,
		"RTAPI: WARNING: module '%s' failed to delete shmem %02d\n",
		module->name, n);
	    shmem_delete(n, module_id);
	}
    }
    for (n = 1; n <= RTAPI_MAX_FIFOS; n++) {
	if ((fifo_array[n].reader == module_id) ||
	    (fifo_array[n].writer == module_id)) {
	    fprintf(stderr,
		"RTAPI: WARNING: module '%s' failed to delete fifo %02d\n",
		module->name, n);
	    fifo_delete(n, module_id);
	}
    }
    /* update module data */
    module->state = NO_MODULE;
    module->name[0] = '\0';
    rtapi_data->ul_module_count--;
    /* unmap shared memory block */
    rtapi_mutex_give(&(rtapi_data->mutex));
    genstr((unsigned int) RTAPI_KEY, keystr);
    mbuff_free(keystr, rtapi_data);
    return 0;
}

int rtapi_vsnprintf(char *buf, unsigned long int size, const char *fmt, va_list ap) {
    return vsnprintf(buf, size, fmt, ap);
}

int rtapi_snprintf(char *buf, unsigned long int size, const char *fmt, ...)
{
    va_list args;
    int i;

    va_start(args, fmt);
    /* call the normal library vnsprintf() */
    i = vsnprintf(buf, size, fmt, args);
    va_end(args);
    return i;
}

/* this can be 'stdout' or 'stderr', whichever you prefer... */
#define PRINT_DEST stdout
#define BUFFERLEN 1024

void rtapi_print(const char *fmt, ...)
{
    char buffer[BUFFERLEN + 1];
    va_list args;

    va_start(args, fmt);
    /* call the normal library vnsprintf() */
    vsnprintf(buffer, BUFFERLEN, fmt, args);
    fputs(buffer, PRINT_DEST);
    va_end(args);
}

void rtapi_print_msg(int level, const char *fmt, ...)
{
    char buffer[BUFFERLEN + 1];
    va_list args;

    if ((level <= msg_level) && (msg_level != RTAPI_MSG_NONE)) {
	va_start(args, fmt);
	/* call the normal library vnsprintf() */
	vsnprintf(buffer, BUFFERLEN, fmt, args);
	fputs(buffer, PRINT_DEST);
	va_end(args);
    }
}

int rtapi_set_msg_level(int level)
{
    if ((level < RTAPI_MSG_NONE) || (level > RTAPI_MSG_ALL)) {
	return -EINVAL;
    }
    msg_level = level;
    return 0;
}

int rtapi_get_msg_level(void)
{
    return msg_level;
}

void rtapi_printall(void)
{
    module_data *modules;
    task_data *tasks;
    shmem_data *shmems;
    sem_data *sems;
    fifo_data *fifos;
    irq_data *irqs;
    int n, m;

    if (rtapi_data == NULL) {
	printf("rtapi_data = NULL, not initialized\n");
	return;
    }
    printf("rtapi_data = %p\n", rtapi_data);
    printf("  magic = %d\n", rtapi_data->magic);
    printf("  rev_code = %08x\n", rtapi_data->rev_code);
    printf("  mutex = %lu\n", rtapi_data->mutex);
    printf("  rt_module_count = %d\n", rtapi_data->rt_module_count);
    printf("  ul_module_count = %d\n", rtapi_data->ul_module_count);
    printf("  task_count  = %d\n", rtapi_data->task_count);
    printf("  shmem_count = %d\n", rtapi_data->shmem_count);
    printf("  sem_count   = %d\n", rtapi_data->sem_count);
    printf("  fifo_count  = %d\n", rtapi_data->fifo_count);
    printf("  irq_countc  = %d\n", rtapi_data->irq_count);
    printf("  timer_running = %d\n", rtapi_data->timer_running);
    printf("  timer_period  = %ld\n", rtapi_data->timer_period);
    modules = &(rtapi_data->module_array[0]);
    tasks = &(rtapi_data->task_array[0]);
    shmems = &(rtapi_data->shmem_array[0]);
    sems = &(rtapi_data->sem_array[0]);
    fifos = &(rtapi_data->fifo_array[0]);
    irqs = &(rtapi_data->irq_array[0]);
    printf("  module array = %p\n", modules);
    printf("  task array   = %p\n", tasks);
    printf("  shmem array  = %p\n", shmems);
    printf("  sem array    = %p\n", sems);
    printf("  fifo array   = %p\n", fifos);
    printf("  irq array    = %p\n", irqs);
    for (n = 0; n <= RTAPI_MAX_MODULES; n++) {
	if (modules[n].state != NO_MODULE) {
	    printf("  module %02d\n", n);
	    printf("    state = %d\n", modules[n].state);
	    printf("    name = %p\n", modules[n].name);
	    printf("    name = '%s'\n", modules[n].name);
	}
    }
    for (n = 0; n <= RTAPI_MAX_TASKS; n++) {
	if (tasks[n].state != EMPTY) {
	    printf("  task %02d\n", n);
	    printf("    state = %d\n", tasks[n].state);
	    printf("    prio  = %d\n", tasks[n].prio);
	    printf("    owner = %d\n", tasks[n].owner);
	    printf("    code  = %p\n", tasks[n].taskcode);
	}
    }
    for (n = 0; n <= RTAPI_MAX_SHMEMS; n++) {
	if (shmems[n].key != 0) {
	    printf("  shmem %02d\n", n);
	    printf("    key     = %d\n", shmems[n].key);
	    printf("    rtusers = %d\n", shmems[n].rtusers);
	    printf("    ulusers = %d\n", shmems[n].ulusers);
	    printf("    size    = %ld\n", shmems[n].size);
	    printf("    bitmap  = ");
	    for (m = 0; m <= RTAPI_MAX_MODULES; m++) {
		if (test_bit(m, shmems[n].bitmap)) {
		    putchar('1');
		} else {
		    putchar('0');
		}
	    }
	    putchar('\n');
	}
    }
    for (n = 0; n <= RTAPI_MAX_SEMS; n++) {
	if (sems[n].key != 0) {
	    printf("  sem %02d\n", n);
	    printf("    key     = %d\n", sems[n].key);
	    printf("    users   = %d\n", sems[n].users);
	    printf("    bitmap  = ");
	    for (m = 0; m <= RTAPI_MAX_MODULES; m++) {
		if (test_bit(m, sems[n].bitmap)) {
		    putchar('1');
		} else {
		    putchar('0');
		}
	    }
	    putchar('\n');
	}
    }
    for (n = 0; n <= RTAPI_MAX_FIFOS; n++) {
	if (fifos[n].state != UNUSED) {
	    printf("  fifo %02d\n", n);
	    printf("    state  = %d\n", fifos[n].state);
	    printf("    key    = %d\n", fifos[n].key);
	    printf("    reader = %d\n", fifos[n].reader);
	    printf("    writer = %d\n", fifos[n].writer);
	    printf("    size   = %ld\n", fifos[n].size);
	}
    }
    for (n = 0; n <= RTAPI_MAX_IRQS; n++) {
	if (irqs[n].irq_num != 0) {
	    printf("  irq %02d\n", n);
	    printf("    irq_num = %d\n", irqs[n].irq_num);
	    printf("    owner   = %d\n", irqs[n].owner);
	    printf("    handler = %p\n", irqs[n].handler);
	}
    }
}

/***********************************************************************
*                  SHARED MEMORY RELATED FUNCTIONS                     *
************************************************************************/

/*
  RTAPI uses integers as keys, since these can be mapped onto either
  integers or strings easily, whereas the reverse is not true: you can't
  map an arbitrary string to an integer uniquely. Since mbuff takes
  string keys, we need to convert them to some unique string using genstr().

  genstr() generates a string 'str' unique for unsigned integers 'i',
  as the reverse, e.g., 120 -> "012", -1 -> "5927694924"
*/

#define KEYSTR_LEN 16		/* larger than number of digits in MAX_INT */

static void genstr(unsigned int i, char *str)
{
    unsigned int x, d;

    if (i == 0) {
	*str++ = '0';
	*str = 0;
	return;
    }

    x = i;
    while (x > 0) {
	i = x / 10;
	d = x - (i * 10);
	*str++ = d + '0';
	x = i;
    }
    *str = 0;

    return;
}

int rtapi_shmem_new(int key, int module_id, unsigned long int size)
{
    int n;
    int shmem_id;
    shmem_data *shmem;
    char keystr[KEYSTR_LEN];

    /* key must be non-zero, and also cannot match the key that RTAPI uses */
    if ((key == 0) || (key == RTAPI_KEY)) {
	return -EINVAL;
    }
    /* get the mutex */
    rtapi_mutex_get(&(rtapi_data->mutex));
    /* validate module_id */
    if ((module_id < 1) || (module_id > RTAPI_MAX_MODULES)) {
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EINVAL;
    }
    if (module_array[module_id].state != USERSPACE) {
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EINVAL;
    }
    /* check if a block is already open for this key */
    for (n = 1; n <= RTAPI_MAX_SHMEMS; n++) {
	if (shmem_array[n].key == key) {
	    /* found a match */
	    shmem_id = n;
	    shmem = &(shmem_array[n]);
	    /* is it big enough? */
	    if (shmem->size < size) {
		rtapi_mutex_give(&(rtapi_data->mutex));
		return -EINVAL;
	    }
	    /* is this module already using it? */
	    if (test_bit(module_id, shmem->bitmap)) {
		rtapi_mutex_give(&(rtapi_data->mutex));
		return -EINVAL;
	    }

	    /* no, map it */
	    /* convert key to a string */
	    genstr((unsigned int) key, keystr);
	    /* map shared memory block */
	    shmem_addr_array[shmem_id] = mbuff_alloc(keystr, shmem->size);
	    if (shmem_addr_array[shmem_id] == NULL) {
		/* map failed */
		rtapi_mutex_give(&(rtapi_data->mutex));
		return -ENOMEM;
	    }
	    /* update usage data */
	    set_bit(module_id, shmem->bitmap);
	    shmem->ulusers++;
	    /* done */
	    rtapi_mutex_give(&(rtapi_data->mutex));
	    return shmem_id;
	}
    }
    /* find empty spot in shmem array */
    n = 1;
    while ((n <= RTAPI_MAX_SHMEMS) && (shmem_array[n].key != 0)) {
	n++;
    }
    if (n > RTAPI_MAX_SHMEMS) {
	/* no room */
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EMFILE;
    }
    /* we have space for the block data */
    shmem_id = n;
    shmem = &(shmem_array[n]);
    /* convert key to a string */
    genstr((unsigned int) key, keystr);
    /* now get shared memory block from OS */
    shmem_addr_array[shmem_id] = mbuff_alloc(keystr, size);
    if (shmem_addr_array[shmem_id] == NULL) {
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -ENOMEM;
    }
    /* the block has been created, update data */
    set_bit(module_id, shmem->bitmap);
    shmem->key = key;
    shmem->rtusers = 0;
    shmem->ulusers = 1;
    shmem->size = size;
    rtapi_data->shmem_count++;
    /* zero the first word of the shmem area */
    *((long int *)(shmem_addr_array[shmem_id])) = 0;
    /* done */
    rtapi_mutex_give(&(rtapi_data->mutex));
    return shmem_id;
}

int rtapi_shmem_delete(int shmem_id, int module_id)
{
    int retval;

    rtapi_mutex_get(&(rtapi_data->mutex));
    retval = shmem_delete(shmem_id, module_id);
    rtapi_mutex_give(&(rtapi_data->mutex));
    return retval;
}

int shmem_delete(int shmem_id, int module_id)
{
    shmem_data *shmem;
    char keystr[KEYSTR_LEN];

    /* validate shmem ID */
    if ((shmem_id < 1) || (shmem_id > RTAPI_MAX_SHMEMS)) {
	return -EINVAL;
    }
    /* point to the shmem's data */
    shmem = &(shmem_array[shmem_id]);
    /* is the block valid? */
    if (shmem->key == 0) {
	return -EINVAL;
    }
    /* validate module_id */
    if ((module_id < 1) || (module_id > RTAPI_MAX_MODULES)) {
	return -EINVAL;
    }
    if (module_array[module_id].state != USERSPACE) {
	return -EINVAL;
    }
    /* is this module using the block? */
    if (test_bit(module_id, shmem->bitmap) == 0) {
	return -EINVAL;
    }
    /* OK, we're no longer using it */
    clear_bit(module_id, shmem->bitmap);
    shmem->ulusers--;
    /* unmap the block */
    /* convert key to a string */
    genstr((unsigned int) shmem->key, keystr);
    /* free the shared memory */
    mbuff_free(keystr, shmem_addr_array[shmem_id]);
    shmem_addr_array[shmem_id] = NULL;
    /* is somebody else still using the block? */
    if ((shmem->ulusers > 0) || (shmem->rtusers > 0)) {
	/* yes, we're done for now */
	return 0;
    }
    /* update the data array and usage count */
    shmem->key = 0;
    shmem->size = 0;
    rtapi_data->shmem_count--;
    return 0;
}

int rtapi_shmem_getptr(int shmem_id, void **ptr)
{
    /* validate shmem ID */
    if ((shmem_id < 1) || (shmem_id > RTAPI_MAX_SHMEMS)) {
	return -EINVAL;
    }
    /* is the block mapped? */
    if (shmem_addr_array[shmem_id] == NULL) {
	return -EINVAL;
    }
    /* pass memory address back to caller */
    *ptr = shmem_addr_array[shmem_id];
    return 0;
}

/***********************************************************************
*                       FIFO RELATED FUNCTIONS                         *
************************************************************************/

int rtapi_fifo_new(int key, int module_id, unsigned long int size, char mode)
{
    enum
    { DEVSTR_LEN = 256 };
    char devstr[DEVSTR_LEN];
    int n, flags;
    int fifo_id;
    fifo_data *fifo;

    /* key must be non-zero */
    if (key == 0) {
	return -EINVAL;
    }
    /* mode must be "R" or "W" */
    if ((mode != 'R') && (mode != 'W')) {
	return -EINVAL;
    }
    /* determine mode for fifo */
    if (mode == 'R') {
	flags = O_RDONLY;
    } else {			/* mode == 'W' */

	flags = O_WRONLY;
    }
    /* get the mutex */
    rtapi_mutex_get(&(rtapi_data->mutex));
    /* validate module_id */
    if ((module_id < 1) || (module_id > RTAPI_MAX_MODULES)) {
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EINVAL;
    }
    if (module_array[module_id].state != USERSPACE) {
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EINVAL;
    }
    /* check if a fifo already exists for this key */
    for (n = 1; n <= RTAPI_MAX_FIFOS; n++) {
	if ((fifo_array[n].state != UNUSED) && (fifo_array[n].key == key)) {
	    /* found a match */
	    fifo_id = n;
	    fifo = &(fifo_array[n]);
	    /* is the desired mode available */
	    if (mode == 'R') {
		if (fifo->state & HAS_READER) {
		    rtapi_mutex_give(&(rtapi_data->mutex));
		    return -EBUSY;
		}
		/* determine system name for fifo */
		sprintf(devstr, "/dev/rtf%d", fifo_id);
		/* open the fifo */
		fifo_fd_array[fifo_id] = open(devstr, flags);
		if (fifo_fd_array[fifo_id] < 0) {
		    /* open failed */
		    rtapi_mutex_give(&(rtapi_data->mutex));
		    return -ENOENT;
		}
		/* fifo opened, update status */
		fifo->state |= HAS_READER;
		fifo->reader = module_id;
		rtapi_mutex_give(&(rtapi_data->mutex));
		return fifo_id;
	    } else {		/* mode == 'W' */

		if (fifo->state & HAS_WRITER) {
		    rtapi_mutex_give(&(rtapi_data->mutex));
		    return -EBUSY;
		}
		/* determine system name for fifo */
		sprintf(devstr, "/dev/rtf%d", fifo_id);
		/* open the fifo */
		fifo_fd_array[fifo_id] = open(devstr, flags);
		if (fifo_fd_array[fifo_id] < 0) {
		    /* open failed */
		    rtapi_mutex_give(&(rtapi_data->mutex));
		    return -ENOENT;
		}
		/* fifo opened, update status */
		fifo->state |= HAS_WRITER;
		fifo->writer = module_id;
		rtapi_mutex_give(&(rtapi_data->mutex));
		return fifo_id;
	    }
	}
    }
    /* find empty spot in fifo array */
    n = 1;
    while ((n <= RTAPI_MAX_FIFOS) && (fifo_array[n].state != UNUSED)) {
	n++;
    }
    if (n > RTAPI_MAX_FIFOS) {
	/* no room */
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -EMFILE;
    }
    /* we have a free ID for the fifo */
    fifo_id = n;
    fifo = &(fifo_array[n]);
    /* determine system name for fifo */
    sprintf(devstr, "/dev/rtf%d", fifo_id);
    /* open the fifo */
    fifo_fd_array[fifo_id] = open(devstr, flags);
    if (fifo_fd_array[fifo_id] < 0) {
	/* open failed */
	rtapi_mutex_give(&(rtapi_data->mutex));
	return -ENOENT;
    }
    /* the fifo has been created, update data */
    if (mode == 'R') {
	fifo->state = HAS_READER;
	fifo->reader = module_id;
    } else {			/* mode == 'W' */

	fifo->state = HAS_WRITER;
	fifo->writer = module_id;
    }
    fifo->key = key;
    fifo->size = size;
    rtapi_data->fifo_count++;
    /* done */
    rtapi_mutex_give(&(rtapi_data->mutex));
    return fifo_id;
}

int rtapi_fifo_delete(int fifo_id, int module_id)
{
    int retval;

    rtapi_mutex_get(&(rtapi_data->mutex));
    retval = fifo_delete(fifo_id, module_id);
    rtapi_mutex_give(&(rtapi_data->mutex));
    return retval;
}

static int fifo_delete(int fifo_id, int module_id)
{
    fifo_data *fifo;

    /* validate fifo ID */
    if ((fifo_id < 1) || (fifo_id > RTAPI_MAX_FIFOS)) {
	return -EINVAL;
    }
    /* point to the fifo's data */
    fifo = &(fifo_array[fifo_id]);
    /* is the fifo valid? */
    if (fifo->state == UNUSED) {
	return -EINVAL;
    }
    /* validate module_id */
    if ((module_id < 1) || (module_id > RTAPI_MAX_MODULES)) {
	return -EINVAL;
    }
    if (module_array[module_id].state != USERSPACE) {
	return -EINVAL;
    }
    /* is this module using the fifo? */
    if ((fifo->reader != module_id) && (fifo->writer != module_id)) {
	return -EINVAL;
    }
    /* update fifo state */
    if (fifo->reader == module_id) {
	fifo->state &= ~HAS_READER;
	fifo->reader = 0;
    }
    if (fifo->writer == module_id) {
	fifo->state &= ~HAS_WRITER;
	fifo->writer = 0;
    }
    /* close the fifo */
    if (close(fifo_id) < 0) {
	return -ENOENT;
    }
    /* is somebody else still using the fifo */
    if (fifo->state != UNUSED) {
	/* yes, done for now */
	return 0;
    }
    /* no other users, update the data array and usage count */
    fifo->state = UNUSED;
    fifo->key = 0;
    fifo->size = 0;
    rtapi_data->fifo_count--;
    return 0;
}

int rtapi_fifo_read(int fifo_id, char *buf, unsigned long int size)
{
    int retval;

    fifo_data *fifo;

    /* validate fifo ID */
    if ((fifo_id < 1) || (fifo_id > RTAPI_MAX_FIFOS)) {
	return -EINVAL;
    }
    /* point to the fifo's data */
    fifo = &(fifo_array[fifo_id]);
    /* is the fifo valid? */
    if ((fifo->state & HAS_READER) == 0) {
	return -EINVAL;
    }
    /* get whatever data is available */
    retval = read(fifo_fd_array[fifo_id], buf, size);
    if (retval <= 0) {
	return -EINVAL;
    }
    return retval;

}

int rtapi_fifo_write(int fifo_id, char *buf, unsigned long int size)
{
    int retval;
    fifo_data *fifo;

    /* validate fifo ID */
    if ((fifo_id < 1) || (fifo_id > RTAPI_MAX_FIFOS)) {
	return -EINVAL;
    }
    /* point to the fifo's data */
    fifo = &(fifo_array[fifo_id]);
    /* is the fifo valid? */
    if ((fifo->state & HAS_WRITER) == 0) {
	return -EINVAL;
    }
    /* put whatever data will fit */
    retval = write(fifo_fd_array[fifo_id], buf, size);
    if (retval < 0) {
	return -EINVAL;
    }
    return retval;
}

/***********************************************************************
*                        I/O RELATED FUNCTIONS                         *
************************************************************************/

void rtapi_outb(unsigned char byte, unsigned int port)
{
    outb(byte, port);
}

unsigned char rtapi_inb(unsigned int port)
{
    return inb(port);
}