1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
|
/********************************************************************
* Description: tp.c
* Trajectory planner based on TC elements
*
* Derived from a work by Fred Proctor & Will Shackleford
*
* Author:
* License: GPL Version 2
* System: Linux
*
* Copyright (c) 2004 All rights reserved.
********************************************************************/
#include "rtapi.h" /* rtapi_print_msg */
#include "posemath.h" /* Geometry types & functions */
#include "tc.h"
#include "tp.h"
#include "emcpose.h"
#include "rtapi_math.h"
#include "mot_priv.h"
#include "motion_debug.h"
#include "motion_types.h"
#include "spherical_arc.h"
#include "blendmath.h"
/**
* @section tpdebugflags TP debugging flags
* Enable / disable various debugging functions here.
* These flags control debug printing from RTAPI. These functions are
* admittedly kludged on top of the existing rtapi_print framework. As written,
* though, it's an easy way to selectively compile functions as static or not,
* and selectively compile in assertions and debug printing.
*/
#include "tp_debug.h"
// FIXME: turn off this feature, which causes blends between rapids to
// use the feed override instead of the rapid override
#undef TP_SHOW_BLENDS
#define TP_OPTIMIZATION_LAZY
#define TP_PEDANTIC
extern emcmot_status_t *emcmotStatus;
extern emcmot_debug_t *emcmotDebug;
extern emcmot_config_t *emcmotConfig;
/** static function primitives (ugly but less of a pain than moving code around)*/
STATIC int tpComputeBlendVelocity(TP_STRUCT const * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc, int planning, double * const blend_vel);
STATIC int tpCheckEndCondition(TP_STRUCT const * const tp, TC_STRUCT * const tc);
STATIC int tpUpdateCycle(TP_STRUCT * const tp,
TC_STRUCT * const tc);
STATIC int tpRunOptimization(TP_STRUCT * const tp);
STATIC inline int tpAddSegmentToQueue(TP_STRUCT * const tp, TC_STRUCT * const tc, int inc_id);
STATIC inline double tpGetMaxTargetVel(TP_STRUCT const * const tp, TC_STRUCT const * const tc);
/**
* @section tpcheck Internal state check functions.
* These functions compartmentalize some of the messy state checks.
* Hopefully this makes changes easier to track as much of the churn will be on small functions.
*/
/**
* Check if the tail of the queue has a parabolic blend condition and update tc appropriately.
* This sets flags so that accelerations are correct due to the current segment
* having to blend with the previous.
*/
STATIC int tcCheckLastParabolic(TC_STRUCT * const tc,
TC_STRUCT const * const prev_tc) {
if (prev_tc && prev_tc->term_cond == TC_TERM_COND_PARABOLIC) {
tp_debug_print("prev segment parabolic, flagging blend_prev\n");
tc->blend_prev = 1;
}
return TP_ERR_OK;
}
/**
* Returns true if there is motion along ABC or UVW axes, false otherwise.
*/
STATIC int tpRotaryMotionCheck(TP_STRUCT const * const tp, TC_STRUCT const * const tc) {
switch (tc->motion_type) {
//Note lack of break statements due to every path returning
case TC_RIGIDTAP:
return false;
case TC_LINEAR:
if (tc->coords.line.abc.tmag_zero && tc->coords.line.uvw.tmag_zero) {
return false;
} else {
return true;
}
case TC_CIRCULAR:
if (tc->coords.circle.abc.tmag_zero && tc->coords.circle.uvw.tmag_zero) {
return false;
} else {
return true;
}
case TC_SPHERICAL:
return true;
default:
tp_debug_print("Unknown motion type!\n");
return false;
}
}
/**
* @section tpgetset Internal Get/Set functions
* @brief Calculation / status functions for commonly used values.
* These functions return the "actual" values of things like a trajectory
* segment's feed override, while taking into account the status of tp itself.
*/
STATIC int tpGetMachineAccelBounds(PmCartesian * const acc_bound) {
if (!acc_bound) {
return TP_ERR_FAIL;
}
acc_bound->x = emcmotDebug->joints[0].acc_limit;
acc_bound->y = emcmotDebug->joints[1].acc_limit;
acc_bound->z = emcmotDebug->joints[2].acc_limit;
return TP_ERR_OK;
}
/**
* Get a safe maximum acceleration based on X,Y, and Z.
* Use the lowest bound on the linear axes, rather than using the
* trajectory max accels. These are computed with the infinity norm, which
* means we can't just assume that the smaller of the two is within the limits.
*/
STATIC int tpGetMachineAccelLimit(double * const acc_limit) {
if (!acc_limit) {
return TP_ERR_FAIL;
}
PmCartesian acc_bound;
tpGetMachineAccelBounds(&acc_bound);
*acc_limit = pmCartMin(&acc_bound);
tp_debug_print(" arc blending a_max=%f\n", *acc_limit);
return TP_ERR_OK;
}
STATIC int tpGetMachineVelBounds(PmCartesian * const vel_bound) {
if (!vel_bound) {
return TP_ERR_FAIL;
}
vel_bound->x = emcmotDebug->joints[0].vel_limit;
vel_bound->y = emcmotDebug->joints[1].vel_limit;
vel_bound->z = emcmotDebug->joints[2].vel_limit;
return TP_ERR_OK;
}
/**
* Get a same maximum velocity for XYZ.
* This function returns the worst-case safe velocity in any direction along XYZ.
*/
STATIC int tpGetMachineVelLimit(double * const vel_limit) {
if (!vel_limit) {
return TP_ERR_FAIL;
}
//FIXME check for number of axes first!
double x = emcmotDebug->joints[0].vel_limit;
double y = emcmotDebug->joints[1].vel_limit;
double z = emcmotDebug->joints[2].vel_limit;
*vel_limit = fmin(fmin(x,y),z);
tp_debug_print(" arc blending v_max=%f\n", *vel_limit);
return TP_ERR_OK;
}
/**
* Get a segment's feed scale based on the current planner state and emcmotStatus.
* @note depends on emcmotStatus for system information.
*/
STATIC double tpGetFeedScale(TP_STRUCT const * const tp,
TC_STRUCT const * const tc) {
//All reasons to disable feed override go here
if (tp->pausing || tp->aborting) {
tc_debug_print("pausing or aborting\n");
return 0.0;
} else if ( tc->synchronized == TC_SYNC_POSITION ) {
return 1.0;
} else {
return emcmotStatus->net_feed_scale;
}
}
/**
* Get target velocity for a tc based on the trajectory planner state.
* This gives the requested velocity, capped by the segments maximum velocity.
*/
STATIC inline double tpGetRealTargetVel(TP_STRUCT const * const tp,
TC_STRUCT const * const tc) {
double v_max = tpGetMaxTargetVel(tp, tc);
double v_target;
if (!tcPureRotaryCheck(tc) && (tc->synchronized != TC_SYNC_POSITION)){
v_target = fmin(tc->reqvel * tpGetFeedScale(tp,tc), v_max);
} else {
v_target = v_max;
}
return v_target;
}
/**
* Get the worst-case target velocity for a segment based on the trajectory planner state.
*/
STATIC inline double tpGetMaxTargetVel(TP_STRUCT const * const tp, TC_STRUCT const * const tc) {
// Get maximum reachable velocity from max feed override
double v_max_target;
// Check if vLimit applies
if (!tcPureRotaryCheck(tc) && (tc->synchronized != TC_SYNC_POSITION)){
v_max_target = tp->vLimit;
} else {
v_max_target = tc->target_vel * emcmotConfig->maxFeedScale;
}
// Clip maximum velocity by tc maxvel
double v_max = fmin(v_max_target, tc->maxvel);
return v_max;
}
/**
* Get final velocity for a tc based on the trajectory planner state.
* This function factors in the feed override and TC limits. It clamps the
* final velocity to the maximum velocity and the current target velocity.
*/
STATIC inline double tpGetRealFinalVel(TP_STRUCT const * const tp,
TC_STRUCT const * const tc, double target_vel) {
/* If we're stepping, then it doesn't matter what the optimization says, we want to end at a stop.
* If the term_cond gets changed out from under us, detect this and force final velocity to zero
*/
if (emcmotDebug->stepping || tc->term_cond != TC_TERM_COND_TANGENT) {
return 0.0;
} else {
//Clamp final velocity to the max velocity we can achieve
double finalvel = tc->finalvel;
if (finalvel > target_vel) {
finalvel = target_vel;
}
return finalvel;
}
}
/**
* Get acceleration for a tc based on the trajectory planner state.
*/
STATIC inline double tpGetScaledAccel(TP_STRUCT const * const tp,
TC_STRUCT const * const tc) {
double a_scale = tc->maxaccel;
/* Parabolic blending conditions: If the next segment or previous segment
* has a parabolic blend with this one, acceleration is scaled down by 1/2
* so that the sum of the two does not exceed the maximum.
*/
if (tc->term_cond == TC_TERM_COND_PARABOLIC || tc->blend_prev) {
a_scale *= 0.5;
}
if (tc->motion_type == TC_CIRCULAR || tc->motion_type == TC_SPHERICAL) {
//Limit acceleration for cirular arcs to allow for normal acceleration
a_scale *= BLEND_ACC_RATIO_TANGENTIAL;
}
return a_scale;
}
/**
* Cap velocity based on trajectory properties
*/
STATIC inline double tpGetSampleVelocity(double vel, double length, double dt) {
//FIXME div by zero check
double v_sample = length / dt;
return fmin(vel,v_sample);
}
/**
* Convert the 2-part spindle position and sign to a signed double.
*/
STATIC inline double tpGetSignedSpindlePosition(double spindle_pos, int spindle_dir) {
if (spindle_dir < 0.0) {
spindle_pos*=-1.0;
}
return spindle_pos;
}
/**
* @section tpaccess tp class-like API
*/
/**
* Create the trajectory planner structure with an empty queue.
*/
int tpCreate(TP_STRUCT * const tp, int _queueSize, TC_STRUCT * const tcSpace)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
if (_queueSize <= 0) {
tp->queueSize = TP_DEFAULT_QUEUE_SIZE;
} else {
tp->queueSize = _queueSize;
}
/* create the queue */
if (-1 == tcqCreate(&tp->queue, tp->queueSize, tcSpace)) {
return TP_ERR_FAIL;
}
/* init the rest of our data */
return tpInit(tp);
}
/**
* Clears any potential DIO toggles and anychanged.
* If any DIOs need to be changed: dios[i] = 1, DIO needs to get turned on, -1
* = off
*/
int tpClearDIOs(TP_STRUCT * const tp) {
//XXX: All IO's will be flushed on next synced aio/dio! Is it ok?
int i;
tp->syncdio.anychanged = 0;
tp->syncdio.dio_mask = 0;
tp->syncdio.aio_mask = 0;
for (i = 0; i < num_dio; i++) {
tp->syncdio.dios[i] = 0;
}
for (i = 0; i < num_aio; i++) {
tp->syncdio.aios[i] = 0;
}
return TP_ERR_OK;
}
/**
* "Soft initialize" the trajectory planner tp.
* This is a "soft" initialization in that TP_STRUCT configuration
* parameters (cycleTime, vMax, and aMax) are left alone, but the queue is
* cleared, and the flags are set to an empty, ready queue. The currentPos
* is left alone, and goalPos is set to this position. This function is
* intended to put the motion queue in the state it would be if all queued
* motions finished at the current position.
*/
int tpClear(TP_STRUCT * const tp)
{
tcqInit(&tp->queue);
tp->queueSize = 0;
tp->goalPos = tp->currentPos;
tp->nextId = 0;
tp->execId = 0;
tp->motionType = 0;
tp->termCond = TC_TERM_COND_PARABOLIC;
tp->tolerance = 0.0;
tp->done = 1;
tp->depth = tp->activeDepth = 0;
tp->aborting = 0;
tp->pausing = 0;
tp->synchronized = 0;
tp->uu_per_rev = 0.0;
emcmotStatus->spindleSync = 0;
emcmotStatus->current_vel = 0.0;
emcmotStatus->requested_vel = 0.0;
emcmotStatus->distance_to_go = 0.0;
ZERO_EMC_POSE(emcmotStatus->dtg);
return tpClearDIOs(tp);
}
/**
* Fully initialize the tp structure.
* Sets tp configuration to default values and calls tpClear to create a fresh,
* empty queue.
*/
int tpInit(TP_STRUCT * const tp)
{
tp->cycleTime = 0.0;
//Velocity limits
tp->vLimit = 0.0;
tp->ini_maxvel = 0.0;
//Accelerations
tp->aLimit = 0.0;
tpGetMachineAccelLimit(&tp->aMax);
//Angular limits
tp->wMax = 0.0;
tp->wDotMax = 0.0;
tp->spindle.offset = 0.0;
tp->spindle.revs = 0.0;
tp->spindle.waiting_for_index = MOTION_INVALID_ID;
tp->spindle.waiting_for_atspeed = MOTION_INVALID_ID;
ZERO_EMC_POSE(tp->currentPos);
tpGetMachineVelLimit(&tp->vMax);
return tpClear(tp);
}
/**
* Set the cycle time for the trajectory planner.
*/
int tpSetCycleTime(TP_STRUCT * const tp, double secs)
{
if (0 == tp || secs <= 0.0) {
return TP_ERR_FAIL;
}
tp->cycleTime = secs;
return TP_ERR_OK;
}
/**
* Set requested velocity and absolute maximum velocity (bounded by machine).
* This is called before adding lines or circles, specifying vMax (the velocity
* requested by the F word) and ini_maxvel, the max velocity possible before
* meeting a machine constraint caused by an AXIS's max velocity. (the TP is
* allowed to go up to this high when feed override >100% is requested) These
* settings apply to subsequent moves until changed.
*/
int tpSetVmax(TP_STRUCT * const tp, double vMax, double ini_maxvel)
{
if (0 == tp || vMax <= 0.0 || ini_maxvel <= 0.0) {
return TP_ERR_FAIL;
}
tp->vMax = vMax;
tp->ini_maxvel = ini_maxvel;
return TP_ERR_OK;
}
/**
* (?) Set the tool tip maximum velocity.
* I think this is the [TRAJ] max velocity. This should be the max velocity of
* const the TOOL TIP, not necessarily any particular axis. This applies to
* subsequent moves until changed.
*/
int tpSetVlimit(TP_STRUCT * const tp, double vLimit)
{
if (!tp) return TP_ERR_FAIL;
if (vLimit < 0.)
tp->vLimit = 0.;
else
tp->vLimit = vLimit;
return TP_ERR_OK;
}
/** Sets the max acceleration for the trajectory planner. */
int tpSetAmax(TP_STRUCT * const tp, double aMax)
{
if (0 == tp || aMax <= 0.0) {
return TP_ERR_FAIL;
}
tp->aMax = aMax;
return TP_ERR_OK;
}
/**
* Sets the id that will be used for the next appended motions.
* nextId is incremented so that the next time a motion is appended its id will
* be one more than the previous one, modulo a signed int. If you want your own
* ids for each motion, call this before each motion you append and stick what
* you want in here.
*/
int tpSetId(TP_STRUCT * const tp, int id)
{
if (!MOTION_ID_VALID(id)) {
rtapi_print_msg(RTAPI_MSG_ERR, "tpSetId: invalid motion id %d\n", id);
return TP_ERR_FAIL;
}
if (0 == tp) {
return TP_ERR_FAIL;
}
tp->nextId = id;
return TP_ERR_OK;
}
/** Returns the id of the last motion that is currently
executing.*/
int tpGetExecId(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
return tp->execId;
}
/**
* Sets the termination condition for all subsequent queued moves.
* If cond is TC_TERM_COND_STOP, motion comes to a stop before a subsequent move
* begins. If cond is TC_TERM_COND_PARABOLIC, the following move is begun when the
* current move slows below a calculated blend velocity.
*/
int tpSetTermCond(TP_STRUCT * const tp, int cond, double tolerance)
{
if (!tp) {
return TP_ERR_FAIL;
}
switch (cond) {
//Purposeful waterfall for now
case TC_TERM_COND_PARABOLIC:
case TC_TERM_COND_TANGENT:
case TC_TERM_COND_STOP:
tp->termCond = cond;
tp->tolerance = tolerance;
break;
default:
//Invalid condition
return -1;
}
return TP_ERR_OK;
}
/**
* Used to tell the tp the initial position.
* It sets the current position AND the goal position to be the same. Used
* only at TP initialization and when switching modes.
*/
int tpSetPos(TP_STRUCT * const tp, EmcPose const * const pos)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
int res_invalid = tpSetCurrentPos(tp, pos);
if (res_invalid) {
return TP_ERR_FAIL;
}
tp->goalPos = *pos;
return TP_ERR_OK;
}
/**
* Set current position.
* It sets the current position AND the goal position to be the same. Used
* only at TP initialization and when switching modes.
*/
int tpSetCurrentPos(TP_STRUCT * const tp, EmcPose const * const pos)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
if (emcPoseValid(pos)) {
tp->currentPos = *pos;
return TP_ERR_OK;
} else {
rtapi_print_msg(RTAPI_MSG_ERR, "Tried to set invalid pose in tpSetCurrentPos!\n");
return TP_ERR_FAIL;
}
}
int tpAddCurrentPos(TP_STRUCT * const tp, EmcPose const * const disp)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
if (emcPoseValid(disp)) {
emcPoseSelfAdd(&tp->currentPos, disp);
return TP_ERR_OK;
} else {
rtapi_print_msg(RTAPI_MSG_ERR, "Tried to set invalid pose in tpSetCurrentPos!\n");
return TP_ERR_FAIL;
}
}
/**
* Check for valid tp before queueing additional moves.
*/
int tpErrorCheck(TP_STRUCT const * const tp) {
if (!tp) {
rtapi_print_msg(RTAPI_MSG_ERR, "TP is null\n");
return TP_ERR_FAIL;
}
if (tp->aborting) {
rtapi_print_msg(RTAPI_MSG_ERR, "TP is aborting\n");
return TP_ERR_FAIL;
}
return TP_ERR_OK;
}
/**
* Find the "peak" velocity a segment can acheive if its velocity profile is triangular.
* This is used to estimate blend velocity, though by itself is not enough
* (since requested velocity and max velocity could be lower).
*/
STATIC double tpCalculateTriangleVel(TP_STRUCT const * const tp, TC_STRUCT * const tc) {
//Compute peak velocity for blend calculations
double acc_scaled = tpGetScaledAccel(tp, tc);
double triangle_vel = pmSqrt( acc_scaled * tc->target);
tp_debug_print("triangle vel for segment %d is %f\n", tc->id, triangle_vel);
return triangle_vel;
}
/**
* Calculate the angle between two unit cartesian vectors.
*/
STATIC inline int tpCalculateUnitCartAngle(PmCartesian const * const u1, PmCartesian const * const u2, double * const theta) {
double dot;
pmCartCartDot(u1, u2, &dot);
if (dot > 1.0 || dot < -1.0) {
tp_debug_print("dot product %f outside domain of acos!\n",dot);
sat_inplace(&dot,1.0);
}
*theta = acos(dot);
return TP_ERR_OK;
}
/**
* Initialize a blend arc from its parent lines.
* This copies and initializes properties from the previous and next lines to
* initialize a blend arc. This function does not handle connecting the
* segments together, however.
*/
STATIC int tpInitBlendArcFromPrev(TP_STRUCT const * const tp, TC_STRUCT const * const prev_line_tc,
TC_STRUCT* const blend_tc, double vel, double ini_maxvel, double acc) {
#ifdef TP_SHOW_BLENDS
int canon_motion_type = EMC_MOTION_TYPE_ARC;
#else
int canon_motion_type = prev_line_tc->canon_motion_type;
#endif
tcInit(blend_tc,
TC_SPHERICAL,
canon_motion_type,
tp->cycleTime,
prev_line_tc->enables,
prev_line_tc->atspeed);
// Copy over state data from TP
tcSetupState(blend_tc, tp);
// Set kinematics parameters from blend calculations
tcSetupMotion(blend_tc,
vel,
ini_maxvel,
acc);
// Skip syncdio setup since this blend extends the previous line
blend_tc->syncdio = prev_line_tc->syncdio; //enqueue the list of DIOs that need toggling
// find "helix" length for target
double length;
arcLength(&blend_tc->coords.arc.xyz, &length);
blend_tc->target = length;
blend_tc->nominal_length = length;
// Set the blend arc to be tangent to the next segment
tcSetTermCond(blend_tc, TC_TERM_COND_TANGENT);
//NOTE: blend arc radius and everything else is finalized, so set this to 1.
//In the future, radius may be adjustable.
tcFinalizeLength(blend_tc);
return TP_ERR_OK;
}
/**
* Given a PmCircle and a circular segment, copy the circle in as the XYZ portion of the segment, then update the motion parameters.
* NOTE: does not yet support ABC or UVW motion!
*/
STATIC int tcSetCircleXYZ(TC_STRUCT * const tc, PmCircle const * const circ)
{
//Update targets with new arc length
if (!circ || tc->motion_type != TC_CIRCULAR) {
return TP_ERR_FAIL;
}
if (!tc->coords.circle.abc.tmag_zero || !tc->coords.circle.uvw.tmag_zero) {
rtapi_print_msg(RTAPI_MSG_ERR, "SetCircleXYZ does not supportABC or UVW motion\n");
return TP_ERR_FAIL;
}
tc->coords.circle.xyz = *circ;
tc->target = circ->angle * circ->radius;
return TP_ERR_OK;
}
STATIC int tcSetLineXYZ(TC_STRUCT * const tc, PmCartLine const * const line)
{
//Update targets with new arc length
if (!line || tc->motion_type != TC_LINEAR) {
return TP_ERR_FAIL;
}
if (!tc->coords.line.abc.tmag_zero || !tc->coords.line.uvw.tmag_zero) {
rtapi_print_msg(RTAPI_MSG_ERR, "SetLineXYZ does not supportABC or UVW motion\n");
return TP_ERR_FAIL;
}
tc->coords.line.xyz = *line;
tc->target = line->tmag;
return TP_ERR_OK;
}
STATIC int tpCreateLineArcBlend(TP_STRUCT * const tp, TC_STRUCT * const prev_tc, TC_STRUCT * const tc, TC_STRUCT * const blend_tc)
{
tp_debug_print("-- Starting LineArc blend arc --\n");
//TODO type checks
int coplanar = pmCircLineCoplanar(&tc->coords.circle.xyz,
&prev_tc->coords.line.xyz, TP_ANGLE_EPSILON);
if (!coplanar) {
return TP_ERR_FAIL;
}
PmCartesian acc_bound, vel_bound;
//Get machine limits
tpGetMachineAccelBounds(&acc_bound);
tpGetMachineVelBounds(&vel_bound);
//Populate blend geometry struct
BlendGeom3 geom;
BlendParameters param;
BlendPoints3 points_approx;
BlendPoints3 points_exact;
int res_init = blendInit3FromLineArc(&geom, ¶m,
prev_tc,
tc,
&acc_bound,
&vel_bound,
emcmotConfig->maxFeedScale);
int res_param = blendComputeParameters(¶m);
int res_points = blendFindPoints3(&points_approx, &geom, ¶m);
int res_post = blendLineArcPostProcess(&points_exact,
&points_approx,
¶m,
&geom, &prev_tc->coords.line.xyz,
&tc->coords.circle.xyz);
//Catch errors in blend setup
if (res_init || res_param || res_points || res_post) {
tp_debug_print("Got %d, %d, %d, %d for init, param, points, post, aborting arc\n",
res_init,
res_param,
res_points,
res_post);
return TP_ERR_FAIL;
}
/* If blend calculations were successful, then we're ready to create the
* blend arc.
*/
if (points_exact.trim2 > param.phi2_max) {
tp_debug_print("trim2 %f > phi2_max %f, aborting arc...\n",
points_exact.trim2,
param.phi2_max);
return TP_ERR_FAIL;
}
blendCheckConsume(¶m, &points_exact, prev_tc, emcmotConfig->arcBlendGapCycles);
//Store working copies of geometry
PmCartLine line1_temp = prev_tc->coords.line.xyz;
PmCircle circ2_temp = tc->coords.circle.xyz;
// Change lengths of circles
// FIXME partial failure after this point leaves us in an unrecoverable
// state. We might need to do a copy and swap to
// ensure that we can quit at any time without borking the existing
// geometry.
double new_len1 = line1_temp.tmag - points_exact.trim1;
int res_stretch1 = pmCartLineStretch(&line1_temp,
new_len1,
false);
double phi2_new = tc->coords.circle.xyz.angle - points_exact.trim2;
tp_debug_print("phi2_new = %f\n",phi2_new);
int res_stretch2 = pmCircleStretch(&circ2_temp,
phi2_new,
true);
//TODO create blends
if (res_stretch1 || res_stretch2) {
tp_debug_print("segment resize failed, aborting arc\n");
return TP_ERR_FAIL;
}
//Get exact start and end points to account for spiral in arcs
pmCartLinePoint(&line1_temp,
line1_temp.tmag,
&points_exact.arc_start);
pmCirclePoint(&circ2_temp,
0.0,
&points_exact.arc_end);
//TODO deal with large spiral values, or else detect and fall back?
blendPoints3Print(&points_exact);
int res_arc = arcFromBlendPoints3(&blend_tc->coords.arc.xyz,
&points_exact,
&geom,
¶m);
if (res_arc < 0) {
tp_debug_print("arc creation failed, aborting arc\n");
return TP_ERR_FAIL;
}
// Note that previous restrictions don't allow ABC or UVW movement, so the
// end and start points should be identical
blend_tc->coords.arc.abc = prev_tc->coords.line.abc.end;
blend_tc->coords.arc.uvw = prev_tc->coords.line.uvw.end;
//set the max velocity to v_plan, since we'll violate constraints otherwise.
tpInitBlendArcFromPrev(tp, prev_tc, blend_tc, param.v_req,
param.v_plan, param.a_max);
blend_tc->target_vel = param.v_actual;
int res_tangent = checkTangentAngle(&circ2_temp,
&blend_tc->coords.arc.xyz,
&geom,
¶m,
tp->cycleTime,
true);
if (res_tangent < 0) {
tp_debug_print("failed tangent check, aborting arc...\n");
return TP_ERR_FAIL;
}
tp_debug_print("Passed all tests, updating segments\n");
//Cleanup any mess from parabolic
tc->blend_prev = 0;
//TODO refactor to pass consume to connect function
if (param.consume) {
//Since we're consuming the previous segment, pop the last line off of the queue
int res_pop = tcqPopBack(&tp->queue);
if (res_pop) {
tp_debug_print("failed to pop segment, aborting arc\n");
return TP_ERR_FAIL;
}
} else {
tcSetLineXYZ(prev_tc, &line1_temp);
}
tcSetCircleXYZ(tc, &circ2_temp);
tcSetTermCond(prev_tc, TC_TERM_COND_TANGENT);
return TP_ERR_OK;
}
STATIC int tpCreateArcLineBlend(TP_STRUCT * const tp, TC_STRUCT * const prev_tc, TC_STRUCT * const tc, TC_STRUCT * const blend_tc)
{
tp_debug_print("-- Starting ArcLine blend arc --\n");
//TODO type checks
int coplanar = pmCircLineCoplanar(&prev_tc->coords.circle.xyz,
&tc->coords.line.xyz, TP_ANGLE_EPSILON);
if (!coplanar) {
return TP_ERR_FAIL;
}
PmCartesian acc_bound, vel_bound;
//Get machine limits
tpGetMachineAccelBounds(&acc_bound);
tpGetMachineVelBounds(&vel_bound);
//Populate blend geometry struct
BlendGeom3 geom;
BlendParameters param;
BlendPoints3 points_approx;
BlendPoints3 points_exact;
param.consume = 0;
int res_init = blendInit3FromArcLine(&geom, ¶m,
prev_tc,
tc,
&acc_bound,
&vel_bound,
emcmotConfig->maxFeedScale);
int res_param = blendComputeParameters(¶m);
int res_points = blendFindPoints3(&points_approx, &geom, ¶m);
int res_post = blendArcLinePostProcess(&points_exact,
&points_approx,
¶m,
&geom, &prev_tc->coords.circle.xyz,
&tc->coords.line.xyz);
//Catch errors in blend setup
if (res_init || res_param || res_points || res_post) {
tp_debug_print("Got %d, %d, %d, %d for init, param, points, post\n",
res_init,
res_param,
res_points,
res_post);
return TP_ERR_FAIL;
}
blendCheckConsume(¶m, &points_exact, prev_tc, emcmotConfig->arcBlendGapCycles);
/* If blend calculations were successful, then we're ready to create the
* blend arc.
*/
// Store working copies of geometry
PmCircle circ1_temp = prev_tc->coords.circle.xyz;
PmCartLine line2_temp = tc->coords.line.xyz;
// Update start and end points of segment copies
double phi1_new = circ1_temp.angle - points_exact.trim1;
if (points_exact.trim1 > param.phi1_max) {
tp_debug_print("trim1 %f > phi1_max %f, aborting arc...\n",
points_exact.trim1,
param.phi1_max);
return TP_ERR_FAIL;
}
int res_stretch1 = pmCircleStretch(&circ1_temp,
phi1_new,
false);
if (res_stretch1 != TP_ERR_OK) {
return TP_ERR_FAIL;
}
double new_len2 = tc->target - points_exact.trim2;
int res_stretch2 = pmCartLineStretch(&line2_temp,
new_len2,
true);
if (res_stretch1 || res_stretch2) {
tp_debug_print("segment resize failed, aborting arc\n");
return TP_ERR_FAIL;
}
pmCirclePoint(&circ1_temp,
circ1_temp.angle,
&points_exact.arc_start);
pmCartLinePoint(&line2_temp,
0.0,
&points_exact.arc_end);
blendPoints3Print(&points_exact);
int res_arc = arcFromBlendPoints3(&blend_tc->coords.arc.xyz, &points_exact, &geom, ¶m);
if (res_arc < 0) {
return TP_ERR_FAIL;
}
// Note that previous restrictions don't allow ABC or UVW movement, so the
// end and start points should be identical
blend_tc->coords.arc.abc = tc->coords.line.abc.start;
blend_tc->coords.arc.uvw = tc->coords.line.uvw.start;
//set the max velocity to v_plan, since we'll violate constraints otherwise.
tpInitBlendArcFromPrev(tp, prev_tc, blend_tc, param.v_req,
param.v_plan, param.a_max);
blend_tc->target_vel = param.v_actual;
int res_tangent = checkTangentAngle(&circ1_temp, &blend_tc->coords.arc.xyz, &geom, ¶m, tp->cycleTime, false);
if (res_tangent) {
tp_debug_print("failed tangent check, aborting arc...\n");
return TP_ERR_FAIL;
}
tp_debug_print("Passed all tests, updating segments\n");
tcSetCircleXYZ(prev_tc, &circ1_temp);
tcSetLineXYZ(tc, &line2_temp);
//Cleanup any mess from parabolic
tc->blend_prev = 0;
tcSetTermCond(prev_tc, TC_TERM_COND_TANGENT);
return TP_ERR_OK;
}
STATIC int tpCreateArcArcBlend(TP_STRUCT * const tp, TC_STRUCT * const prev_tc, TC_STRUCT * const tc, TC_STRUCT * const blend_tc)
{
tp_debug_print("-- Starting ArcArc blend arc --\n");
//TODO type checks
int colinear = pmCartCartParallel(&prev_tc->coords.circle.xyz.normal,
&tc->coords.circle.xyz.normal, TP_ANGLE_EPSILON);
if (!colinear) {
// Fail out if not collinear
tp_debug_print("arc abort: not coplanar\n");
return TP_ERR_FAIL;
}
PmCartesian acc_bound, vel_bound;
//Get machine limits
tpGetMachineAccelBounds(&acc_bound);
tpGetMachineVelBounds(&vel_bound);
//Populate blend geometry struct
BlendGeom3 geom;
BlendParameters param;
BlendPoints3 points_approx;
BlendPoints3 points_exact;
int res_init = blendInit3FromArcArc(&geom, ¶m,
prev_tc,
tc,
&acc_bound,
&vel_bound,
emcmotConfig->maxFeedScale);
int res_param = blendComputeParameters(¶m);
int res_points = blendFindPoints3(&points_approx, &geom, ¶m);
int res_post = blendArcArcPostProcess(&points_exact,
&points_approx,
¶m,
&geom, &prev_tc->coords.circle.xyz,
&tc->coords.circle.xyz);
//Catch errors in blend setup
if (res_init || res_param || res_points || res_post) {
tp_debug_print("Got %d, %d, %d, %d for init, param, points, post\n",
res_init,
res_param,
res_points,
res_post);
return TP_ERR_FAIL;
}
blendCheckConsume(¶m, &points_exact, prev_tc, emcmotConfig->arcBlendGapCycles);
/* If blend calculations were successful, then we're ready to create the
* blend arc. Begin work on temp copies of each circle here:
*/
double phi1_new = prev_tc->coords.circle.xyz.angle - points_exact.trim1;
double phi2_new = tc->coords.circle.xyz.angle - points_exact.trim2;
// TODO pare down this debug output
tp_debug_print("phi1_new = %f, trim1 = %f\n", phi1_new, points_exact.trim1);
tp_debug_print("phi2_new = %f, trim2 = %f\n", phi2_new, points_exact.trim2);
if (points_exact.trim1 > param.phi1_max) {
tp_debug_print("trim1 %f > phi1_max %f, aborting arc...\n",
points_exact.trim1,
param.phi1_max);
return TP_ERR_FAIL;
}
if (points_exact.trim2 > param.phi2_max) {
tp_debug_print("trim2 %f > phi2_max %f, aborting arc...\n",
points_exact.trim2,
param.phi2_max);
return TP_ERR_FAIL;
}
//Store working copies of geometry
PmCircle circ1_temp = prev_tc->coords.circle.xyz;
PmCircle circ2_temp = tc->coords.circle.xyz;
int res_stretch1 = pmCircleStretch(&circ1_temp,
phi1_new,
false);
if (res_stretch1 != TP_ERR_OK) {
return TP_ERR_FAIL;
}
int res_stretch2 = pmCircleStretch(&circ2_temp,
phi2_new,
true);
if (res_stretch1 || res_stretch2) {
tp_debug_print("segment resize failed, aborting arc\n");
return TP_ERR_FAIL;
}
//Get exact start and end points to account for spiral in arcs
pmCirclePoint(&circ1_temp,
circ1_temp.angle,
&points_exact.arc_start);
pmCirclePoint(&circ2_temp,
0.0,
&points_exact.arc_end);
tp_debug_print("Modified arc points\n");
blendPoints3Print(&points_exact);
int res_arc = arcFromBlendPoints3(&blend_tc->coords.arc.xyz, &points_exact, &geom, ¶m);
if (res_arc < 0) {
return TP_ERR_FAIL;
}
// Note that previous restrictions don't allow ABC or UVW movement, so the
// end and start points should be identical
blend_tc->coords.arc.abc = prev_tc->coords.circle.abc.end;
blend_tc->coords.arc.uvw = prev_tc->coords.circle.uvw.end;
//set the max velocity to v_plan, since we'll violate constraints otherwise.
tpInitBlendArcFromPrev(tp, prev_tc, blend_tc, param.v_req,
param.v_plan, param.a_max);
blend_tc->target_vel = param.v_actual;
int res_tangent1 = checkTangentAngle(&circ1_temp, &blend_tc->coords.arc.xyz, &geom, ¶m, tp->cycleTime, false);
int res_tangent2 = checkTangentAngle(&circ2_temp, &blend_tc->coords.arc.xyz, &geom, ¶m, tp->cycleTime, true);
if (res_tangent1 || res_tangent2) {
tp_debug_print("failed tangent check, aborting arc...\n");
return TP_ERR_FAIL;
}
tp_debug_print("Passed all tests, updating segments\n");
tcSetCircleXYZ(prev_tc, &circ1_temp);
tcSetCircleXYZ(tc, &circ2_temp);
//Cleanup any mess from parabolic
tc->blend_prev = 0;
tcSetTermCond(prev_tc, TC_TERM_COND_TANGENT);
return TP_ERR_OK;
}
STATIC int tpCreateLineLineBlend(TP_STRUCT * const tp, TC_STRUCT * const prev_tc,
TC_STRUCT * const tc, TC_STRUCT * const blend_tc)
{
tp_debug_print("-- Starting LineLine blend arc --\n");
PmCartesian acc_bound, vel_bound;
//Get machine limits
tpGetMachineAccelBounds(&acc_bound);
tpGetMachineVelBounds(&vel_bound);
// Setup blend data structures
BlendGeom3 geom;
BlendParameters param;
BlendPoints3 points;
blendInit3FromLineLine(&geom, ¶m,
prev_tc,
tc,
&acc_bound,
&vel_bound,
emcmotConfig->maxFeedScale);
int res_blend = blendComputeParameters(¶m);
blendFindPoints3(&points, &geom, ¶m);
if (res_blend != TP_ERR_OK) {
return res_blend;
}
blendCheckConsume(¶m, &points, prev_tc, emcmotConfig->arcBlendGapCycles);
// Set up actual blend arc here
int res_arc = arcFromBlendPoints3(&blend_tc->coords.arc.xyz, &points, &geom, ¶m);
if (res_arc < 0) {
return TP_ERR_FAIL;
}
// Note that previous restrictions don't allow ABC or UVW movement, so the
// end and start points should be identical
blend_tc->coords.arc.abc = prev_tc->coords.line.abc.end;
blend_tc->coords.arc.uvw = prev_tc->coords.line.uvw.end;
//set the max velocity to v_plan, since we'll violate constraints otherwise.
tpInitBlendArcFromPrev(tp, prev_tc, blend_tc, param.v_req,
param.v_plan, param.a_max);
blend_tc->target_vel = param.v_actual;
int retval = TP_ERR_FAIL;
//TODO refactor to pass consume to connect function
if (param.consume) {
//Since we're consuming the previous segment, pop the last line off of the queue
retval = tcqPopBack(&tp->queue);
if (retval) {
//This is unrecoverable since we've already changed the line. Something is wrong if we get here...
rtapi_print_msg(RTAPI_MSG_ERR, "PopBack failed\n");
return TP_ERR_FAIL;
}
//Since the blend arc meets the end of the previous line, we only need
//to "connect" to the next line
retval = tcConnectBlendArc(NULL, tc, &points.arc_start, &points.arc_end);
} else {
//TODO refactor connect function to stretch lines and check for bad stretching
tp_debug_print("keeping previous line\n");
retval = tcConnectBlendArc(prev_tc, tc, &points.arc_start, &points.arc_end);
}
return retval;
}
/**
* Add a newly created motion segment to the tp queue.
* Returns an error code if the queue operation fails, otherwise adds a new
* segment to the queue and updates the end point of the trajectory planner.
*/
STATIC inline int tpAddSegmentToQueue(TP_STRUCT * const tp, TC_STRUCT * const tc, int inc_id) {
tc->id = tp->nextId;
if (tcqPut(&tp->queue, tc) == -1) {
rtapi_print_msg(RTAPI_MSG_ERR, "tcqPut failed.\n");
return TP_ERR_FAIL;
}
if (inc_id) {
tp->nextId++;
}
// Store end of current move as new final goal of TP
tcGetEndpoint(tc, &tp->goalPos);
tp->done = 0;
tp->depth = tcqLen(&tp->queue);
//Fixing issue with duplicate id's?
tp_debug_print("Adding TC id %d of type %d\n",tc->id,tc->motion_type);
return TP_ERR_OK;
}
STATIC int tpCheckCanonType(TC_STRUCT * const prev_tc, TC_STRUCT const * const tc)
{
if (!tc || !prev_tc) {
return TP_ERR_FAIL;
}
if ((prev_tc->canon_motion_type == EMC_MOTION_TYPE_TRAVERSE) ^
(tc->canon_motion_type == EMC_MOTION_TYPE_TRAVERSE)) {
tp_debug_print("Can't blend between rapid and feed move, aborting arc\n");
tcSetTermCond(prev_tc, TC_TERM_COND_STOP);
}
return TP_ERR_OK;
}
STATIC int tpSetupSyncedIO(TP_STRUCT * const tp, TC_STRUCT * const tc) {
if (tp->syncdio.anychanged != 0) {
tc->syncdio = tp->syncdio; //enqueue the list of DIOs that need toggling
tpClearDIOs(tp); // clear out the list, in order to prepare for the next time we need to use it
return TP_ERR_OK;
} else {
tc->syncdio.anychanged = 0;
return TP_ERR_NO_ACTION;
}
}
/**
* Adds a rigid tap cycle to the motion queue.
*/
int tpAddRigidTap(TP_STRUCT * const tp, EmcPose end, double vel, double ini_maxvel,
double acc, unsigned char enables) {
if (tpErrorCheck(tp)) {
return TP_ERR_FAIL;
}
tp_info_print("== AddRigidTap ==\n");
if(!tp->synchronized) {
rtapi_print_msg(RTAPI_MSG_ERR, "Cannot add unsynchronized rigid tap move.\n");
return TP_ERR_FAIL;
}
TC_STRUCT tc = {0};
/* Initialize rigid tap move.
* NOTE: rigid tapping does not have a canonical type.
* NOTE: always need atspeed since this is a synchronized movement.
* */
tcInit(&tc,
TC_RIGIDTAP,
0,
tp->cycleTime,
enables,
1);
// Setup any synced IO for this move
tpSetupSyncedIO(tp, &tc);
// Copy over state data from the trajectory planner
tcSetupState(&tc, tp);
// Copy in motion parameters
tcSetupMotion(&tc,
vel,
ini_maxvel,
acc);
// Setup rigid tap geometry
pmRigidTapInit(&tc.coords.rigidtap,
&tp->goalPos,
&end);
tc.target = pmRigidTapTarget(&tc.coords.rigidtap, tp->uu_per_rev);
TC_STRUCT *prev_tc;
//Assume non-zero error code is failure
prev_tc = tcqLast(&tp->queue);
tcFinalizeLength(prev_tc);
tcFlagEarlyStop(prev_tc, &tc);
int retval = tpAddSegmentToQueue(tp, &tc, true);
tpRunOptimization(tp);
return retval;
}
STATIC blend_type_t tpCheckBlendArcType(TP_STRUCT const * const tp,
TC_STRUCT const * const prev_tc,
TC_STRUCT const * const tc) {
if (!prev_tc || !tc) {
tp_debug_print("prev_tc or tc doesn't exist\n");
return BLEND_NONE;
}
//If exact stop, we don't compute the arc
if (prev_tc->term_cond != TC_TERM_COND_PARABOLIC) {
tp_debug_print("Wrong term cond = %u\n", prev_tc->term_cond);
return BLEND_NONE;
}
//If we have any rotary axis motion, then don't create a blend arc
if (tpRotaryMotionCheck(tp, tc) || tpRotaryMotionCheck(tp, prev_tc)) {
tp_debug_print("One of the segments has rotary motion, aborting blend arc\n");
return BLEND_NONE;
}
if (tc->finalized || prev_tc->finalized) {
tp_debug_print("Can't create blend when segment lengths are finalized\n");
return BLEND_NONE;
}
tp_debug_print("Motion types: prev_tc = %u, tc = %u\n",
prev_tc->motion_type,tc->motion_type);
//If not linear blends, we can't easily compute an arc
if ((prev_tc->motion_type == TC_LINEAR) && (tc->motion_type == TC_LINEAR)) {
return BLEND_LINE_LINE;
} else if (prev_tc->motion_type == TC_LINEAR && tc->motion_type == TC_CIRCULAR) {
return BLEND_LINE_ARC;
} else if (prev_tc->motion_type == TC_CIRCULAR && tc->motion_type == TC_LINEAR) {
return BLEND_ARC_LINE;
} else if (prev_tc->motion_type == TC_CIRCULAR && tc->motion_type == TC_CIRCULAR) {
return BLEND_ARC_ARC;
} else {
return BLEND_NONE;
}
}
/**
* Based on the nth and (n-1)th segment, find a safe final velocity for the (n-1)th segment.
* This function also caps the target velocity if velocity ramping is enabled. If we
* don't do this, then the linear segments (with higher tangential
* acceleration) will speed up and slow down to reach their target velocity,
* creating "humps" in the velocity profile.
*/
STATIC int tpComputeOptimalVelocity(TP_STRUCT const * const tp, TC_STRUCT * const tc, TC_STRUCT * const prev1_tc) {
//Calculate the maximum starting velocity vs_back of segment tc, given the
//trajectory parameters
double acc_this = tpGetScaledAccel(tp, tc);
// Find the reachable velocity of tc, moving backwards in time
double vs_back = pmSqrt(pmSq(tc->finalvel) + 2.0 * acc_this * tc->target);
// Find the reachable velocity of prev1_tc, moving forwards in time
double vf_limit_this = tc->maxvel;
//Limit the PREVIOUS velocity by how much we can overshoot into
double vf_limit_prev = prev1_tc->maxvel;
double vf_limit = fmin(vf_limit_this, vf_limit_prev);
if (vs_back >= vf_limit ) {
//If we've hit the requested velocity, then prev_tc is definitely a "peak"
vs_back = vf_limit;
prev1_tc->optimization_state = TC_OPTIM_AT_MAX;
tp_debug_print("found peak due to v_limit\n");
}
//Limit tc's target velocity to avoid creating "humps" in the velocity profile
prev1_tc->finalvel = vs_back;
//Reduce max velocity to match sample rate
double sample_maxvel = tc->target / (tp->cycleTime * TP_MIN_SEGMENT_CYCLES);
tc->maxvel = fmin(tc->maxvel, sample_maxvel);
tp_info_print(" prev1_tc-> fv = %f, tc->fv = %f, capped target = %f\n",
prev1_tc->finalvel, tc->finalvel, tc->target_vel);
return TP_ERR_OK;
}
/**
* Do "rising tide" optimization to find allowable final velocities for each queued segment.
* Walk along the queue from the back to the front. Based on the "current"
* segment's final velocity, calculate the previous segment's maximum allowable
* final velocity. The depth we walk along the queue is controlled by the
* TP_LOOKAHEAD_DEPTH constant for now. The process safetly aborts early due to
* a short queue or other conflicts.
*/
STATIC int tpRunOptimization(TP_STRUCT * const tp) {
// Pointers to the "current", previous, and 2nd previous trajectory
// components. Current in this context means the segment being optimized,
// NOT the currently excecuting segment.
TC_STRUCT *tc;
TC_STRUCT *prev1_tc;
int ind, x;
int len = tcqLen(&tp->queue);
//TODO make lookahead depth configurable from the INI file
int hit_peaks = 0;
/* Starting at the 2nd to last element in the queue, work backwards towards
* the front. We can't do anything with the very last element because its
* length may change if a new line is added to the queue.*/
for (x = 1; x < emcmotConfig->arcBlendOptDepth + 2; ++x) {
tp_info_print("==== Optimization step %d ====\n",x-2);
// Update the pointers to the trajectory segments in use
ind = len-x;
tc = tcqItem(&tp->queue, ind);
prev1_tc = tcqItem(&tp->queue, ind-1);
if ( !prev1_tc || !tc) {
tp_debug_print(" Reached end of queue in optimization\n");
return TP_ERR_OK;
}
if (!tc->finalized) {
tp_debug_print("Segment %d, type %d not finalized, continuing\n",tc->id,tc->motion_type);
continue;
}
// stop optimizing if we hit a non-tangent segment (final velocity
// stays zero)
if (prev1_tc->term_cond != TC_TERM_COND_TANGENT) {
tp_debug_print("Found non-tangent segment, stopping optimization\n");
return TP_ERR_OK;
}
//Abort if a segment is already in progress, so that we don't step on
//split cycle calculation
if (prev1_tc->progress>0) {
tp_debug_print("segment %d already started, progress is %f!\n",
ind-1, prev1_tc->progress);
return TP_ERR_OK;
}
tp_info_print(" current term = %u, type = %u, id = %u, accel_mode = %d\n",
tc->term_cond, tc->motion_type, tc->id, tc->accel_mode);
tp_info_print(" prev term = %u, type = %u, id = %u, accel_mode = %d\n",
prev1_tc->term_cond, prev1_tc->motion_type, prev1_tc->id, prev1_tc->accel_mode);
if (tc->atspeed) {
//Assume worst case that we have a stop at this point. This may cause a
//slight hiccup, but the alternative is a sudden hard stop.
tp_debug_print("Found atspeed at id %d\n",tc->id);
tc->finalvel = 0.0;
}
tpComputeOptimalVelocity(tp, tc, prev1_tc);
tc->active_depth = x - 2 - hit_peaks;
#ifdef TP_OPTIMIZATION_LAZY
if (tc->optimization_state == TC_OPTIM_AT_MAX) {
hit_peaks++;
}
if (hit_peaks > TP_OPTIMIZATION_CUTOFF) {
return TP_ERR_OK;
}
#endif
}
tp_debug_print("Reached optimization depth limit\n");
return TP_ERR_OK;
}
/**
* Check for tangency between the current segment and previous segment.
* If the current and previous segment are tangent, then flag the previous
* segment as tangent, and limit the current segment's velocity by the sampling
* rate.
*/
STATIC int tpSetupTangent(TP_STRUCT const * const tp,
TC_STRUCT * const prev_tc, TC_STRUCT * const tc) {
if (!tc || !prev_tc) {
tp_debug_print("missing tc or prev tc in tangent check\n");
return TP_ERR_FAIL;
}
//If we have ABCUVW movement, then don't check for tangency
if (tpRotaryMotionCheck(tp, tc) || tpRotaryMotionCheck(tp, prev_tc)) {
tp_debug_print("found rotary axis motion, aborting tangent check\n");
return TP_ERR_NO_ACTION;
}
if (emcmotConfig->arcBlendOptDepth < 2) {
tp_debug_print("Optimization depth %d too low, ignoring any tangents\n",
emcmotConfig->arcBlendOptDepth);
return TP_ERR_NO_ACTION;
}
PmCartesian prev_tan, this_tan;
int res_endtan = tcGetEndTangentUnitVector(prev_tc, &prev_tan);
int res_starttan = tcGetStartTangentUnitVector(tc, &this_tan);
if (res_endtan || res_starttan) {
tp_debug_print("Got %d and %d from tangent vector calc, aborting tangent check\n",
res_endtan, res_starttan);
}
tp_debug_print("prev tangent vector: %f %f %f\n", prev_tan.x, prev_tan.y, prev_tan.z);
tp_debug_print("this tangent vector: %f %f %f\n", this_tan.x, this_tan.y, this_tan.z);
double theta;
int failed = findIntersectionAngle(&prev_tan, &this_tan, &theta);
if (failed) {
return TP_ERR_FAIL;
}
double phi = PM_PI - 2.0 * theta;
tp_debug_print("phi = %f\n", phi);
double v_reachable = fmax(tpGetMaxTargetVel(tp, tc),
tpGetMaxTargetVel(tp, prev_tc));
double acc_limit;
//TODO move this to setup
tpGetMachineAccelLimit(&acc_limit);
double max_angle = findMaxTangentAngle(v_reachable, acc_limit, tp->cycleTime);
if (phi <= max_angle) {
tp_debug_print(" New segment tangent with angle %g\n", phi);
tcSetTermCond(prev_tc, TC_TERM_COND_TANGENT);
//Calculate actual normal acceleration during tangent transition
double a_t_ratio = 1.0 - findKinkAccel(phi, v_reachable, tp->cycleTime) / acc_limit;
tp_debug_print("a_t_ratio = %f\n", a_t_ratio);
prev_tc->maxaccel *= a_t_ratio;
tc->maxaccel *= a_t_ratio;
//TODO remove this, possibly redundant with optimziation
//Clip maximum velocity by sample rate
prev_tc->maxvel = fmin(prev_tc->maxvel, prev_tc->target /
tp->cycleTime / TP_MIN_SEGMENT_CYCLES);
return TP_ERR_OK;
} else {
tp_debug_print(" New segment angle %g > max %g \n", phi, max_angle);
return TP_ERR_NO_ACTION;
}
}
/**
* Handle creating a blend arc when a new line segment is about to enter the queue.
* This function handles the checks, setup, and calculations for creating a new
* blend arc. Essentially all of the blend arc functions are called through
* here to isolate the process.
*/
STATIC int tpHandleBlendArc(TP_STRUCT * const tp, TC_STRUCT * const tc) {
tp_debug_print("** Handle Blend Arc **\n");
TC_STRUCT *prev_tc;
prev_tc = tcqLast(&tp->queue);
//If the previous segment has already started, then don't create a blend
//arc for the next pair.
// TODO May be able to lift this restriction if we can ensure that we leave
// 1 timestep's worth of distance in prev_tc
if ( !prev_tc) {
tp_debug_print(" queue empty\n");
return TP_ERR_FAIL;
}
if (prev_tc->progress > 0.0) {
tp_debug_print(" prev_tc progress = %f, aborting arc\n", prev_tc->progress);
return TP_ERR_FAIL;
}
if (TP_ERR_OK == tpSetupTangent(tp, prev_tc, tc)) {
//Marked segment as tangent
return TP_ERR_OK;
}
TC_STRUCT blend_tc = {0};
blend_type_t type = tpCheckBlendArcType(tp, prev_tc, tc);
int res_create;
switch (type) {
case BLEND_LINE_LINE:
res_create = tpCreateLineLineBlend(tp, prev_tc, tc, &blend_tc);
break;
case BLEND_LINE_ARC:
res_create = tpCreateLineArcBlend(tp, prev_tc, tc, &blend_tc);
break;
case BLEND_ARC_LINE:
res_create = tpCreateArcLineBlend(tp, prev_tc, tc, &blend_tc);
break;
case BLEND_ARC_ARC:
res_create = tpCreateArcArcBlend(tp, prev_tc, tc, &blend_tc);
break;
default:
tp_debug_print("intersection type not recognized, aborting arc\n");
res_create = TP_ERR_FAIL;
break;
}
if (res_create == TP_ERR_OK) {
//Need to do this here since the length changed
tpAddSegmentToQueue(tp, &blend_tc, false);
} else {
return res_create;
}
return TP_ERR_OK;
}
//TODO final setup steps as separate functions
//
/**
* Add a straight line to the tc queue.
* end of the previous move to the new end specified here at the
* currently-active accel and vel settings from the tp struct.
*/
int tpAddLine(TP_STRUCT * const tp, EmcPose end, int canon_motion_type, double vel, double
ini_maxvel, double acc, unsigned char enables, char atspeed, int indexrotary) {
if (tpErrorCheck(tp) < 0) {
return TP_ERR_FAIL;
}
tp_info_print("== AddLine ==\n");
// Initialize new tc struct for the line segment
TC_STRUCT tc = {0};
tcInit(&tc,
TC_LINEAR,
canon_motion_type,
tp->cycleTime,
enables,
atspeed);
// Copy in motion parameters
tcSetupMotion(&tc,
vel,
ini_maxvel,
acc);
// Setup any synced IO for this move
tpSetupSyncedIO(tp, &tc);
// Copy over state data from the trajectory planner
tcSetupState(&tc, tp);
// Setup line geometry
pmLine9Init(&tc.coords.line,
&tp->goalPos,
&end);
tc.target = pmLine9Target(&tc.coords.line);
tc.nominal_length = tc.target;
// For linear move, set rotary axis settings
tc.indexrotary = indexrotary;
//TODO refactor this into its own function
TC_STRUCT *prev_tc;
prev_tc = tcqLast(&tp->queue);
tpCheckCanonType(prev_tc, &tc);
if (emcmotConfig->arcBlendEnable){
tpHandleBlendArc(tp, &tc);
}
tcCheckLastParabolic(&tc, prev_tc);
tcFinalizeLength(prev_tc);
tcFlagEarlyStop(prev_tc, &tc);
int retval = tpAddSegmentToQueue(tp, &tc, true);
//Run speed optimization (will abort safely if there are no tangent segments)
tpRunOptimization(tp);
return retval;
}
/**
* Adds a circular (circle, arc, helix) move from the end of the
* last move to this new position.
*
* @param end is the xyz/abc point of the destination.
*
* see pmCircleInit for further details on how arcs are specified. Note that
* degenerate arcs/circles are not allowed. We are guaranteed to have a move in
* xyz so the target is always the circle/arc/helical length.
*/
int tpAddCircle(TP_STRUCT * const tp,
EmcPose end,
PmCartesian center,
PmCartesian normal,
int turn,
int canon_motion_type,
double vel,
double ini_maxvel,
double acc,
unsigned char enables,
char atspeed)
{
if (tpErrorCheck(tp)<0) {
return TP_ERR_FAIL;
}
tp_info_print("== AddCircle ==\n");
tp_debug_print("ini_maxvel = %f\n",ini_maxvel);
TC_STRUCT tc = {0};
tcInit(&tc,
TC_CIRCULAR,
canon_motion_type,
tp->cycleTime,
enables,
atspeed);
// Setup any synced IO for this move
tpSetupSyncedIO(tp, &tc);
// Copy over state data from the trajectory planner
tcSetupState(&tc, tp);
// Setup circle geometry
pmCircle9Init(&tc.coords.circle,
&tp->goalPos,
&end,
¢er,
&normal,
turn);
tc.target = pmCircle9Target(&tc.coords.circle);
tc.nominal_length = tc.target;
double v_max_actual = pmCircleActualMaxVel(&tc.coords.circle.xyz, ini_maxvel, acc, false);
// Copy in motion parameters
tcSetupMotion(&tc,
vel,
v_max_actual,
acc);
TC_STRUCT *prev_tc;
prev_tc = tcqLast(&tp->queue);
tpCheckCanonType(prev_tc, &tc);
if (emcmotConfig->arcBlendEnable){
tpHandleBlendArc(tp, &tc);
}
tcCheckLastParabolic(&tc, prev_tc);
tcFinalizeLength(prev_tc);
tcFlagEarlyStop(prev_tc, &tc);
int retval = tpAddSegmentToQueue(tp, &tc, true);
tpRunOptimization(tp);
return retval;
}
/**
* Adjusts blend velocity and acceleration to safe limits.
* If we are blending between tc and nexttc, then we need to figure out what a
* safe blend velocity is based on the known trajectory parameters. This
* function updates the TC_STRUCT data with a safe blend velocity.
*/
STATIC int tpComputeBlendVelocity(TP_STRUCT const * const tp,
TC_STRUCT * const tc, TC_STRUCT * const nexttc,
int planning, double * const v_parabolic) {
/* Pre-checks for valid pointers */
if (!nexttc || !tc) {
return TP_ERR_FAIL;
}
if (tc->term_cond != TC_TERM_COND_PARABOLIC && !planning) {
return TP_ERR_NO_ACTION;
}
double acc_this = tpGetScaledAccel(tp, tc);
double acc_next = tpGetScaledAccel(tp, nexttc);
// cap the blend velocity at the current requested speed (factoring in feed override)
double target_vel_this;
double target_vel_next;
if (planning) {
target_vel_this = tpGetMaxTargetVel(tp, tc);
target_vel_next = tpGetMaxTargetVel(tp, nexttc);
} else {
target_vel_this = tpGetRealTargetVel(tp, tc);
target_vel_next = tpGetRealTargetVel(tp, nexttc);
}
double v_reachable_this = fmin(tpCalculateTriangleVel(tp,tc), target_vel_this);
double v_reachable_next = fmin(tpCalculateTriangleVel(tp,nexttc), target_vel_next);
/* Scale blend velocity to match blends between current and next segment.
*
* The blend time t_b should be the same for this segment and the next
* segment. This is the time it takes to decelerate from v_blend_this to 0
* at a rate of acc_this , and accelerate from 0 to v_blend next at a rate
* of acc_next.
*
* t_b = v_blend_this / acc_this = v_blend_next / acc_next
*
* Solving for v_blend_this by cross multiplying, we get:
*
* v_blend_this = v_blend_next * acc_this / acc_next
*
* TODO figure illustrating this
*/
double v_blend_this, v_blend_next;
v_blend_this = v_reachable_next * acc_this / acc_next;
v_blend_next = v_reachable_next;
//The shorter of the two segments is our constraint
if (v_reachable_this < v_reachable_next) {
v_blend_this = fmin(v_reachable_this, v_blend_this);
v_blend_next = fmin(v_reachable_this * acc_next / acc_this, v_blend_next);
} else {
v_blend_this = fmin(v_blend_this, v_reachable_next * acc_this / acc_next);
v_blend_next = fmin(v_blend_next, v_reachable_next);
}
double theta;
if (tc->tolerance > 0 || planning) {
/* see diagram blend.fig. T (blend tolerance) is given, theta
* is calculated from dot(s1, s2)
*
* blend criteria: we are decelerating at the end of segment s1
* and we pass distance d from the end.
* find the corresponding velocity v when passing d.
*
* in the drawing note d = 2T/cos(theta)
*
* when v1 is decelerating at a to stop, v = at, t = v/a
* so required d = .5 a (v/a)^2
*
* equate the two expressions for d and solve for v
*/
double tblend_vel;
PmCartesian v1, v2;
tcGetEndAccelUnitVector(tc, &v1);
tcGetStartAccelUnitVector(nexttc, &v2);
findIntersectionAngle(&v1, &v2, &theta);
/* Minimum value of cos(theta) to prevent numerical instability */
const double min_cos_theta = cos(PM_PI / 2.0 - TP_MIN_ARC_ANGLE);
if (cos(theta) > min_cos_theta) {
tblend_vel = 2.0 * pmSqrt(acc_this * tc->tolerance / cos(theta));
v_blend_this = fmin(v_blend_this, tblend_vel);
v_blend_next = fmin(v_blend_next, tblend_vel);
}
//Output blend velocity for reference if desired
if (v_parabolic) {
//Crude law of cosines
double vsq = pmSq(v_blend_this) + pmSq(v_blend_next) - 2.0 *
v_blend_this * v_blend_next * cos(2.0 * theta);
*v_parabolic = pmSqrt(vsq) / 2.0;
}
}
//Store blend velocities for use during parabolic blending
if (!planning) {
tc->blend_vel = v_blend_this;
nexttc->blend_vel = v_blend_next;
tp_debug_print("v_blend_this = %f, v_blend_next = %f\n",v_blend_this,v_blend_next);
}
return TP_ERR_OK;
}
/**
* Calculate distance update from velocity and acceleration.
*/
STATIC int tcUpdateDistFromAccel(TC_STRUCT * const tc, double acc, double vel_desired)
{
// If the resulting velocity is less than zero, than we're done. This
// causes a small overshoot, but in practice it is very small.
double v_next = tc->currentvel + acc * tc->cycle_time;
// update position in this tc using trapezoidal integration
// Note that progress can be greater than the target after this step.
if (v_next < 0.0) {
v_next = 0.0;
//KLUDGE: the trapezoidal planner undershoots by half a cycle time, so
//forcing the endpoint here is necessary. However, velocity undershoot
//also occurs during pausing and stopping, which can happen far from
//the end. If we could "cruise" to the endpoint within a cycle at our
//current speed, then assume that we want to be at the end.
if ((tc->target - tc->progress) < (tc->currentvel * tc->cycle_time)) {
tc->progress = tc->target;
}
} else {
double displacement = (v_next + tc->currentvel) * 0.5 * tc->cycle_time;
tc->progress += displacement;
clip_max(&tc->progress,tc->target);
}
tc->currentvel = v_next;
// Check if we can make the desired velocity
tc->on_final_decel = (fabs(vel_desired - tc->currentvel) < TP_VEL_EPSILON) && (acc < 0.0);
return TP_ERR_OK;
}
STATIC void tpDebugCycleInfo(TP_STRUCT const * const tp, TC_STRUCT const * const tc, double acc) {
#ifdef TC_DEBUG
// Find maximum allowed velocity from feed and machine limits
double tc_target_vel = tpGetRealTargetVel(tp, tc);
// Store a copy of final velocity
double tc_finalvel = tpGetRealFinalVel(tp, tc, tc_target_vel);
/* Debug Output */
tc_debug_print("tc state: vr = %f, vf = %f, maxvel = %f\n",
tc_target_vel, tc_finalvel, tc->maxvel);
tc_debug_print(" currentvel = %f, fs = %f, tc = %f, term = %d\n",
tc->currentvel, tpGetFeedScale(tp,tc), tc->cycle_time, tc->term_cond);
tc_debug_print(" acc = %f,T = %f, P = %f\n", acc,
tc->target, tc->progress);
if (tc->on_final_decel) {
rtapi_print(" on final decel\n");
}
#endif
}
/**
* Compute updated position and velocity for a timestep based on a trapezoidal
* motion profile.
* @param tc trajectory segment being processed.
*
* Creates the trapezoidal velocity profile based on the segment's velocity and
* acceleration limits. The formula has been tweaked slightly to allow a
* non-zero velocity at the instant the target is reached.
*/
void tpCalculateTrapezoidalAccel(TP_STRUCT const * const tp, TC_STRUCT * const tc,
double * const acc, double * const vel_desired)
{
tc_debug_print("using trapezoidal acceleration\n");
// Find maximum allowed velocity from feed and machine limits
double tc_target_vel = tpGetRealTargetVel(tp, tc);
// Store a copy of final velocity
double tc_finalvel = tpGetRealFinalVel(tp, tc, tc_target_vel);
#ifdef TP_PEDANTIC
if (tc_finalvel > 0.0 && tc->term_cond != TC_TERM_COND_TANGENT) {
rtapi_print_msg(RTAPI_MSG_ERR, "Final velocity of %f with non-tangent segment!\n",tc_finalvel);
tc_finalvel = 0.0;
}
#endif
/* Calculations for desired velocity based on trapezoidal profile */
double dx = tc->target - tc->progress;
double maxaccel = tpGetScaledAccel(tp, tc);
double discr_term1 = pmSq(tc_finalvel);
double discr_term2 = maxaccel * (2.0 * dx - tc->currentvel * tc->cycle_time);
double tmp_adt = maxaccel * tc->cycle_time * 0.5;
double discr_term3 = pmSq(tmp_adt);
double discr = discr_term1 + discr_term2 + discr_term3;
// Descriminant is a little more complicated with final velocity term. If
// descriminant < 0, we've overshot (or are about to). Do the best we can
// in this situation
#ifdef TP_PEDANTIC
if (discr < 0.0) {
rtapi_print_msg(RTAPI_MSG_ERR,
"discriminant %f < 0 in velocity calculation!\n", discr);
}
#endif
//Start with -B/2 portion of quadratic formula
double maxnewvel = -tmp_adt;
//If the discriminant term brings our velocity above zero, add it to the total
//We can ignore the calculation otherwise because negative velocities are clipped to zero
if (discr > discr_term3) {
maxnewvel += pmSqrt(discr);
}
// Find bounded new velocity based on target velocity
// Note that we use a separate variable later to check if we're on final decel
double newvel = saturate(maxnewvel, tc_target_vel);
// Calculate acceleration needed to reach newvel, bounded by machine maximum
double maxnewaccel = (newvel - tc->currentvel) / tc->cycle_time;
*acc = saturate(maxnewaccel, maxaccel);
*vel_desired = maxnewvel;
}
/**
* Calculate "ramp" acceleration for a cycle.
*/
STATIC int tpCalculateRampAccel(TP_STRUCT const * const tp,
TC_STRUCT * const tc, double * const acc, double * const vel_desired)
{
tc_debug_print("using ramped acceleration\n");
// displacement remaining in this segment
double dx = tc->target - tc->progress;
if (!tc->blending_next) {
tc->vel_at_blend_start = tc->currentvel;
}
double target_vel = tpGetRealTargetVel(tp, tc);
double vel_final = tpGetRealFinalVel(tp, tc, target_vel);
/* Check if the final velocity is too low to properly ramp up.*/
if (vel_final < TP_VEL_EPSILON) {
tp_debug_print(" vel_final %f too low for velocity ramping\n", vel_final);
return TP_ERR_FAIL;
}
double vel_avg = (tc->currentvel + vel_final) / 2.0;
// Calculate time remaining in this segment assuming constant acceleration
double dt = 1e-16;
if (vel_avg > TP_VEL_EPSILON) {
dt = fmax( dx / vel_avg, 1e-16);
}
// Calculate velocity change between final and current velocity
double dv = vel_final - tc->currentvel;
// Estimate constant acceleration required
double acc_final = dv / dt;
// Saturate estimated acceleration against maximum allowed by segment
double acc_max = tpGetScaledAccel(tp, tc);
// Output acceleration and velocity for position update
*acc = saturate(acc_final, acc_max);
*vel_desired = vel_final;
return TP_ERR_OK;
}
void tpToggleDIOs(TC_STRUCT * const tc) {
int i=0;
if (tc->syncdio.anychanged != 0) { // we have DIO's to turn on or off
for (i=0; i < num_dio; i++) {
if (!(tc->syncdio.dio_mask & (1 << i))) continue;
if (tc->syncdio.dios[i] > 0) emcmotDioWrite(i, 1); // turn DIO[i] on
if (tc->syncdio.dios[i] < 0) emcmotDioWrite(i, 0); // turn DIO[i] off
}
for (i=0; i < num_aio; i++) {
if (!(tc->syncdio.aio_mask & (1 << i))) continue;
emcmotAioWrite(i, tc->syncdio.aios[i]); // set AIO[i]
}
tc->syncdio.anychanged = 0; //we have turned them all on/off, nothing else to do for this TC the next time
}
}
/**
* Handle special cases for rigid tapping.
* This function deals with updating the goal position and spindle position
* during a rigid tap cycle. In particular, the target and spindle goal need to
* be carefully handled since we're reversing direction.
*/
STATIC void tpUpdateRigidTapState(TP_STRUCT const * const tp,
TC_STRUCT * const tc) {
static double old_spindlepos;
double new_spindlepos = emcmotStatus->spindleRevs;
if (emcmotStatus->spindle.direction < 0) new_spindlepos = -new_spindlepos;
switch (tc->coords.rigidtap.state) {
case TAPPING:
rtapi_print_msg(RTAPI_MSG_DBG, "TAPPING");
if (tc->progress >= tc->coords.rigidtap.reversal_target) {
// command reversal
emcmotStatus->spindle.speed *= -1.0;
tc->coords.rigidtap.state = REVERSING;
}
break;
case REVERSING:
rtapi_print_msg(RTAPI_MSG_DBG, "REVERSING");
if (new_spindlepos < old_spindlepos) {
PmCartesian start, end;
PmCartLine *aux = &tc->coords.rigidtap.aux_xyz;
// we've stopped, so set a new target at the original position
tc->coords.rigidtap.spindlerevs_at_reversal = new_spindlepos + tp->spindle.offset;
pmCartLinePoint(&tc->coords.rigidtap.xyz, tc->progress, &start);
end = tc->coords.rigidtap.xyz.start;
pmCartLineInit(aux, &start, &end);
rtapi_print_msg(RTAPI_MSG_DBG, "old target = %f", tc->target);
tc->coords.rigidtap.reversal_target = aux->tmag;
tc->target = aux->tmag + 10. * tc->uu_per_rev;
tc->progress = 0.0;
rtapi_print_msg(RTAPI_MSG_DBG, "new target = %f", tc->target);
tc->coords.rigidtap.state = RETRACTION;
}
old_spindlepos = new_spindlepos;
rtapi_print_msg(RTAPI_MSG_DBG, "Spindlepos = %f", new_spindlepos);
break;
case RETRACTION:
rtapi_print_msg(RTAPI_MSG_DBG, "RETRACTION");
if (tc->progress >= tc->coords.rigidtap.reversal_target) {
emcmotStatus->spindle.speed *= -1;
tc->coords.rigidtap.state = FINAL_REVERSAL;
}
break;
case FINAL_REVERSAL:
rtapi_print_msg(RTAPI_MSG_DBG, "FINAL_REVERSAL");
if (new_spindlepos > old_spindlepos) {
PmCartesian start, end;
PmCartLine *aux = &tc->coords.rigidtap.aux_xyz;
pmCartLinePoint(aux, tc->progress, &start);
end = tc->coords.rigidtap.xyz.start;
pmCartLineInit(aux, &start, &end);
tc->target = aux->tmag;
tc->progress = 0.0;
//No longer need spindle sync at this point
tc->synchronized = 0;
tc->target_vel = tc->maxvel;
tc->coords.rigidtap.state = FINAL_PLACEMENT;
}
old_spindlepos = new_spindlepos;
break;
case FINAL_PLACEMENT:
rtapi_print_msg(RTAPI_MSG_DBG, "FINAL_PLACEMENT\n");
// this is a regular move now, it'll stop at target above.
break;
}
}
/**
* Update emcMotStatus with information about trajectory motion.
* Based on the specified trajectory segment tc, read its progress and status
* flags. Then, update the emcmotStatus structure with this information.
*/
STATIC void tpUpdateMovementStatus(TP_STRUCT * const tp, TC_STRUCT const * const tc ) {
EmcPose target;
tcGetEndpoint(tc, &target);
tc_debug_print("tc id = %u canon_type = %u mot type = %u\n",
tc->id, tc->canon_motion_type, tc->motion_type);
tp->motionType = tc->canon_motion_type;
tp->activeDepth = tc->active_depth;
emcmotStatus->distance_to_go = tc->target - tc->progress;
emcmotStatus->enables_queued = tc->enables;
// report our line number to the guis
tp->execId = tc->id;
emcmotStatus->requested_vel = tc->reqvel;
emcmotStatus->current_vel = tc->currentvel;
emcPoseSub(&target, &tp->currentPos, &emcmotStatus->dtg);
}
/**
* Do a parabolic blend by updating the nexttc.
* Perform the actual blending process by updating the target velocity for the
* next segment, then running a cycle update.
*/
STATIC void tpUpdateBlend(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc) {
tp_debug_print("updating blend\n");
double save_vel = nexttc->target_vel;
if (tpGetFeedScale(tp,nexttc) > TP_VEL_EPSILON) {
double dv = tc->vel_at_blend_start - tc->currentvel;
double vel_start = fmax(tc->vel_at_blend_start,TP_VEL_EPSILON);
// Clip the ratio at 1 and 0
double blend_progress = fmax(fmin(dv / vel_start, 1.0),0.0);
double blend_scale = tc->vel_at_blend_start / tc->blend_vel;
nexttc->target_vel = blend_progress * nexttc->blend_vel * blend_scale;
} else {
nexttc->target_vel = 0.0;
}
tpUpdateCycle(tp, nexttc);
//Restore the blend velocity
nexttc->target_vel = save_vel;
}
/**
* Cleanup if tc is not valid (empty queue).
* If the program ends, or we hit QUEUE STARVATION, do a soft reset on the trajectory planner.
* TODO merge with tpClear?
*/
STATIC void tpHandleEmptyQueue(TP_STRUCT * const tp,
emcmot_status_t * const emcmotStatus) {
tcqInit(&tp->queue);
tp->goalPos = tp->currentPos;
tp->done = 1;
tp->depth = tp->activeDepth = 0;
tp->aborting = 0;
tp->execId = 0;
tp->motionType = 0;
tpResume(tp);
// when not executing a move, use the current enable flags
emcmotStatus->enables_queued = emcmotStatus->enables_new;
}
/** Wrapper function to unlock rotary axes */
STATIC void tpSetRotaryUnlock(int axis, int unlock) {
emcmotSetRotaryUnlock(axis, unlock);
}
/** Wrapper function to check rotary axis lock */
STATIC int tpGetRotaryIsUnlocked(int axis) {
return emcmotGetRotaryIsUnlocked(axis);
}
/**
* Cleanup after a trajectory segment is complete.
* If the current move is complete and we're not waiting on the spindle for
* const this move, then pop if off the queue and perform cleanup operations.
* Finally, get the next move in the queue.
*/
STATIC int tpCompleteSegment(TP_STRUCT * const tp,
TC_STRUCT const * const tc) {
if (tp->spindle.waiting_for_atspeed == tc->id) {
return TP_ERR_FAIL;
}
// if we're synced, and this move is ending, save the
// spindle position so the next synced move can be in
// the right place.
if(tc->synchronized != TC_SYNC_NONE) {
tp->spindle.offset += tc->target / tc->uu_per_rev;
} else {
tp->spindle.offset = 0.0;
}
if(tc->indexrotary != -1) {
// this was an indexing move, so before we remove it we must
// relock the axis
tpSetRotaryUnlock(tc->indexrotary, 0);
// if it is now locked, fall through and remove the finished move.
// otherwise, just come back later and check again
if(tpGetRotaryIsUnlocked(tc->indexrotary)) {
return TP_ERR_FAIL;
}
}
// done with this move
tcqRemove(&tp->queue, 1);
tp_debug_print("Finished tc id %d\n", tc->id);
return TP_ERR_OK;
}
/**
* Handle an abort command.
* Based on the current motion state, handle the consequences of an abort command.
*/
STATIC int tpHandleAbort(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc) {
if(!tp->aborting) {
//Don't need to do anything if not aborting
return TP_ERR_NO_ACTION;
}
//If the motion has stopped, then it's safe to reset the TP struct.
if( MOTION_ID_VALID(tp->spindle.waiting_for_index) ||
MOTION_ID_VALID(tp->spindle.waiting_for_atspeed) ||
(tc->currentvel == 0.0 && (!nexttc || nexttc->currentvel == 0.0))) {
tcqInit(&tp->queue);
tp->goalPos = tp->currentPos;
tp->done = 1;
tp->depth = tp->activeDepth = 0;
tp->aborting = 0;
tp->execId = 0;
tp->motionType = 0;
tp->synchronized = 0;
tp->spindle.waiting_for_index = MOTION_INVALID_ID;
tp->spindle.waiting_for_atspeed = MOTION_INVALID_ID;
emcmotStatus->spindleSync = 0;
tpResume(tp);
return TP_ERR_STOPPED;
} //FIXME consistent error codes
return TP_ERR_SLOWING;
}
/**
* Check if the spindle has reached the required speed for a move.
* Returns a "wait" code if the spindle needs to spin up before a move and it
* has not reached the requested speed, or the spindle index has not been
* detected.
*/
STATIC int tpCheckAtSpeed(TP_STRUCT * const tp, TC_STRUCT * const tc)
{
// this is no longer the segment we were waiting_for_index for
if (MOTION_ID_VALID(tp->spindle.waiting_for_index) && tp->spindle.waiting_for_index != tc->id)
{
rtapi_print_msg(RTAPI_MSG_ERR,
"Was waiting for index on motion id %d, but reached id %d\n",
tp->spindle.waiting_for_index, tc->id);
tp->spindle.waiting_for_index = MOTION_INVALID_ID;
}
if (MOTION_ID_VALID(tp->spindle.waiting_for_atspeed) && tp->spindle.waiting_for_atspeed != tc->id)
{
rtapi_print_msg(RTAPI_MSG_ERR,
"Was waiting for atspeed on motion id %d, but reached id %d\n",
tp->spindle.waiting_for_atspeed, tc->id);
tp->spindle.waiting_for_atspeed = MOTION_INVALID_ID;
}
if (MOTION_ID_VALID(tp->spindle.waiting_for_atspeed)) {
if(!emcmotStatus->spindle_is_atspeed) {
// spindle is still not at the right speed, so wait another cycle
return TP_ERR_WAITING;
} else {
tp->spindle.waiting_for_atspeed = MOTION_INVALID_ID;
}
}
if (MOTION_ID_VALID(tp->spindle.waiting_for_index)) {
if (emcmotStatus->spindle_index_enable) {
/* haven't passed index yet */
return TP_ERR_WAITING;
} else {
/* passed index, start the move */
emcmotStatus->spindleSync = 1;
tp->spindle.waiting_for_index = MOTION_INVALID_ID;
tc->sync_accel = 1;
tp->spindle.revs = 0;
}
}
return TP_ERR_OK;
}
/**
* Finalize the length of a segment and re-run optimization.
* This function is a kludgy fix for the problem of finalizing the very last
* segment in a program. Since the last segment is never blending with a "next"
* segment, it's never marked as finalized.
*
* @param tp trajectory planner struct pointer
* @param tc segment to check for finalized length
*
* Usage: call this function on a near-future segment in tpRunCycle (at least 2
* segments ahead of the "current" segment). If we detect that tc is not
* finalized, then force it to be finalized and re-run optimization.
*
* If this isn't actually the end (say we have queue starvation), the blend arc
* functions will detect that the prev. line is finalized and skip that blend
* arc.
*/
STATIC int tpHandleLowQueue(TP_STRUCT * const tp) {
if (tcqLen(&tp->queue) > TP_QUEUE_THRESHOLD) {
return TP_ERR_NO_ACTION;
}
TC_STRUCT *tc_last;
tc_last = tcqLast(&tp->queue);
if(TP_ERR_OK == tcFinalizeLength(tc_last)) {
tpRunOptimization(tp);
return TP_ERR_OK;
} else {
return TP_ERR_NO_ACTION;
}
}
/**
* "Activate" a segment being read for the first time.
* This function handles initial setup of a new segment read off of the queue
* for the first time.
*/
STATIC int tpActivateSegment(TP_STRUCT * const tp, TC_STRUCT * const tc) {
//Check if already active
if (!tc || tc->active) {
return TP_ERR_OK;
}
/* Based on the INI setting for "cutoff frequency", this calculation finds
* short segments that can have their acceleration be simple ramps, instead
* of a trapezoidal motion. This leads to fewer jerk spikes, at a slight
* performance cost.
* */
double cutoff_time = 1.0 / (emcmotConfig->arcBlendRampFreq);
double length = tc->target - tc->progress;
double segment_time = 2.0 * length / (tc->currentvel + tc->finalvel);
if (segment_time < cutoff_time &&
tc->canon_motion_type != EMC_MOTION_TYPE_TRAVERSE &&
tc->term_cond == TC_TERM_COND_TANGENT)
{
tp_debug_print("segment_time = %f, cutoff_time = %f, ramping\n",
segment_time, cutoff_time);
tc->accel_mode = TC_ACCEL_RAMP;
}
// Do at speed checks that only happen once
int needs_atspeed = tc->atspeed ||
(tc->synchronized == TC_SYNC_POSITION && !(emcmotStatus->spindleSync));
if ( needs_atspeed && !(emcmotStatus->spindle_is_atspeed)) {
tp->spindle.waiting_for_atspeed = tc->id;
return TP_ERR_WAITING;
}
if (tc->indexrotary != -1) {
// request that the axis unlock
tpSetRotaryUnlock(tc->indexrotary, 1);
// if it is unlocked, fall through and start the move.
// otherwise, just come back later and check again
if (!tpGetRotaryIsUnlocked(tc->indexrotary))
return TP_ERR_WAITING;
}
// Temporary debug message
tp_debug_print("Activate tc id = %d target_vel = %f req_vel = %f final_vel = %f length = %f\n",
tc->id,
tc->target_vel,
tc->reqvel,
tc->finalvel,
tc->target);
tc->active = 1;
//Do not change initial velocity here, since tangent blending already sets this up
tp->motionType = tc->canon_motion_type;
tc->blending_next = 0;
tc->on_final_decel = 0;
if (TC_SYNC_POSITION == tc->synchronized && !(emcmotStatus->spindleSync)) {
tp_debug_print("Setting up position sync\n");
// if we aren't already synced, wait
tp->spindle.waiting_for_index = tc->id;
// ask for an index reset
emcmotStatus->spindle_index_enable = 1;
tp->spindle.offset = 0.0;
rtapi_print_msg(RTAPI_MSG_DBG, "Waiting on sync...\n");
return TP_ERR_WAITING;
}
return TP_ERR_OK;
}
/**
* Run velocity mode synchronization.
* Update requested velocity to follow the spindle's velocity (scaled by feed rate).
*/
STATIC void tpSyncVelocityMode(TP_STRUCT * const tp, TC_STRUCT * const tc, TC_STRUCT const * nexttc) {
double speed = emcmotStatus->spindleSpeedIn;
double pos_error = fabs(speed) * tc->uu_per_rev;
// Account for movement due to parabolic blending with next segment
if(nexttc) {
pos_error -= nexttc->progress;
}
tc->target_vel = pos_error;
}
/**
* Run position mode synchronization.
* Updates requested velocity for a trajectory segment to track the spindle's position.
*/
STATIC void tpSyncPositionMode(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc ) {
double spindle_pos = tpGetSignedSpindlePosition(emcmotStatus->spindleRevs,
emcmotStatus->spindle.direction);
tp_debug_print("Spindle at %f\n",spindle_pos);
double spindle_vel, target_vel;
double oldrevs = tp->spindle.revs;
if ((tc->motion_type == TC_RIGIDTAP) && (tc->coords.rigidtap.state == RETRACTION ||
tc->coords.rigidtap.state == FINAL_REVERSAL)) {
tp->spindle.revs = tc->coords.rigidtap.spindlerevs_at_reversal -
spindle_pos;
} else {
tp->spindle.revs = spindle_pos;
}
double pos_desired = (tp->spindle.revs - tp->spindle.offset) * tc->uu_per_rev;
double pos_error = pos_desired - tc->progress;
if(nexttc) {
pos_error -= nexttc->progress;
}
if(tc->sync_accel) {
// detect when velocities match, and move the target accordingly.
// acceleration will abruptly stop and we will be on our new target.
spindle_vel = tp->spindle.revs / (tc->cycle_time * tc->sync_accel++);
target_vel = spindle_vel * tc->uu_per_rev;
if(tc->currentvel >= target_vel) {
tc_debug_print("Hit accel target in pos sync\n");
// move target so as to drive pos_error to 0 next cycle
tp->spindle.offset = tp->spindle.revs - tc->progress / tc->uu_per_rev;
tc->sync_accel = 0;
tc->target_vel = target_vel;
} else {
tc_debug_print("accelerating in pos_sync\n");
// beginning of move and we are behind: accel as fast as we can
tc->target_vel = tc->maxvel;
}
} else {
// we have synced the beginning of the move as best we can -
// track position (minimize pos_error).
tc_debug_print("tracking in pos_sync\n");
double errorvel;
spindle_vel = (tp->spindle.revs - oldrevs) / tp->cycleTime;
target_vel = spindle_vel * tc->uu_per_rev;
errorvel = pmSqrt(fabs(pos_error) * tpGetScaledAccel(tp,tc));
if(pos_error<0) {
errorvel *= -1.0;
}
tc->target_vel = target_vel + errorvel;
}
//Finally, clip requested velocity at zero
if (tc->target_vel < 0.0) {
tc->target_vel = 0.0;
}
if (nexttc && nexttc->synchronized) {
//If the next move is synchronized too, then match it's
//requested velocity to the current move
nexttc->target_vel = tc->target_vel;
}
}
/**
* Perform parabolic blending if needed between segments and handle status updates.
* This isolates most of the parabolic blend stuff to make the code path
* between tangent and parabolic blends easier to follow.
*/
STATIC int tpDoParabolicBlending(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc) {
tc_debug_print("in DoParabolicBlend\n");
tpUpdateBlend(tp,tc,nexttc);
/* Status updates */
//Decide which segment we're in depending on which is moving faster
if(tc->currentvel > nexttc->currentvel) {
tpUpdateMovementStatus(tp, tc);
} else {
tpToggleDIOs(nexttc);
tpUpdateMovementStatus(tp, nexttc);
}
#ifdef TP_SHOW_BLENDS
// hack to show blends in axis
tp->motionType = 0;
#endif
//Update velocity status based on both tc and nexttc
emcmotStatus->current_vel = tc->currentvel + nexttc->currentvel;
return TP_ERR_OK;
}
/**
* Do a complete update on one segment.
* Handles the majority of updates on a single segment for the current cycle.
*/
STATIC int tpUpdateCycle(TP_STRUCT * const tp,
TC_STRUCT * const tc) {
//placeholders for position for this update
EmcPose before;
//Store the current position due to this TC
tcGetPos(tc, &before);
// Update the start velocity if we're not blending yet
if (!tc->blending_next) {
tc->vel_at_blend_start = tc->currentvel;
}
// Run cycle update with stored cycle time
int res_accel = 1;
double acc, vel_desired;
// If the slowdown is not too great, use velocity ramping instead of trapezoidal velocity
// Also, don't ramp up for parabolic blends
if (tc->accel_mode && tc->term_cond == TC_TERM_COND_TANGENT) {
res_accel = tpCalculateRampAccel(tp, tc, &acc, &vel_desired);
}
// Check the return in case the ramp calculation failed, fall back to trapezoidal
if (res_accel != TP_ERR_OK) {
tpCalculateTrapezoidalAccel(tp, tc, &acc, &vel_desired);
}
tcUpdateDistFromAccel(tc, acc, vel_desired);
tpDebugCycleInfo(tp, tc, acc);
//Check if we're near the end of the cycle and set appropriate changes
tpCheckEndCondition(tp, tc);
EmcPose displacement;
// Calculate displacement
tcGetPos(tc, &displacement);
emcPoseSelfSub(&displacement, &before);
//Store displacement (checking for valid pose)
int res_set = tpAddCurrentPos(tp, &displacement);
#ifdef TC_DEBUG
double mag;
emcPoseMagnitude(&displacement, &mag);
tc_debug_print("cycle movement = %f\n", mag);
#endif
return res_set;
}
/**
* Send default values to status structure.
*/
STATIC int tpUpdateInitialStatus(TP_STRUCT const * const tp) {
// Update queue length
emcmotStatus->tcqlen = tcqLen(&tp->queue);
// Set default value for requested speed
emcmotStatus->requested_vel = 0.0;
return TP_ERR_OK;
}
/**
* Flag a segment as needing a split cycle.
* In addition to flagging a segment as splitting, do any preparations to store
* data for the next cycle.
*/
STATIC inline int tcSetSplitCycle(TC_STRUCT * const tc, double split_time,
double v_f)
{
tp_debug_print("split time for id %d is %f\n", tc->id, split_time);
if (tc->splitting != 0) {
//already splitting?
rtapi_print_msg(RTAPI_MSG_ERR,"already splitting on id %d with cycle time %f\n",tc->id, tc->cycle_time);
return TP_ERR_FAIL;
}
tc->splitting = 1;
tc->cycle_time = split_time;
tc->term_vel = v_f;
return 0;
}
/**
* Check remaining time in a segment and calculate split cycle if necessary.
* This function estimates how much time we need to complete the next segment.
* If it's greater than one timestep, then we do nothing and carry on. If not,
* then we flag the segment as "splitting", so that during the next cycle,
* it handles the transition to the next segment.
*/
STATIC int tpCheckEndCondition(TP_STRUCT const * const tp, TC_STRUCT * const tc) {
//Assume no split time unless we find otherwise
tc->cycle_time = tp->cycleTime;
//Initial guess at dt for next round
double dx = tc->target - tc->progress;
tc_debug_print("tpCheckEndCondition: dx = %e\n",dx);
if (dx <= TP_POS_EPSILON) {
//If the segment is close to the target position, then we assume that it's done.
tp_debug_print("close to target, dx = %.12f\n",dx);
//Force progress to land exactly on the target to prevent numerical errors.
tc->progress = tc->target;
tcSetSplitCycle(tc, 0.0, tc->currentvel);
if (tc->term_cond == TC_TERM_COND_STOP) {
tc->remove = 1;
}
return TP_ERR_OK;
} else if (tc->term_cond == TC_TERM_COND_STOP) {
return TP_ERR_NO_ACTION;
}
double target_vel = tpGetRealTargetVel(tp, tc);
double v_f = tpGetRealFinalVel(tp, tc, target_vel);
double v_avg = (tc->currentvel + v_f) / 2.0;
//Check that we have a non-zero "average" velocity between now and the
//finish. If not, it means that we have to accelerate from a stop, which
//will take longer than the minimum 2 timesteps that each segment takes, so
//we're safely far form the end.
//Get dt assuming that we can magically reach the final velocity at
//the end of the move.
//
//KLUDGE: start with a value below the cutoff
double dt = TP_TIME_EPSILON / 2.0;
if (v_avg > TP_VEL_EPSILON) {
//Get dt from distance and velocity (avoid div by zero)
dt = fmax(dt, dx / v_avg);
} else {
if ( dx > (v_avg * tp->cycleTime) && dx > TP_POS_EPSILON) {
tc_debug_print(" below velocity threshold, assuming far from end\n");
return TP_ERR_NO_ACTION;
}
}
//Calculate the acceleration this would take:
double dv = v_f - tc->currentvel;
double a_f = dv / dt;
//If this is a valid acceleration, then we're done. If not, then we solve
//for v_f and dt given the max acceleration allowed.
double a_max = tpGetScaledAccel(tp,tc);
//If we exceed the maximum acceleration, then the dt estimate is too small.
double a = a_f;
int recalc = sat_inplace(&a, a_max);
//Need to recalculate vf and above
if (recalc) {
tc_debug_print(" recalculating with a_f = %f, a = %f\n", a_f, a);
double disc = pmSq(tc->currentvel / a) + 2.0 / a * dx;
if (disc < 0) {
//Should mean that dx is too big, i.e. we're not close enough
tc_debug_print(" dx = %f, too large, not at end yet\n",dx);
return TP_ERR_NO_ACTION;
}
if (disc < TP_TIME_EPSILON * TP_TIME_EPSILON) {
tc_debug_print("disc too small, skipping sqrt\n");
dt = -tc->currentvel / a;
} else if (a > 0) {
tc_debug_print("using positive sqrt\n");
dt = -tc->currentvel / a + pmSqrt(disc);
} else {
tc_debug_print("using negative sqrt\n");
dt = -tc->currentvel / a - pmSqrt(disc);
}
tc_debug_print(" revised dt = %f\n", dt);
//Update final velocity with actual result
v_f = tc->currentvel + dt * a;
}
if (dt < TP_TIME_EPSILON) {
//Close enough, call it done
tc_debug_print("revised dt small, finishing tc\n");
tc->progress = tc->target;
tcSetSplitCycle(tc, 0.0, v_f);
} else if (dt < tp->cycleTime ) {
tc_debug_print(" corrected v_f = %f, a = %f\n", v_f, a);
tcSetSplitCycle(tc, dt, v_f);
} else {
tc_debug_print(" dt = %f, not at end yet\n",dt);
}
return TP_ERR_OK;
}
STATIC int tpHandleSplitCycle(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc)
{
if (tc->remove) {
//Don't need to update since this segment is flagged for removal
return TP_ERR_NO_ACTION;
}
//Pose data to calculate movement due to finishing current TC
EmcPose before;
tcGetPos(tc, &before);
tp_debug_print("tc id %d splitting\n",tc->id);
//Shortcut tc update by assuming we arrive at end
tc->progress = tc->target;
//Get displacement from prev. position
EmcPose displacement;
tcGetPos(tc, &displacement);
emcPoseSelfSub(&displacement, &before);
// Update tp's position (checking for valid pose)
tpAddCurrentPos(tp, &displacement);
#ifdef TC_DEBUG
double mag;
emcPoseMagnitude(&displacement, &mag);
tc_debug_print("cycle movement = %f\n",mag);
#endif
// Trigger removal of current segment at the end of the cycle
tc->remove = 1;
if (!nexttc) {
tp_debug_print("no nexttc in split cycle\n");
return TP_ERR_OK;
}
switch (tc->term_cond) {
case TC_TERM_COND_TANGENT:
nexttc->cycle_time = tp->cycleTime - tc->cycle_time;
nexttc->currentvel = tc->term_vel;
tp_debug_print("Doing tangent split\n");
break;
case TC_TERM_COND_PARABOLIC:
break;
case TC_TERM_COND_STOP:
break;
default:
rtapi_print_msg(RTAPI_MSG_ERR,"unknown term cond %d in segment %d\n",
tc->term_cond,
tc->id);
}
// Run split cycle update with remaining time in nexttc
tpUpdateCycle(tp, nexttc);
// Update status for the split portion
// FIXME redundant tangent check, refactor to switch
if (tc->cycle_time > nexttc->cycle_time && tc->term_cond == TC_TERM_COND_TANGENT) {
//Majority of time spent in current segment
tpToggleDIOs(tc);
tpUpdateMovementStatus(tp, tc);
} else {
tpToggleDIOs(nexttc);
tpUpdateMovementStatus(tp, nexttc);
}
return TP_ERR_OK;
}
STATIC int tpHandleRegularCycle(TP_STRUCT * const tp, TC_STRUCT * const tc,
TC_STRUCT * const nexttc)
{
if (tc->remove) {
//Don't need to update since this segment is flagged for removal
return TP_ERR_NO_ACTION;
}
//Run with full cycle time
tc_debug_print("Normal cycle\n");
tc->cycle_time = tp->cycleTime;
tpUpdateCycle(tp, tc);
/* Parabolic blending */
tpComputeBlendVelocity(tp, tc, nexttc, false, NULL);
if (nexttc && tcIsBlending(tc)) {
tpDoParabolicBlending(tp, tc, nexttc);
} else {
//Update status for a normal step
tpToggleDIOs(tc);
tpUpdateMovementStatus(tp, tc);
}
return TP_ERR_OK;
}
/**
* Calculate an updated goal position for the next timestep.
* This is the brains of the operation. It's called every TRAJ period and is
* expected to set tp->currentPos to the new machine position. Lots of other
* const tp fields (depth, done, etc) have to be twiddled to communicate the
* status; I think those are spelled out here correctly and I can't clean it up
* without breaking the API that the TP presents to motion.
*/
int tpRunCycle(TP_STRUCT * const tp, long period)
{
//Pointers to current and next trajectory component
TC_STRUCT *tc;
TC_STRUCT *nexttc;
/* Get pointers to current and relevant future segments. It's ok here if
* future segments don't exist (NULL pointers) as we check for this later).
*/
tc = tcqItem(&tp->queue, 0);
nexttc = tcqItem(&tp->queue, 1);
//Set GUI status to "zero" state
tpUpdateInitialStatus(tp);
//If we have a NULL pointer, then the queue must be empty, so we're done.
if(!tc) {
tpHandleEmptyQueue(tp, emcmotStatus);
return TP_ERR_WAITING;
}
tc_debug_print("-------------------\n");
#ifdef TC_DEBUG
//Hack debug output for timesteps
static double time_elapsed = 0;
time_elapsed+=tp->cycleTime;
#endif
/* If the queue empties enough, assume that the program is near the end.
* This forces the last segment to be "finalized" to let the optimizer run.*/
tpHandleLowQueue(tp);
/* If we're aborting or pausing and the velocity has reached zero, then we
* don't need additional planning and can abort here. */
if (tpHandleAbort(tp, tc, nexttc) == TP_ERR_STOPPED) {
return TP_ERR_STOPPED;
}
//Return early if we have a reason to wait (i.e. not ready for motion)
if (tpCheckAtSpeed(tp, tc) != TP_ERR_OK){
return TP_ERR_WAITING;
}
if(!tc->active) {
int res = tpActivateSegment(tp, tc);
// Need to wait to continue motion, end planning here
if (res == TP_ERR_WAITING) {
return TP_ERR_WAITING;
}
}
// Preprocess rigid tap move (handles threading direction reversals)
if (tc->motion_type == TC_RIGIDTAP) {
tpUpdateRigidTapState(tp, tc);
}
/** If synchronized with spindle, calculate requested velocity to track
* spindle motion.*/
switch (tc->synchronized) {
case TC_SYNC_NONE:
emcmotStatus->spindleSync = 0;
break;
case TC_SYNC_VELOCITY:
tp_debug_print("sync velocity\n");
tpSyncVelocityMode(tp, tc, nexttc);
break;
case TC_SYNC_POSITION:
tp_debug_print("sync position\n");
tpSyncPositionMode(tp, tc, nexttc);
break;
default:
tp_debug_print("unrecognized spindle sync state!\n");
break;
}
#ifdef TC_DEBUG
EmcPose pos_before = tp->currentPos;
#endif
// Update the current tc
if (tc->splitting) {
tpHandleSplitCycle(tp, tc, nexttc);
} else {
tpHandleRegularCycle(tp, tc, nexttc);
}
#ifdef TC_DEBUG
double mag;
EmcPose disp;
emcPoseSub(&tp->currentPos, &pos_before, &disp);
emcPoseMagnitude(&disp, &mag);
tc_debug_print("time: %.12e total movement = %.12e vel = %.12e\n",
time_elapsed,
mag, emcmotStatus->current_vel);
#endif
// If TC is complete, remove it from the queue.
if (tc->remove) {
tpCompleteSegment(tp, tc);
}
return TP_ERR_OK;
}
int tpSetSpindleSync(TP_STRUCT * const tp, double sync, int mode) {
if(sync) {
if (mode) {
tp->synchronized = TC_SYNC_VELOCITY;
} else {
tp->synchronized = TC_SYNC_POSITION;
}
tp->uu_per_rev = sync;
} else
tp->synchronized = 0;
return TP_ERR_OK;
}
int tpPause(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
tp->pausing = 1;
return TP_ERR_OK;
}
int tpResume(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
tp->pausing = 0;
return TP_ERR_OK;
}
int tpAbort(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_FAIL;
}
if (!tp->aborting) {
/* const to abort, signal a pause and set our abort flag */
tpPause(tp);
tp->aborting = 1;
}
return tpClearDIOs(tp); //clears out any already cached DIOs
}
int tpGetMotionType(TP_STRUCT * const tp)
{
return tp->motionType;
}
int tpGetPos(TP_STRUCT const * const tp, EmcPose * const pos)
{
if (0 == tp) {
ZERO_EMC_POSE((*pos));
return TP_ERR_FAIL;
} else {
*pos = tp->currentPos;
}
return TP_ERR_OK;
}
int tpIsDone(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_OK;
}
return tp->done;
}
int tpQueueDepth(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_OK;
}
return tp->depth;
}
int tpActiveDepth(TP_STRUCT * const tp)
{
if (0 == tp) {
return TP_ERR_OK;
}
return tp->activeDepth;
}
int tpSetAout(TP_STRUCT * const tp, unsigned char index, double start, double end) {
if (0 == tp) {
return TP_ERR_FAIL;
}
tp->syncdio.anychanged = 1; //something has changed
tp->syncdio.aio_mask |= (1 << index);
tp->syncdio.aios[index] = start;
return TP_ERR_OK;
}
int tpSetDout(TP_STRUCT * const tp, int index, unsigned char start, unsigned char end) {
if (0 == tp) {
return TP_ERR_FAIL;
}
tp->syncdio.anychanged = 1; //something has changed
tp->syncdio.dio_mask |= (1 << index);
if (start > 0)
tp->syncdio.dios[index] = 1; // the end value can't be set from canon currently, and has the same value as start
else
tp->syncdio.dios[index] = -1;
return TP_ERR_OK;
}
// vim:sw=4:sts=4:et:
|